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Part 1

1. In the following, we shall fix a ground field K of positive
characteristic .

Let R be an algebraic system composed by a system of sets of
n-indeterminates, x= (%, -+, %), ¥y= (1, ***, ¥n), -+ (we call them
generic points) and two sets of non-zero formal power series with
coefficients in K

@i (Xyy o0y Xns Yo oot )y Yri(Ka, ooy Xns Y1, 000y V), 10,

with respect to 2x-indeterminates Xy, -*«, X.; Y1, ***, Y=, satisfying the
following conditions;

(F1) R is an abelian formal group with respect to (i, >, ¢x),
(see [1]),

(F2) (P (x, 9), 2) =yu(x, ¥(y, 2)), we call (s, >, yrn) the
multiplication of x and vy in R,
(F3) o:(r(x, ), ¥(x, 2)) =:(x, (3, 2)),

(P (x, 2), ¥ (9, 2) =y (e(x, ), 2), 1=i=n.

We call R a formal ring of dimension # defined over K, and
write

x-9= (%, ), -, va(®, ), 2+y=(:(x, 3), =+, 0a(x, ).
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We shall follow the notation and the terminology of [1].
2. Let O be the ring of all formal power series with respect to-

X1, **+, X» which have coefficients in K. For f=(0, and two generic.

points x, y,

Pt Sy =Sy(Xef), Xef €O, (1)
fay) =2y (Yof), Yaf€O, (2)
fa+9)=3y"(Zsf), Zsf€O. (3)

From the theory of formal groups, it is known that Z,=I
(identity) and that Zs is a special semi-derivation of height %(g)
+1. X. Yo Zi, a=N™ are K-linear endomorphisms of K-vector-
space O.

Put (X )V =)Ca0y%°Y", CocyEK (4)
o, B
(x-.i-y)’=23dsayx°‘y‘3, deyEK . (5)

Note that dugy=0 if |7|>|a|+ |8, Casy=0 if |y|>]|al, |8],

and that Caey=Coy=0, (except con=1), (6)
daoy = dO(xy e 8(17, daB‘y, = dﬂay .

Then applying the argument analogous to the one used in [1,.

n°11], we obtain the following relations,
XBXQ=;C‘BayXy, YBYO{.zg caB'Y X’Y!
ZBZa:Zdﬂayzy, X YB: YBXa,
Y

ZBXa: E CBySXa—yZS, ZBYQL:os‘yZSMCyBS Ya—‘yZﬁ. (7)
3

0sYsw
3

Moreover we have ‘“the generalized Leibnitz formula”,
Tu(fg) = o%‘;w(T"f) (Tasg), T=X, Y, Z, for f, g€0.
(8)

The next result is easily obtained.
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Proposition 1. The following conditions are equivalent.
(1) The multiplication of R is commutative.
2 X.=Y., for all a=N™
(3) cosy=Caay, for all a, B, yEN™.
Then XsXo=XoXa for all a, 3= N™.

If we put &= (0, -+, 0, 1, 0, -+, 0), 1<i<n, we have

vi(x, y) =(x-y)8i= chaeix“ys, (9)

0:(%, ) = (£ +5) %= dsoc 2", (10)
3. Conversely:

Proposition 2. For each a=N*, let Xo, Yo, Zo be K-linear
endomorphisms of © such that
(i) Z,=I (identity),
(ii) Za« is a special semi-derivation of height h(a)+1,
(iii) these operators verify the conditions (6), (7), (8) for the
sets of operators {Capy, dasy}, (a, B, 1) EN"X N*"X N™,
(iv) these operators operate on O with the next formulae, Xax*
= ;C'yBaxy, Yox®= ;CB‘yaxy, Zpx*= ;dygaxy.

Then formulae (9), (10) define a formal ving, for which (1),.
(2), 3) are Taylor formulae.

This result can be proved by an argument analogous to the one
used in [2].
4. We shall consider a one-dimensional formal ring.

Let 4 (x, y)=auxy+k§ > a;x'y!, where a,€K, ao.=a,=0,

i+j=k
i, j=2.
We use the following Lemmas.
Lemma 1. If @,=0, then «(x, y) =0.

Proof. Let « be the smallest integer such that a.;%0 for some
j and let B be the smallest integer such that a«s>0. Then a=1
(when a=1, p=2). We shall order lexicographically monomials.
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with respect to x, y, 2z by putting cx'y’z2*<<c'x"'y"'z", ¢, c'€K, c,
¢’=0, if the first non-zero difference of i'—i, j'—j, k' —k is positive.
In (x-y)-z the minimal monomial is @%'x%*y*#z% and in x-(y-2),
the minimal monomial is a%3'x*y*fz®%, As (x-y)-z=x-(y-2), we

have a=p=1, which contradicts the assumption. q.e.d.

Lemma 2. (Theorem of ]J. Dieudonné [2] concerning the
classification of one-dimensional formal groups.) In the follow-
ing, we write Z, instead of Z,, k=0, and suppose that the ground
field K is algebraically closed. Any formal group G of dimen-
sion 1 over K is isomorphic to one of the following three types.
Q) If Z¢=i1Z,, 2x0, G is isomorphic to the multiplicative group
(with the group law (x, y)—x+y+xy).

(@) If Z¢=0 and if there exists the smallest integer v>>0 such
that Z!=0, then G is isomorphic to the group with the associ-
ated hyperalgebra such that Z{=0, for k<<r, and Zi=2Z,.,, for
k=,

(3) If Z!=0, for all k=0, then G is isomorphic to the additive
group (with the group law (x, y)—x+Y).

Lemma 3. (1) ¢u,,,5=0 for any 6 and k=0.
2 Z.X,=0, for k=0.

Proof. (1) is trivial.
(2) If f(x) =>la«x, then X,f=a, that is, X, is a function which
takes as a value a constant term of f(x). Therefore Z,X,=0, =0
is trivial.

Lemma 4. As the addition of one-dimensional formal ring,
we cannot take the group law of type (1) and (2) of Lemma 2.

Proof. Type (1). We have Z!X,=1Z,X,.. However, Z, X,=
S ens XoZs+ €105 X1 2Z5) =§cmXoZa. Therefore Z{X,=0 from Lemma
8

3. Hence Z,X,=0. But when we take x for f(x), we have Z,X,f
=Z(aux+>ayx’), and (Z:X.f) () =aun=0. This gives a contra-
jix2
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diction.
Type (2). It follows that ZX1=§(C,,*,1,5XOZs'f‘Cp",O;BXlZG):

(e 1,5 X0Z5). Hence Z;X,=0. If we take » for k£ and x for f(x),
3

we have Z!X,=27,X,=0 and Z,X,f>0. This gives a contradiction.
q.ed.

Lemma 5. If the addition is given by ¢(x,y)=x+Y, then
with some change of wvariables of type x—:>x+zia,-x", we can

transfer the multiplication to 4 (x, y) =xy.

Proof +(x,y) is given in the next form +r(x, ¥) =bowxy+
S0 y¥, bo30. If we change variables by v5'(x) = (1/bw)x, we

have r (%, ) =xy+>0Px*' y*. If some coefficients b, by are not
iJ

zero, then take « the smallest positive integer such that 5{=¢0.
We can easily show that b§0=0, b3=>5(2, and b =0 for 0<<i<a.
By a change of variables v, (x) =x—b{0x**, we have a new formal
series for the multiplication yr (%, ») =xy+i2jb,‘-;?‘)x”‘y”, where b{

=bi” =0, for 0<<i<a. Let B be the smallest positive integer such
that 5§90, if there exists some coefficient 4{’=0. Then B>a.
By the analogous process, a change of variables v (x)=x—0b{%x"
transfers yr (%, ¥) to e (x, y)=xy+i2j]b§?’x”’y”, where b =P
=0, if 0<<i<3.

Thus continuing this process, we have the following. By the change

of variables v=0,0.0s:, we have ¥ (x, ) =xy+ > a,x*'y*. But
(1, /)=2(1,1)

from the associative law for the multiplication, we have ¥ (x, »)
=XxY. q.e.d.
Summarizing the preceding Lemmas, we get:

Theorem. If the ground field K of characteristic p=0 is
algebraically closed, any one-dimensional formal ring is isomorphic
to the formal ring of type (x+y, xy).

Corollary. Any one-dimensional formal ring is commutative.
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Remark. We can prove Corollary by the method of M. Lazard"
[7]. In his argument, we have only to replace k(x, y) by x-y—
y-x.
5. Let R be a formal ring of dimension #. Define 6,;(x)€0, 1<i,.
Jj<mn, as follows;

¥ (y, %) =210;,(x) y;+ (terms of total degree =2 with respect
=

to y=(31 -+, In)).
Then from the distributive law (2, ¢ (x, ¥)) =0; (Y (2, %), ¥ (2, ¥)),
we get 0,;(p(x, ¥)) =0,,(x) +0,(y), 1<i, j<n. Also from the as-
sociative law, v (2, ¥ (%, 3)) =y (Y (2, %), y), we get 0,;(Yy-(x, y)) =

:é‘lﬁ”' )0, (y), 1<i, j<n.

If we associate to R a nX#n-matrix 0(x) =(6;;(x)), we have a.
representation of R, 0(p(x, y))=0(x)+6(y), 0(y(x, 3))=0(x)-6(y).

Lemma 6. If all 6,;,(x), 1=i,j<n are zero, then all ¥ (x, y)
1<i<n, are zero.

Proof. Assume that 4~ (y, x) is not zero. Let s be the smallest
integer such that in «~(y, x), there exists a term ax'y® where |d]
=s, and @>0. Then s=2. Let z=(z, +*, 2,) be another generic
point. We have (2, ¥ (¥, ) =y (4(2,5),%). In the left hand
side, the minimal value of total degree with respect to z is s, but
in the right hand side, the minimal value of total degree with res-

pect to z is >s. This gives a contradiction. q.e. d.

Part 2

In Part 2 and Part 3, the ground field K is assumed to be
algebraically closed. Moreover we add the next condition to the
definition of formal ring:

(F4) i, -+, Y. are analytically independent over K.
We shall prove that the underlying additive group of a formal

ring is unipotent.
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1. First we quote some results of J. Dieudonné from [1], [4], [5].

Lemma 1. (Homomorphism theorem, [1])

Let G and G be formal groups of dimension m and n de-
fined over K and u be a homomorphism from G to G defined
over K. By appropriate changes of variables in G and G, we
can suppose that we have,

u; (x) =x:, for 1<i<r,,
w:(x) =22,  for re+1<i<r,+ri,

u:(x) =x, for vot A7+ 1<i<ro+ 47y,
u;(x)=0, for i>ry+-+7..

We shall denote p=#,+--+7, and call p the rank of u and ¢
(the greatest integer such that #»,%0) the height of u. We say
that u is injective if p=dimG, surjective if p=dim G, and isogeny
if # is both injective and surjective.

Corollary. Let (G, u) be a subgroup of a formal group G'.
Then there exist an isomorphism G'—G;i and an isogeny G—
H, of G onto a typical subgroup of G, such that the diagram
G —>G' is commutative.

L
H—G
J
The proof is given in [1], [5].

Lemma 2. Any abelian formal group over K is isogenous
to a divect product of additive Witt groups, multiplicative groups
and simple groups. (See [4], [8])

Lemma 3. Any abelian simple group of dimension n over
K is isogenous to a group G.,,,. where m is a positive integer

prime to n. Ga,i,m has a hyperalgebra characterized by the follow-
ing multiplication law,
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Zﬁ’,;=z,,;+1 , h=0, 1, - 1§z§n—1 ,
_:,n:() ’ Oghgm ’

BT —
Z;-Hu,n:Zh,l 5 h:O, 1, ctt. Hef'e Zh,i:Zﬁ"En‘ .

2. Any abelian formal group G of dimension # is isogenous to a
group G'=IIW,, X I;IG,.,,I,,,,,.X G, (g, mp) =1, Jni+>2n;+1=n.
i i J

Let # be an isogeny from G’ to G. Then there exists a unipotent
subgroup #(IIW,)=U in G. By Corollary, there exist an iso-

morphism G—G; and an isogeny U—U, of U onto a typical sub-
group U, of G, such that:
(1) G,/U, has no unipotent subgroup,
(2) the diagram G—> g\‘ is commutative.
|
U%Jh
We have the next result of J. Dieudonné [5].

Lemma 4. Let G be a commutative formal grvoup of dimen-
sion n and let (J, L) be an arbitrary partition of (1, n]. There
exist two uniquely determined systems of power sevies without
constant terms u(x) = (u;(x))1<icn and v(x) = (0:(%))1<i<n SUch that
uy(x) =0 for keL, v;(x)=0 for j=] and u(x) +v(x) =x.

3. Let R be a formal ring of dimension #. For our purpose, we
can assume that R contains a typical unipotent subgroup U such
that R/U has no unipotent subgroup. Let J be a subset of [1, %]
corresponding to U. Then J satisfies the following conditions;

1) Card (J)=dim U,

(2) for any system (¥;),e;=% of indeterminates, define j(y)=
(7:(¥)) as the system of power series j;(y) =y, for ie], 7. (»)=0
otherwise; then we have ¢;(j(y), 7(2)) =0, for all 7€ ].

By Lemma 4, there exist two uniquely determined systems of
power series 7 (x) = (7;(x)) je; and h(x) = (h:(x))1<:<» such that k(%)
=0 for i€/, and x=j(r(x))—|'—h(x). Then we have h(x-i—y)=
h(h(x) +h(3)), h(x-y) =h(h(x) R ().
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For the proof of the latter equality, we need the next Lemma.

Lemma 5. Let G, G’ be abelian formal groups with their
typical unipotent subgroups (U, j), (U, j) such that G/U, G'/U"
have no unipotent subgroup, and u be a homomorphism from G
to G'. Then there exists a homomorphism u':U—U' such that
u-j=j-u,

U—G

7

U'—',>G’ .
J

Proof. Let x=j7(r(x)+h(x), «'=j (#'(x))+k (x') be parti-
tions corresponding to (G, U) and (G’, U’) respectively. Since U
is unipotent and G’/U’ has no unipotent subgroup, a composition
of homomorphisms U—G—G'—G'/U’ is trivial. Hence, for a gene-
ric point x of U, h'(u(j(x)))=0 and u(Fj(x)) =7 " u(F(x)))).
We can prove easily that #'-#-j is a homomorphism. Therefore we
have only to take 7" -u-j as u'. q.ed.

For generic points x, y of R, we have

x-y=jr(x-3))+h(x-y)
=G @)+h®)) -G ) +h())
=j(‘r(x))-{j(r(y))%th(y)}—'kh(x) J(r ()
i) - h(9)) +h R (x) - (5)).
Here from Lemma 5, j(#(x))-{j(x(3)) +h(3)}, h(x)-j(r(¥)) are
contained in j(U) because the multiplication by j (r(y))-i'-h(y),
h(x) are homomorphisms of the formal group R. Hence we have
the equality A(x-y)=h(h(x)-h(y)).
Put L=[1, n] —J. For a system X= (Z)i. of indeterminates,

let 6(%) be the system (6:(X))ici<» Of power series such that (%)
=0 for i€/, 0:(%) =%, for icL.

Put  60(%, ) =h(c@ +s(3), ¥ (&, 3) =h(s(®) ().
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‘Then we can show that @, ¥ define a ring law on the quotient group

R/U, and that the system %(x) = (h:(x)): is a homomorphism
from R to R/U.

Now we consider the next assertion:

Theorem 1. There is no formal ring of which underlying

formal group is isogenous to (Go)'X II Guim where G, is the
(n,m)=1

multiplicative group.

If we can prove Theorem 1, we know that there exists only trivial
ring law on R/U, that is, all (%) are zero.

Therefore  x-y=7 (r(x-3)) +h(x-) =5 (x-)) +h(h(x) - h(5))
=5 (r (x-9)) +h(ah (%) - ah(5))
=j(r(x-3)) +o¥ (h(x), B(¥))
=j(r(x-9)).
‘This contradicts to our hypothesis that «~, :--, Yr, are analytically
independent over K, if R/U=0. Hence we have:

Theorem 2. The underlying abelian formal group of a for-
mal ring is unipotent.

Part 3
1. We denote by O, the ring 0, rZ and put O'=U0,.
1 4

From now on, when we denote an index by a= (ay, -+, a.), it
always means the index of which components are of the following
type,

aptta s p P+ tanpactap+ - +ap (*)
where a_,, -*-, @, are integers such that 0=a_, -+, a,.<p—1.
For such a, we define /(a) the smallest integer 7 for which

a,~<p'+l, lgign and a! =h II H(ll,,)! where a;zhz Zh;ph, 1§i§n.

=—o0 i=1 = —oo

are expressions of a; in the form (*).



On formal rings 55

Let G be a commutative formal group of dimension #. In the
following, we shall extend the notion in [1, #°4, 5, 6, 7, 12], follow-
ing verbatim the argument in [1]. We call a K-endomorphism 4
of @ a semi-derivation of height v if 4 satisfies 4(0,)C0O,, 4(fg)
=f4(g)+g4(f), for f€0,, g€, and a special semi-derivation
if 4 is semi-derivation and satisfies 4(f)=0, for f€0,. Denote
by D,,; a semi-derivation of height » such that if a;=ap +b+c,
0<a<<p, acZ; 0<b<p’, p~'ceN, we have D, (x5 x5) =axi*--

x?i'f'x?‘—p"x?ﬁ"“ f". Put Da= H H.DZ\?,' fOI' a:<a1, ey afn)y a;—

h=—o0 i=1

S aept, 1<i<n.

h=—co

We define a differential operator D as a linear combination
S Do where u@ and #.=0 for a such that 2(a) is large enough.

For any differential operator D we can define uniquely an invariant
differential operator Z such that Z(e)f=D(e)f, f€C'. Denote by
Z, the invariant differential operator characterized by the initial

condition Z,(e)=(1/a)Dq(e). Put Xo= ﬁ l"xIZ,f"";, for a=(ay, -+

h=—o0 i=1

@), = ) Aup’, 1<i<n, where Z,.=Z e,

h=—oco

We denote by & the algebra formed (over K) by invariant dif-

»

ferential operators of & and call it the hyperalgebra of G. Also
we denote by &, (resp. S,) the set of semi-derivations (resp. special
semi-derivations) of height » of 4. Then §=4,, G, is Lie algebra

and S, is the ideal of &,. Moreover S, is the associative algebra
over K. Then Theorem 2 of [1, #°9] holds in our case.

Lemma 1. The associative algebra S, has the special semi-
derivations Xa., 0= a,<<p" as its base over K; the Lie algebra G,
is the dirvect sum of S, and the vector space over K which has

Z,,1, Z,,n as its base.

Remark. Z. can be defined from “Taylor series” for fe(,
fx+9) =3y (Zef), Zaf€0.
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2. Let G be another commutative formal group of dimension m
and let #=(#,, --*, %) be a homomorphism from G to G, where we
admit to take elements of O as u;, 1<i<m. For Z€G, f=O'(G),
we define an invariant differential operator #'(Z)€@ by u'(Z)(e)f
=Z(e)(f-u). Then ' is a homomorphism from & to G such that
u'(G,)CG,u, u'(S,)CS,+,, for reZ, where t is an integer such that
u,€0-,, 1<i<m. Moreover if v is a homomorphism of G to an-
other commutative formal group 5, we have (v-u)' =v"-u'. It is
trivial that for the identity I of formal group G, (I)’ is the identity
of Lie hyperalgebra & of G.

3. Lemma 2. (1) For G,im, (n, m)=1, we have the following
relations,

Zf;!':ZuH"ly 1§z§n'—l) h=0> ilr izy Y

_ﬁyﬂ=Z—m;1y h=0, il, '+_'2, LA
(2) For multiplicative group G, we have the relations,

Z:=2,, h=0, +1, +2 .-,

Proof. (1) First we prove that the relations

7]{,;:7;,,”.1, léign—ly hzos 1; 27 “t

Zlimn=211, k=0, 1, -+ described in Lemma 3, Part 2 hold
if they are considered as K-linear endomorphisms of ¢&'. Let f be
an element of O_,, ¢: positive integer. Taking account of the fact
that the group laws of G,,i,n are defined over the prime field, it is
easy to show that Z.f={Z, . (f p)}(p™), for any Z.€G where
p (esp. p™) is a homomorphism p:x—x* (resp. p':x—x").
Taking Z.: (tesp. Ziimn), we have Zi,.f={Zl.(f-p)}(p™*) =
{Zt+tyi+1(f'P‘> }(P—t) :Zyiﬂf» (resp. Ze'*mmf:{Z_":'*m“’"(f'Pt) }(P_t)
={ Zpi(f-p)Y(p™*) =Z:1f.) Hence follows the requirement.

Next we consider a homomorphism p™:x—x*". Then the derived
homomorphism (p~)" of the hyperalgebra of G.,,i,n is characterized
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by
(P—l),<7h,i) :7;,+1,,', h:(), il, iZ, ey, léign.

To prove the relations (1), operate (p™)’ on Z,,, 1<<i<n—1, (resp.
Zi,.) by t-times repeatedly so that h+¢ (resp. h+¢—m) is positive.
Then putting ¢=(p™)’, we have

q‘(zf,;) = (q'(Z_;.,f))"= _g+hi=Zh+hi+1= q'(Z,,m),
(resp. q'(ZLn) = 7£+t)n= Zrﬂ—m, 1= qt(Z_h—m, 1))

Therefore we get the requirement, taking account of the fact that

(p™)’ is bijective.

(2) The proof is completely analogous to the one of (1), using

the fact that Z:=2Z,, h=0,1, 2, ---. g.ed.
From Lemma 1 and Lemma 2, we have:

Corollary. If a commutative formal group G is isomorphic
to a direct product of multiplicative groups and simple groups
Goyiym, (n, m)=1, the mapping of the hyperalgebra G of G;
ZeG—7*€ QG is bijective.

4. We shall define a quasi-formal ring R with the same definition
as a formal ring, only adding the following requirement:
(1) ¢, -, ¢ are formal series which admit no terms but those of
the following type, Xx%i---xZsyfi--98 @, -, an; By, ***, B» being non-
negative integers,
(2) Ay, v, Yrn admit terms x§re--xFyPeYi ay, oo, @n; By, vvv, Bn be-
ing non-negative numbers of the type (*).

For fe@', write f(y-x)=§}y°‘(Xaf), f(x~y)=§y°‘(Yaf),.
fa+9)=59*(Zef), Xof, Yuof, Zaf€0O. Then Xo, Yo, Zu are

K-linear endomorphisms of ©&'. Moreover put (x- y)7=ZBcBa«,x°‘yB,
@y

(x:*—y>7:23d6a7 x“ys, CaBy, daByEK. Then we write
o,

XBXa = YZCBayXy, Y3 Yxx = 7264187 YYy ZBZcx = yEdBayZy y
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ZBXa = 2 CBySXa—.yZS > ZB Y‘y == Z C‘yBS Yw_‘yZE .
osgs«» OsgSw

5. Let R be a formal ring of dimension # and assume that there
exists an isogeny # from the underlying additive group of R to G,
‘where G is isomorphic to (G,)'X I Gupim, I+ 0:=n.

nim; i
(njmd=1

Let o= (o, *, @n), Y=Yy, -+, ¥,) be ring laws for R and ¢=
(¢, -+, ¢») be the group law for G. Then by Lemma 1, Part 2,
changing variables in R and G, we can suppose that # is a homo-
morphism of the form written in Lemma 1, and that g, ¥, ¢ are
laws defined for the variables which have been changed, %, ---, %,
for R and %y, ---, x, for G. Then
Xi=u:(%) =% if ro+ -+ +H1iSret 7, 0SS

We define +Jr; as follows;

- - - -t
‘Pi(xl) ot x'n; yly RS yn) :{'\P‘i<x1y Y x'ov qull, A xfo-ll-rly % xﬁ 5

Y1, 0% Yoy Vhowts 0% Fhoirs 7 Y2 ) 3D,
if ro+ - 7+ 1§i§70+"'+7’h, Oéhét

Thus we can define a structure of quasi-formal ring on G with
o= (@1, ***, ¢n), Y=Yy, **-,¥.). Then by Lemma 6, Part 1 and the
condition (F4), we can easily see that in some +;, there exists a
term of the type a(x)y? where a(x) is a formal series in @ and
h is an integer. Let % be the smallest integer such that there ap-
pear terms of the preceding type in +r, 1<i<n.

Write y~(y, x) =ﬁ0,~j(x)y§f"+ (terms of total degree >p* with
ji=1

respect to y= (3, -**, ¥») or terms
of the following type a(x)yji-:-y2=
where some a;, a;%0, 3j.)

Then from ¢:(¥(z, x), ¥ (2, ¥)) =v:(z, ¢(x, ¥)), we have
0:i(e(x, 9)) =0;(%) +0,;(y), 1<i, j<n. see (x%)

From the assumption, there exists some 6;;(x) 0. From (xx), we
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can know easily that in 8;;(x), the terms of the smallest total degree
have the form ax}', ac K, 1<k<n, t:. integer. Therefore we know
that in some ~(%x, ¥), 1<\i<<n there exists a term ax{'y?. If we
operate Z,,, X, to x:; we have

(Zu X pe,x:) () = Z,,0(6:5(x)) (€) =a=0.
On the other hand, we have Z,,=3a,Z2, a.=K, from Corollary

of Lemma 2. And by operating the above endomorphism to elements
of ©,, where r is large enough, it is easy to see that the sum of
right hand side does not contain a constant term.

For a0, we have

Za X phe; = D0 Coyo,s X pre; + Coyphep5 Xo+ Oﬁphe;Ca,O,sXp”6j~7 YZs .
If 0<T<ph’€j, Xp"ej_yZaxiZO, for if not o= (61, oy 6.,,),

d;: non-negative integers, Z;x;=0 by the definition of Z; and the
assumption of group laws of a quasi-formal ring, and if 6=(d, -,
8.), 6;: non-negative integers, (X,e,4Z5)x;=0 by the assumption on
h. We know that Ca,,;=0 and Z.X,=0. Hence Z;Xex;=0, and

Z, X pe,x:=0. This gives a contradiction. Thus we have completed
the proof of Theorem 1.
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