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P a rt  I

1 .  In  the following, we shall fix a  ground field K  o f  positive

characteristic p.
Let R be an algebraic system composed by a system of sets of

n-indeterminates, x =  (x1, • • •, x „ ) ,  y =  ( y 1 ,  • • • ,  y ),  • • •  (*we call them
generic points) and two sets of non-zero formal power series with
coefficients in K

ç o ( x 1 ,  • • • ,  x . ;  3 1 1 ,  • •  •  ,  y „ ) , A lr , (x 1 , • • • , x .; Y i,  • • • ,  y . ) ,

with respect to 2n-indeterminates x 1, •••, x,,; y i ,•••,y,„ satisfying the
following conditions;

(F1) R  is  an abelian f orm al group w ith respect to  (42,, •••,ço„),

(see [1 ]),

(F2) * , ( * ( x ,  y ) , z ) = * , ( x , * ( y ,  z ) ) ,  w e  c all  ( * i ,•••, * . )  the
m ultiplication o f  x  and  y  in  R,

(F 3 ) ço ,(* (x ,y ), r(x, z)) ço(y, z ) ) ,

ç o ,(* (x , z ), * (y , z ))= * ,((p (x , y ), z),

We call R a f orm al ring  of dimension n  defined over K , and
write

x • y = (* i(x , y ), y ) ) ,  x 1I-Y=Cço1(x, y ) ,  • • •  49 . (x ,  y ) ) .
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We shall follow the notation and the terminology o f  [1].
2 .  Let 0  be th e  r in g  o f all formal power series with respect to-

•••, x,. which have coefficients in K .  For f E O ,  and two generic
points x , y,

put f  (y  • x ) =Eya (X „ f ), X af  GO , ( 1 )

f ( x . Y )  EYŒ  (Yaf), Yf E O , ( 2 )

f  ( x  y )  = E  (Z ap  ,  Zgf E  . ( 3 )

From th e  theory o f  formal groups, it is known that Z o —/

(identity) and that Z 3 is a  special semi-derivation o f height h([3)
+ 1 .  X a ,  Y a, Za, cE N "  are  K -linear endom orphism s of K-vector

space O.

Put (x • y)'' = E co,x"y 3 ,  co ,  E K ( 4 )

(x + y) 7  =  E  do,xay 3 , cloa, E K . ( 5 )
a

Note that cia(37 = 0  if r l> 1 1 +  0 ,  c a o ,= 0  i f  ir > d a l,

and th a t  c«07 =c0. 7 = 0 ,  (except c000=1), ( 6 )

d otcq — 4 ( 7 = 8  a y ,  d 7 , — d Ray •

Then applying the argument analogous to the one used in  [1,,

n °1 1 ], we obtain the following relations,

XoX a  E  Cf3ay X y ,  YO Y a  —  C a a y  X ,
7 7

Z o Z „= E d o « ,,Z 7 , X «  Y =
7

Z o X„ =  E  c o,s Z o  Y =  E  C7(33 Y a-7ZS•
o s T s c ,

Moreover we have "the generalized Leibnitz formula",

T a (f g) = oR , (T o f ) (Ta_ ag), T  = X , Y , Z , for f , g  E0.

The next result is easily obtained.

( 7 )

(8



On f orm al rings 47

Proposition 1. The follow ing conditions are equivalent.
(1) The m ultiplication of  R is  commutative.
(2) X« = Y« , f o r all a G N " .

( 3 )  c c ab, =c o «, , f o r all a , T E N " .

T hen X 0 X «=X «.X 0 f o r all a ,  3 E N " .

If w e put e, = (0, •• • , 0, 1, 0, • ••, 0 ) ,  1 < i<n ,  we have

Iri(x , y) =  (x .y ) E1 =  co.E,x6Y , ( 9 )
a.I3

Ç9,(x, y) = (x+Y ) E . =  d a ,xayo. (10)
a,13

3 .  Conversely:

Proposition 2. For each crEN ", le t X «, Y «, Z «  be K -linear

endom orphism s of  0  such that
(i) 2 .0—.1 (identity ),
(ii) Z « is  a special sem i-derivation of  height h ( a )  + 1 ,

(iii) these operators v erif y  the conditions ( 6 ) ,  ( 7 ) ,  ( 8 )  f or the
sets of  operators {c«a ,,, daily }, (a , r )  E  N" x N" x N",

(iv) these operators operate on 0  w ith  the nex t f orm ulae, X o xa

—Ec7(3«x 7 , Y a x"— E  c a y ax7, Zoca =  E l l y $ ŒXY.
7 Y

T hen f orm ulae ( 9 ) ,  ( 1 0 )  def ine a  f o rm al rin g , f o r w hich (1),

( 2 ) ,  ( 3 )  are T ay lor formulae.
This result can be proved by an argument analogous to the one

used in  [2].

4 .  We shall consider a  one-dimensional formal ring.
Let 1r (x, y) =  xy + E  E  a,, yi , w here a,, E K , a , 0 = ao,= 0 ,k 

We use the following Lemmas.

Lemma 1 .  If a 11 = 0, th e n  lip(x , y )=0.

P r o o f . Let a  be the smallest integer such that a « ,# 0  for some
j  and let (3 be th e  sm allest integer such that a a a # 0 .  Then
(when a =  1, j3 2). We shall order lexicographically monomials



48 Masayoshi Miyanishi

w ith  respect to  x , y , z  by putting cx`y le<c'x ''y f i'z ", c, c'EK , c,
c '4 0 , if the first non-zero difference of i' j , j'— j, k '— k is  positive.
In  (x •y )-z  the minimal monomial is a 1xOE2y " e  and in x• (y•z),
the minimal monomial is aW xay"e 2 . A s  (x•y )•z=x• (y•z ), we
have cr= i9= 1, which contradicts the assumption. q.e.d.

L e m m a  2 . (T heorem  o f  J. Dieudonné [2 ] concerning the
classif ication of one-dim ensional form al groups.) In the follow-
ing, w e w rite Z  instead of Z,,,,, k O, and suppose that the ground
field K  is algebraically  closed. A ny  form al group G  of dimen-
sion 1 over K  is isom orphic to one of the follow ing three types.
(1) I f  4 5 =2Z , A 4 0 , G is isomorphic to the multiplicative group
(w ith the group law  (x , y )--.x +y +x y ).
(2) I f  Z if=0 and if there ex ists the sm allest integer r>0 such
th at Z P 40, then G is isom orphic to the group w ith  the associ-
ated hy peralgebra such that =0, f o r  k <r,  and for

( 3 )  I f  4 = 0 ,  fo r  all k O, th e n  G is isom orphic to the additive
group (w ith the group law (x, y)— >x+y).

L e m m a  3 .  ( 1 )  co „, 5= 0  fo r  any  a and
( 2 )  ZkX0=0, for

P r o o f .  ( 1 )  is  trivial.
( 2 )  If f(x )= E a a xa , then X 0 f  ao , that is, X o is  a function which

takes as a value a constant term of f ( x ) .  Therefore ZkX0 = 0 ,  k 0

i s  trivial.

L e m m a  4 . As the addition of one-dimensional formal ring,
w e cannot tak e the g rou p  law  of type (1 ) and ( 2 )  o f Lem m a 2.

P r o o f . Type ( 1 ) .  W e have Z ;X i— A Z,X i. However, Z1X1.--

E(ciisX0Z8+ciosX1Z8) ---- E cu sX 0Z 8 . Therefore Z .X 1 = 0  from Lemma
6 6

3 .  Hence Z1 X i = 0 .  But when we take x  for f ( x ) ,  we have Z a i f
=Z i (an x +  aux .), and ( Z i X 1 f ) ( e ) = a 1 1 4 0 .  T h is  gives a contra-

j  2
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diction.
T ype ( 2 ) .  It follows that Z.X-i= E  (cpk, 1, sX i Z s )

E (cp k ,1 ,6 .7 (0 Z ). Hence 2 -;;X 1 = 0 .  If we take r  for k  and x  for f (x ),
5

we have -2 - ''X 1 —Z1 X 1 =0  and Z 1 X j# 0 .  This gives a contradiction.
q.e.d.

Lemma 5 .  If  the  add ition  is g iv en by  ça(x , y )=x +y , then
w ith  som e change of  v ariables o f  ty pe x , x -E-E a , x P ',  w e can

tran sf e r the m ultiplication to ljp(x , y )=xy .

P r o o f  1,(x , y )  is  g iv en  in  th e  next form  * (x , y) =booxy+
E b o xPlyPl, b0 0 # 0 .  If w e change variables b y  v,;- '( x )= (1/boo)x, we

have lro(x , y )=x y +EbT x P iI f  some coefficients bo, n) are not;
zero, then  take a  t h e  smallest positive in teger such  that b0+0.
W e can easily show th a t Yo

°240, b = b ,  a n d  b,T=0 fo r 0 < i< a .
B y a change of variables v-

(

-: ) (x) = x — bZxP" , we have a new formal
series for the multiplication qp( co (x , y )=x y +E C 6 ) xP'yPi, where b,r
= 0, for 0 < i < a .  Let 49 be the smallest positive integer such
th at 0 '0

)+ 0 ,  i f  there exists some coefficient b r # 0 .  T h e n  '>.(r.
B y the analogous process, a change of variables v a) (x) - -- - x—b (073 ) x''''
transfers *((x)(x, y )  to  liro)(x, y) = xy+ EbTxPi y P i, where b r  b r

= 0 , i f  0 < i 9 .
Thus continuing this process, we have the following. By the change
of variables v=vovava•••, we have 11'(x, y) = x y +  E  rzi ,xP'yPi. But

from the associative law  for the multiplication, w e  have (x, y)
-= xy. q.e.d.

Summarizing the preceding Lemmas, we get:

Theorem . I f  the ground  f ie ld  K  of  characteristic  p>o is
algebraically  closed, any one-dimensional formal ring is isomorphic
to  the f orm al rin g  o f  ty pe (x +y , x y ).

C o ro lla ry . A ny one-dimensional formal ring is commutative.
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R em ark. We can prove Corollary by the method of M. Lazard'
[7] . In his argument, we have only to replace h(x , y )  by

y- x.
5 .  Let R  be a formal ring of dimension n .  Define 011 (x)

as follows;

* ( y , x )—  oi, (x )y i + (terms of total degree 2 w ith respectJ-1
to Y ***, Y.)).

Then from the distributive law *, (z, yo(x, y)) =y9i (*(z , x ), *(z, y)),
we get 00  ((p(x, y )) =0 0 (x) +0,, (y), Also from the as-
sociative law, *, (z, ( x ,  y )) =*;(*(z , x ), y ), we get 00  (* (x, y)) =

E0,,,(x)0k,(Y ),
k =1

I f  we associate to R  a nX n-m atrix  (x) = (00 (x ) ) , we have a
representation of R, o  ((p (x , y)) = 0 (x) + 0 (y) , 0 (*(x , y)) = 0 (x) • 0 (y) .

Lemma 6. I f  all 0,,(x), j.,_<n are zero, then allx ,  y )
1 <i<n , are zero.

P r o o f . Assume that 'qp, (y, x )  is not zero. Let s be the smallest
integer such that in *, (y, x ) , there exists a  term axTys where 181
= s, and 0. T h e n  s 2 .  Let z= (z i , •• • , z„) be another generic
point. W e have *, (z,11p(y, x)) = 1 ( (z, y), x). In the left hand
side, the minimal value of total degree with respect to z  is  s ,  but
in the right hand side, the minimal value of total degree with res-
pect to z  is > s .  This gives a contradiction. q. e. d.

Part 2

In Part 2  and Part 3 , the ground field K  is assumed to be
algebraically closed. Moreover we add the next condition to  the
definition of formal ring:

(F4 ) q p i , •••, * .  are analytically independent over K.
We shall prove that the underlying additive group o f a  formal

ring is unipotent.
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1. First we quote some results of J. Dieudonné from [1], [4], [5].

Lemma 1. (Homomorphism theorem, [1])

L et G  and C; be f orm al groups of  dim ension m  and  n  de-
f ined ov er K  an d  u  be a  homomorphism f ro m  G  to  G  defined
over K .  B y  appropriate changes of  v ariables in  G  and G, we
can suppose that w e have,

u i (x)— xi, f o r  1 <i<r0 ,

u 1 (x )=4  , f o r  r0+1 <i<r0+r1 ,

u,(x) -=xr , f o r  ro+ •••+r,_,.+1<i<ro+ ••• +r, ,

u (x )=O , f o r  i> r 0 +•••+r,.

W e shall denote p = r 0 + • • • + r ,  and call p  the rank  o f u  and t
(the greatest integer such that r,40) the height o f u. We say

that u  is injective if p = dim G, surjective if p= dim G , and isogeny
i f  u  is both injective and surjective.

C orollary. L et (G, u )  be a  subgroup of  a f orm al group G'.
T hen there ex ist an  isomorphism G'—>G ;  an d  an  isogeny  G ,

H i  o f  G  onto a  ty pical subgroup o f  G ; such  that th e  diagram
G  > G '  is  commutative.

H,  >G;

The proof is given in [1], [5].

Lemma 2 .  A ny  abelian f orm al group ov er K  i s  isogenous
to a direct product of  additive W itt groups, multiplicative groups
and sim ple groups. (See [4], [8])

Lemma 3. A ny  abelian sim ple group of  dim ension n  over
K  is  isogenous to  a group w h e r e  m  i s  a positiv e integer
prim e to n . G ,„,„, has a hyperalgebra characterized by the follow-
ing  multiplication law,
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Z : 2 i  Z h , i + 1

Zf„„=0

h = 0 , 1, • • ; 1<i<n — 1 ,

O h m ,

Zf:+h,71 - :  Zh,1 h=0, 1, - • • . H e re  Z  -  Z h c - , .

2 .  Any abelian formal group G of dimension n  is  isogenous to  a
group G' =H . „,x  L IG„,,,„„x  (G m )', (n„ m i )— 1, E n,+ E n;  +l=n .

Let u  be an  isogeny from G' to G .  Then there exists a  unipotent
subgroup u (II W„,) = U  i n  G. By Corollary, there exist a n  iso-

morphism G--->G, and  an  isogeny U---> U , o f U  onto a  typical sub-
group U1 o f  G, such that :
(1) Gi/If i  has no unipotent subgroup,
(2) the diagram G  G ,  is commutative.

We have the next result of J. Dieudonné [5] .

Lemma 4 .  L et G  be a  commutative formal group of  dimen-
sion n  and  le t (J, L )  be an  arbitrary  partition of  [1 , n ] .  There
ex ist tw o uniquely  determ ined system s of  pow er series w ithout
constant term s u (x ) = (u,(x )), „ and v(x ) = (v ,(x )), „ such that
u k ( x )  = 0  f o r k E L , v (x )  = 0  f o r iG j an d  u(x ):f -v (x )=x .

3. Let R  be a  formal ring of dimension n. For our purpose, we
can assume that R  contains a  typical unipotent subgroup U  such
that R /U  has no unipotent subgroup. Let J  be a  subset o f  [1, )2]
corresponding to U .  Then J  satisfies the following conditions;
(1) Card (J)  = dim U,
(2) fo r  any system ( y , ) ," =y  o f  indeterminates, define j(y )—
(j1 (y)) a s  th e  system of power series j, (y) = y „  for i J ,  j, (y) =
otherwise; then we have ço, (j (y), j (z )) =0, fo r  all i EV.

By Lemma 4 , there exist two uniquely determined systems of
power series r (x) = (r , (x)) , E,  and h (x ) = (h,(x )), ,  such that h,(x)
= 0  fo r i G I ,  an d  x =j (r (x)) + h (x) . Then we have h (x  y )  =
h (h(x ) h (y )) , h(x  • y ) = h(h(x ) h (y ))
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For the proof of the latter equality, we need the next Lemma.

Lemma 5 .  L e t G , G ' be abelian formal groups with their
typical unipotent subgroups (U, j), (U', j') such that G/U, G'/U'
have no unipotent subgroup, and u be a  homomorphism from  G
to  G'. Then there exists a  homomorphism such that
u • j = j' • u' ,

U  -->G

l u '

P r o o f . L e t x = j (r (x) h (x) , x' = j' (r' (x '))  h '  ( x ' )  be parti-
tions corresponding to (G, U ) and (G', U ') respectively. S in c e  U
is unipotent an d  G '/U ' has no unipotent subgroup, a composition
of homomorphisms U--)-G—>G'-->G'/U' is t r iv ia l .  Hence, for a gene-
ric point x  o f  U , h '(u (j(x ))) = 0 and  u ( j (x ) )= j '  ( r ' (u ( j (x ) ) ) ) .
We can prove easily that r'•u•j is a  homomorphism. Therefore we
have only to take r '-u - j  as u'. q.e.d.

For generic points x, y  of R, we have

x•y = j(r(x •y ))+h (x•y )

— (j ( r (x ) )+ h (x ) )• ( j ( r (y ) )+ h (y ) )

= i ( , - (x ) )• { i (r (Y ))+ h (Y )}4 -h(x) .:1(r(Y))

j (h(x) • h(y)) --h(h(x) • h(y))

Here from Lemma 5, j (r (x )) { j (r  (y )) h (y )} , h (x ) j (r  (y )) are
contained in  j (U )  because the multiplication by j ( r (y ) )+ h (y ) ,
h (x ) are homomorphisms of the formal group R .  Hence we have
the equality h(x y) = h(h(x) h(y)) .

Put L= [1, n] — J .  For a  system X= (.TOkE L  o f  indeterminates,
let be the system (d, (X)) of power series such that a (X )
= 0 fo r i e J ,  ( : t )  =  for i G L.

Put ad)( 3)) =- h (a (X) a  Cy)), aTi = h (i CX) • a (j))) .
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Then we can show that 0 ,  Y.  define a ring law on the quotient group
R / U , and th a t the system  h(x ) = (hi(x )), EL  i s  a  homomorphism

from R  to R/ U.
Now we consider the next assertion:

Theorem 1. T here is no f orm al rin g  o f  w hich underly ing
f orm al group is isogenous to  (Gm )' x  H where Gm  i s  the

(n, n2)=1

multiplicative group.

I f  we can prove Theorem 1 , we know that there exists only trivial

ring law  on R/U, that is, a l l  ( r ,) , E L are zero.

T herefore x • y  j (r (x • y)) h(x  • y ) = j (r (x  y ))  4-h(h(x) • h(y))

- j (r (x • y)) 4- h(o-h(x) • ah(y))

j(r (x • y)) 7 (y ))
---j(r(x •y )).

This contradicts to our hypothesis that Aki ,  • - • ,  * „  are analytically
independent over K, i f  R / U # 0 .  Hence we have:

Theorem 2. T he underly ing abelian form al group of  a for-
m al rin g  is  unipotent.

P a rt  3

1 .  We denote by O r  the ring O P', rE Z  and put O'=U0r.

From now on, when we denote an index b y  a =  (ce i ,  • • • ,  a „ ) ,  it
always means the index of which components are of the following
type,

a_tri + + '--Fao-FaiP+•••--FarY (*)

where •••, a, are integers such that ••-, a r < p - 1 .

For such cx, we define h ( a)  the smallest integer r  for which

,a,<p " - ', 1._<i n  and ce! 1 1 (4 i) !  where tr i =  E  Âmp",

are expressions of a ; in the form (*).
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Let G be a commutative formal group of dimension n .  In the
following, we shall extend the notion in [1, n°4, 5, 6, 7, 12], follow-

ing verbatim the argum ent in [1] . We call a  K-endomorphism

of 0 ' a  semi-derivation of  height r  if 4 satisfies 4 ( 0 r )  C O , 4 (fg )
= f4 (g )+ g A ( f ) ,  for f 0 , ,  g E 0 ',  a n d  a  special semi-derivation
if 4 is semi-derivation and satisfies 4 ( f )= 0 ,  for f E 0 , .  Denote

b y  D r ,1  a  semi-derivation o f height r  such that i f  a , - - a l l± b + c ,

0 < a < P , a E Z ; p -r-icE N , we have 1)„ 1 (xn.••x)—axr•••

x T  x f 'i - P r • x̀ ti i:il•-•x ,̀f̂ . P u t D .=  ri D for ( a l ,  • «, a n ) ,  ai=
h= — 0 0  i= 1

E 2h iph , 1< i<n .

We define a  differential operator D  a s  a  linear combination
E tt« D «  where u «G O ' and ua = 0  for a such that h ( a )  is large enough.

For any differential operator D  we can define uniquely an invariant
differential operator Z  such that Z (e ) f — D (e ) f , f E O '. Denote by
Z „  the invarian t differential operator characterized by the in itial

condition Z ( e ) -= (1/a)DOE(e). Put _Ka= ill  LI"  Z i ,  fo r  a =  (ai, • ••
h=— ho i=1

•a . ) ,  a ,= 2„,ph, where 2,„i=Z,,he 1•

We denote by Q the algebra formed (over K )  by invariant dif-
ferential operators of 0 ' and call it th e  hy peralgebra o f  G. Also
we denote by g r  ( re s p . Sr) the set of semi-derivations (resp. special
semi-derivations) of height r  of Q. Then  Q =U gr, Q , is Lie algebra

and Sr is the ideal of gr. Moreover S ,  is  the associative algebra
over K .  Then Theorem 2  o f [1, n°9 ] holds in  our case.

Lemma 1. The associative algebra S r has the special semi-
deriv ations X «, 0 ..a i <p r as i t s  base ov er K ; the Lie algebra gr
is  the direct sum  of S r and the v ector space ov er K  w hich has
Z ,, ,• - • ,Z ,„ as i t s  base.

Remark. Z , can be defined from "T aylor series" for f 0 ' ,

f(x+ y )= E y O E (Z a f), Z a f e 0 '.
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2. Let 0  be another commutative formal group of dimension m
and let u= (u 1, •••, um) be a  homomorphism from G to 0, where we
admit to take elements of 0 ' as u „1 < i < m .  For ZE g, f 0 ' ( ) ,
we define an invariant differential operator u '(Z )E ia  by u/(Z )(e):(
= Z ( e ) ( f .u ) .  Then u ' is a  homomorphism from g  to such  that
u'(g,)Cg,+„ u'(S ,)CS ,-+t, for r E Z, where t  is an integer such that

1 < i< m . Moreover if  y  is a  homomorphism o f 0-  to an-
other commutative formal group G , we have (v•u)'= v'• u'. It is
trivial that for the identity / of formal group G, ( I ) ' is the identity
of Lie hyperalgebra g  of G.

3. Lemma 2. ( 1 )  For (n , m )=1, we have the following
relations,

1 <i<n - 1 ,  h =0 , +1 , +2, •••,

h= 0, ±1, ± 2, •••.

( 2 )  For m ultiplicative group  G ., w e  have the relations,

2 7,:=Z,„ h =o, +1, +2, •••.

P r o o f .  (1) First we prove that the relations

ZI:, ; = 4 ;+ 1 ,  1 <i<n - 1 ,  h =0 , 1, 2, •••,

h=0,1, •••, described in  Lemma 3, Part 2 hold

i f  they are considered a s  K-linear endomorphisms of 0'. Let f  be
an element of 0 ,  t :  positive integer. Taking account of the fact
that the group laws of G„, i ,„, are defined over the prime field, it is
easy to show that ZOEf={ 4„(f  .p 1 ) } ( p ') ,  for any Z E g  where
p  (resp. p - ') is  a  homomorphism p:x-->xP (resp. p - ' :
Taking Z,f (resp. w e h ave  " 4 „ f - { a t ,1 ( f  p 9  ( p - 9 =
{Z;,+„,+i(f. PO }(1) - 0 (resP. 139 } (y ' )
= { Z + , , i ( f .P 9 } ( p ')  = Z h a f )  Hence follows the requirement.

Next we consider a homomorphism p':x-->x" - '. Then the derived
homomorphism (p - 1 ) '  of the hyperalgebra of G„, i ,,, is characterized
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by

(p - T (2 „, i ) =Z +,„, h =0 , ±1 , + 2 , 1 <i<n .

To prove the relations (1 ), operate (p - ' ) '  on Z „ , —1, (resp.

Z ,„ )  by t-times repeatedly so that h + t  (resp. h +t —m ) is positive.

Then putting q  ( p - i) ' ,  we have

q i ( Z =  ( q t ( Z  I ) ) P Z  f z -F t  =  Z  h + t , i  + 1 =  q t  (Z  h , H - 1 )

(resp. f i t  (Zf„n ) = -Zf,,„ n =Z ÷ , - „„1 = qi (Zh-.0.).)

Therefore we get the requirement, taking account of the fact that
( p - ' ) '  is bijective.
(2) The proof is completely analogous to the one of ( 1 ) ,  using

the fact that Z 27„ h =0 , 1, 2, •••. q.e.d.

From Lemma 1  and Lemma 2, we have:

Corollary. I f  a  com m utative form al group G  is isomorphic
to a direct product of  m ultiplicative groups and sim ple groups

( n , m ) =1 , th e  m apping o f  th e  h y p e ralg e b ra g  o f  G;
ZG.g— >ZPEg is  bijective.

4 .  We shall define a quasi-f orm al rin g  R  with the same definition

as a formal ring, only adding the following requirement:
(1) y9„ •••, ÇO,, are formal series which admit no terms but those of

the following type, a ,  •••, cr„; 1 3 , • • • ,  0 .  being non-

negative integers,
(2) •••, admit terms xfi•••.t:.yi3 i•••y% o i l ,  • • • , a . ;  [31, • • • , 9 .  be-
ing non-negative numbers of the type ( * ) .

For f E C ,  write f ( y • x ) =Z y c c ( X . f ) ,  f ( x • y ) =E y a ( Y a f ) ,

f (x + Y) = yOE(Z .f), X Œf, Y a f ,  Z a f E 0 '.  Then X « , Ya, Za are

K-linear endomorphisms o f 0'. Moreover put (x -y )7  =E
a.f3

(x +y )7 d aa7  xcLy'3 , c«87 ,  ciao, E K . Then we write
ce,

X 0 X „  E c X 7 ,  Y  — E  co3,17  Z  f 3 Z  — E ci t3a7 Z, ,
7 7
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Z3X8, E  Ci378X a - 7 Z 5 ., Z 3 Y - y =  E c.,85 Y„. 7 Z8 .
8sysw 0sys.5 8

5 .  Let R  be a formal ring of dimension n  and assume that there
exists an isogeny u  from the underlying additive group of R  to G,
•where G is isomorphic to (G„,)'>< H 1+ E  n i = n.

Let ÇT0 (0 1 , • • • , 1 T P  = •  , %I-P . )  be ring laws for R  and q,

(goi , ••• , ço„ ) be the group law fo r G. Then by Lemma 1, Part 2,

•changing variables in R  and G, we can suppose that u  is  a  homo-

morphism of the form written in Lemma 1, and that , ç o  are
laws defined for the variables which have been changed, X,, • •,

for R  and .x1, • • •, x „ for G. Then

x, u ,  (X) i f  r0 +• • • +r6 ,+1 <i<r0 + +rh , 0 <h <t.
We define 'Lk, as follows;

*,(xi, • • X .; (x1, xro , X 1 ,,  xr ;
Yi• " Y,0, 3e0

- 1+1, • Yfo
- ,,,„ . • • y r)  }p 4 ,

i f  ro +-••+r6 _ 1 +1 <ir0 + ••• +rh, 0<h<t.

Thus we can define a structure of quasi-formal ring on G  with
9  =  ( 9 ,, • •• 9 „), (*i, • • * ) .  Then by Lemma 6, Part 1 and the
condition (F4 ), we can easily see that in  some there exists a
•term of the type a(x )y  w here a(x )  is a  formal series in  O ' and
h is an integer. Let h be the smallest integer such that there ap-
pear terms of the preceding type in *,,

Write * ; (y ,  x )=Z oi,(x )y r + (terms of total degree > ph with

respect to y = (Yi, • • • , y n) or terms
of the following type a(x)yp•••31.
where some a „  a ,* 0 ,  i * j.)

'Then from ço,(*(z, x ) , * (z , y)) =*,(z , ço(x, y ) ) ,  we have

01,((p(x, y))=0,,(x)+60, ; (y ), 1 i , j n. ...(**)

From the assumption, there exists some 013 (x) * 0 .  From ( * * ) ,  we
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can know easily that in  0 1; ( x ) ,  the terms of the smallest total degree
have the form axe', a K ,  1 < k < n , t :  integer. Therefore we know
that in  some i lp i (x , y ) ,  1 < i< n  there exists a  term c a r y r .  I f  we
operate Zt,kXphE, to x 1 , we have

(Z „,X phE,x ,)(e)=Z ,,,(0,(x ))(e)=a 0 .

On the other hand, we have Zi,k =Ea„ZS, aG,EK, from Corollary

of Lemma 2 .  And by operating the above endomorphism to elements
o f 0 „  where r  is large enough, it is easy to see that th e  sum of
right hand side does not contain a constant term.

For ty4 0 ,  we have

Za Xp7,E, = E{ c«,0,5 X ph e ,+  c .,p h E ,sX 0  +  E  hE,ca,0,8 Xpbe,_7 }Zs .0<7<p

If 0 < r < P b • e „  Xphe,_7 Z s x, =  0 , for if not 8 = (8„ •••,8„),

B i: non-negative integers, Z s x , = 0  by th e  definition o f Z s and  the
assumption of group laws of a  quasi-formal r in g , an d  if  8=0,, •••,
S O, 81: non-negative integers, ( Xphe,—,Z s )x ,  =  0  b y  the assumption on
h .  We know that c«,o,s =0 and Z a X 0 = 0 . Hence Z X p h e ,x , = 0 ,  and

Z ,k X p h E ,x i= 0 . This gives a contradiction. Thus we have completed
the proof of Theorem I.
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