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Summary. We consider Hermite polynomials from the stand
po in t o f representation theory o f  groups. W e show that the
correspondence between the space of multiple W iener integrals
[2 ] and the decomposition of their Fourier transform introduced
by M. G. Krein [5] is obtained by the relations which follow from
the representations o f th e  infinite dimensional motion group in-
troduced by A . Orihara [6]. We are lead to various formulae for
Hermite polynomials, for instance, orthogonality, differential equa-
tion, addition formula, integral representations, Wiener transform
and so on, systematically from the relations, and in addition we
calculate the matrix elements of the representations of the infinite
dimensional motion group and point out that they are the limits
of matrix elements of the representations of the finite dimensional
Euclidian motion groups.

I would like to thank prof. H. Yoshizawa and prof. N. Ikeda
for their useful advices.

§1. Introduction. The Gaussian measure and Hermite poly-
nomials connected with this measure play important roles in  pro-
bability theory. But they a re  in  an  exceptional situation from
the stand point that special functions are considered in  a  unified
way by means of representation theory of groups [12] ; that is,
Hermite polynomials can be investigated by the representation
theory of the infinite dimensional motion group (def. 2 ) [6 ].  The
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multiple Wiener integrals well known in probability theory are
in this sense the space of irreducible representation of the infinite
dimensional rotation (def. 1) [13]. The infinite dimensional
Gaussian measure is understood as the lim it of the uniform me-
asures on finite dimensional spheres and the Hermite polynomials
are obtained as the lim it of the Gegenbauer polynomials which
are the matrix elements of the representations of the finit dimen-
tional Euclidian motion group [10].

In § 2, we define the infinite dimensional rotation group and
and the infinite dimensional motion group. We consider the re-
presentations of the infinite dimensional motion group on two
Hilbert spaces L 2 (L', dp, c )  and 9 ,  and we discuss the relations
between them. In § 3, we have an orthogonal decomposition of
F and define Hermite polynomials as members o f a  complete
orthogonal base of L 2 (L' , 4 ) ,  making use of the relations obtained
in § 2. In § 4, w e have the various formulae for Hermite poly-
nomials from the results of § 2 and §3. In § 5, we calculate
matrix elements of the representations of the infinite dimensional
motion group and show that they are the limits of matrix elements
of the representations of the finite dimensional Euclidian motiin
groups investigated by N. Ya. Vilenkin [11 ].

Remark. We can consider Charlier polynomials in relation
with the Poisson white noise. Also in this case, we are lead to
orthogonarity and addition formula for Charlier polynomials in an
analogous way as in the case of Hermite polynomials.

§2. Representations of the infinite - dimensional motion group.
In this section we define the infinite dimensional rotion group and
the infinite dimensional motion group. We consider the representa-
tions of the infinite dimensional motion group in two way, and we
obtain the relation between them.

Let L  be an infinite dimensional real nuclear space, and H be
its completion by a fixed continuous Hilbertian norm 11 H. Then
we have the relation

L c H c L ' .
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(L ' is the dual space of L.)

D efin ition  1. [7] The infinite dimensional rotation group 0(09)
is defined by the following two conditions :

i) u 0(0o) is a linear homeomorphic map from L  to L.
ii) This homeomorphic map induces orthogonal transforma-

tion o f H.
Identifing the adjoint operator u * of u  with we can re-

gard 0(00) the group of transformation acting on L'.

D efinition 2. [ 6 ]  The infinite dimensional motion group on
L ' is the set of pairs of elements of 0(00) and of L  with the group
operator defined as follows :

(u„ 99) (u2 , 992) (u i u„ u i y 92 + 9:)1) , f o r  u,E0(00) , L .

We denote the infinite dimensional motion group by G .

The Gaussian measure A ,  on L ' with the variance c2 (c> 0) is
defined by the caracteristic functional X( ) on L  as follows :

X( )= ei<x•oclp, c (X) , (1 )

where E E L , X L ',  and < X ,>  means the canonical bilinear form.
The Gaussian measure A c  is characterised by the following pro-
perties [8] :

(G-1) p,, is 0(00)-invariant.
(G-2) A ,  is L-quasi-invariant, that is, for all (pEL, we have

d p p _<x,o _ikaz
 — e  C 2  20

dp

where t c o p  is defined by p, (X )= A c (X+(p).

(G -3 ) I L ,  is 0(00)-ergodic, that is, [Lc  is  one of the smallest
of 0(00)-invariant measures.

We denote L 2 (L', c/A,) the Hilbert space of all complex-valued
functions on L ' square integrable with respect to the Gaussian
measure tic •

D efinition 3. Let g (x„•••,x ,) be an n  variable polynomial.
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We call function L ' expressed by

F(X ) = g(<X , •••, <X,

a polynomial on L ', where • • • , are an orthonormal system of
H belonging to L.

Lem m a 1 . The set of all po ly nom ials on L ' i s  dense in
L 2 (L' , d u ) .

Lem m a 2. Let us define

F (X ) = g (<X , • • • , <X, f l >)
F'(X ) •••, <X,

W hen F(X ) and F'(X ) , tw o polynom ials on L ', coincide w ith each
other as elements of L 2(L ',dp, c ), so do g(x ) and g '(x ) as polynomials.

These lemmas are trivial and so we omit the proofs.
Now we consider the representations o f  th e  group Goo on

IY (L',dtt c ).
Put

T ,F ( X )  e  2 c 2  F(u - 1 X ), ( 2 )

_Nii 2 +2<Y,s, >
S g F(X ) = e4 c 2  F ( u - i ( x + p ) )

(  
3  )

for g= (u, 99), F(X )E L 2(L' , da).
Then, ( Tg , L2 CU, d i / J )  and  (Sg , dttc)) are  unitary repre-

sentations of Goo in  virtue of the properties (G — 1) and (G -2 )
respectively.

We define Wiener transform W  from L 2 (L' , c /L) to  itse lf as
follows :

WF(X) =  g(V - 2- <X, + i< Y, \fT<X, fl>)

x  d = k (< 1 7 , Ei>, < Y ,
 f l> )  =  FT( 17 ) , ( 4 )

where F(X )=g(<X , i >, •••,<X ,„>) and g(x,•••x„), g(x i •••x„) are two
n  variable usual polynomials.

By simple calculations we have

I IF ( X ) I ece, apc) =  HP( Y)11L2(il. dii•c) •

Since polynomials on L ' are dense in  L 2(L' , d ft c ) ,  W  can be ex-
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tended to an isometric map defined on .12(L', 4 , ) .
We have the following relation between Tg  and Sg :

Tg W  = ( 5 )
In fact, if F(X ) is a polynomial on L ', we have

WSg F  = We-
119112+ < x

4c
2 . so)

2 F (u - 1 (X +
_iii, 112+2 ,ri <x. 9 > +2i< Y,9>

= e 4,2 F(N/vf u - 1 X + Y  +u - 1 (p)d p, e (X) .L1

I f  we put -\/ X = Nr a .uX/—(7), then in virtue of (G-2), this is
equal to

= e -  2

i< Y .2 9 >

F(N/ X '  +iu 'Y )dp, c (X ')

= T g W F.

Because of the property (G-3) of the Gaussian measure p,e ,  the
representations ( Tg  , L 2 (L' , diac )) and (Sg  , L 2 (L', dp, c )) are irreducible
[6].

Now we denote by g  the smallest (complex) Hilbert space
with the reproducing kernel 99) [ 1 ]  [ 3 ] .  g  has the following
properties :

(F-1) For any fixed 99 EL, X(• —.7)) E
(F-2) For any f  9, (f(•), X (• —  99))g= f(99).
(F-3) g  is spanned by IX(• — q ) ) ; L  .

(F-4) I a JX( — 9) J)1129 a ic kX(q) — 99 ) .
i = 1

Lemma 3  [ 3 ] .  Put

U F(X ) = i l ei<x 'oF(X )4,(X ) , ( 6 )

for F(X )GLY (L',  d i t ) .  T h e n  U is a one to one linear isometric map
from L 2 (L', dA c )  onto g .

P roo f. For any complex numbers a;  and for any {p i } cL ,

U ±i

-

E  a ei<x. 0 4 - '<x"°Pdp, c (X )
1= 1 i= 1

a1 X (+90 ; ) . ( 7 )
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Since ; a number, 99 L I .  is  dense in

L2(L' , dp, c ), we have the conclusion of this lemma from the relation
(6 )  and the property ( F - 4 ) .  Q.E.D.

We denote by (t„, 9") and (.3 ,, 9 ") the representations o f Gc.,
on 9 "  obtained from (Tg , L2(L', d i t ) )Ac ) )  and (Sg , L 2(L' , c 'Lc ) )  by the
transformation U  respectively. Then we have

UT,(1 - 1 f ( )  = t  g i -(E) = f  ( t — ) )
(  8 )

USg U " f ( )  = s g f ( )  = e  4c2 f — i2 9-i;)) ( 9  )

for f ()E 9 ', U F(X )= f (), g  = (u , 99). In fact

tg f ( )  =  UT , (1- 1 f ( )  = U e  2 c 2  F(u 'X )

= eioc'e> e 2C2 F (U -1 X )4 ,(X )
L1

<tt Y 'e - 2 >  F(Y )dp, c (Y ) = f (E —

Ue - 1 1 " 2 +4 x . 9 >  F(u"(X + 99))

e •

s ,  f ( )  = U S ,U fe (E),: >
4_ lio12+2<x•w>_ 1
c2F ( u  (X- Fq)))c 1 Ac (X )

i l

If we put X = uY— 99, then owing to (G-2), this is equal to

e _ 11
492

1Li(e. so) ei<Y,u-10-E
i
j
v, 

'
\

2 c 2  F(Y )dp,,(Y )

11P112 ._ i(e 7"._  e
-  4c2 '  f  (u - 1  (g 2-- Ta )

Now we consider the case of g= (I, Pp), where r runs the real
numbers and /  means the identity of 0(00).

Put
=  Tv; , S g  = S f . , t g  =  t ç,P. S g  =  s f . ;

then they satisfy the following relations :

i) T a • T r = T „,.
ii) T0 = 1  (the identity operator).



Special functions connected with representations 67

iii) u rn  1 Tr —  Ill = 0 . (10)>4.0
It is sufficient to show that T f . satisfies the condition (10)

owing to the relations (5), (8), and (9).

T f ,• T f .F(X ) = T ;e - i < x2:29>F(X )
i(X ,qs.o) i< X ,rç o >

e  2 c 2 2 c 2  F(X )
i(q+rxx.9>= e

- 2 c 2  F ( X )
= T:'_„.F(X ) .

It is obvious that To  is equal to the identity operator, and finally

lin 11 T rT (X ) —  F(X )Ilr-0.0

firn f (e i<x.rço> _ 1)F(X )1 24 ,( X )  =  0.
r.÷0

Therefore we have the following expressions according to Stone's
theorem :

T47: e irA v

S Vr e i r B , p

eira ,
e irb y  7

where A „ and B „ are self-adjoint operators defined on L 2(L', dp i,)
and a, and b„ are self-adjoint operators defined on 9".

We have the following four expressions easily :

2c2A 0,F(X ) = — <X, 99>F(X) , (12)

if there exists a positiv e number 8 such that for 1 r1 <8, er<x'''>F(X)
belongs to L 2 (L', d 'Lc ).

2c2B0,F(X ) = i<X , 99> F(X )+2c 2D,F(X ) , (15)

if F(X ) belongs to the domain of A , and D ,F(X ) exists, where

D ,F(X ) = F(X  + Iv) —  F (X )
r+0 ir

by definition, if the limit exists in the sense of norm of L 2 (L', d

2c2a0, f ( ) —  d,f () , (14)
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where

d, =
r-).0i r

if the lim it exists in the norm of F.

2 c2bipf() = 9)).f()—ichpf() • (15)

if A O  belongs to the domain of cl, and if there exists a positive
number 8 such that for jr <8 , er''''o f (0  belongs to F.

From the rerations (8) and (9) we have

UA„U- 1  = a , ( 1 6 )

= b, ; (17)
that is,

U<X, = d„ , (18)
U(i<X, (p>+2c2D,)U- 1  = — 2cV , 93)— (19)

From the rerations (18) and (19) we have

c2 UD + iU<X, yo> U-  1  = — c2( ,  q)).( 2 0 )

Further from the relation (5), we have

— g)>W  = i<X , p>+2c 2D, . (21)

§ 3. Hermite polynomials. In  th is section w e have an or-
thogonal decomposition of g  making use of the relations (18) and
(20), and we have Hermite polynomials as a complete orthogonal
base of L 2(L' , du c ) in virtue of the orthogonal decomposition of F.

Let {E ;  ; j= 1,2, • ••, .; E L } be a complete orthonormal base of
H.

Lemma 4  [ 5 ] .  g  can be decomposed as follows:

g  =  2 o e g „ (22)

c2w here g „ is spanned by Ek 1 ) " •. f• • ( , k i ) t  e - 1 f 21  ; 1,+ • • • + l = n ,
nonneganive integer, k i : integer} . Put

c2lie112
c n e 2 ( )  iz i) 1 1 . " ( M k i ) l i  •

0 1 !• • • li!
(23)
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Then {99 , 4+ • • • +1 i = n} , is a complete orthonormal base of g„.

Pro o f . From the relations (12) and (18), the domain of de k

(Z (dt k ) )  contains e 2 and
_, 2 11e112

_01161121 _c 2 11e+rek112_ c 2 I n 2
e 2 =  urnirn , ( e 2 —  e  2  )

r-0-0 1r

: 1 -C2I1E1122 C2r2

urn — e  2  (C C  ( e'ek ) r

r-0.0 ir

= ic 2 (E, 2 .

olien2
Generally, Z(dek )  contains (E, k )ne. 2  and

,211,112 _011612
in c2 n E  ' ,re -  2  =  P,g(dW e 2

where P„ is  a polynomial of degree _.< n with 1 for the coefficient
in the highest term.

A t  f irs t w e  show that kYie -  2  a n d k)12e 2 are,
mutually orthogonal if 1,*1 2 .

We assume 4. T h en

_c2i1e120 1 0 2
k) I le 2 ( )  / , ) / 2 e - -  2  ) 9 .

_c211$112 _c2m 2n  ,  ky  e 2  ,  i - 1 2C- 2 1 2P / 2 (d e k )e 2  )  ,

de k  being self-adjoint operator,

0 5 12(dtk)• r,)11e-c211: 112, i - 1 2c- 2 1 2e - c 2
1 112)9 .,

(* )

_c 2 11e112

-13( C111,)(y6e) 1i e 2 forms a polynomial of 6,) at least degree
C2 11$112

(11 -1 )x  e -  2  and  if 4— 4> 0, then in virtue of the property (F - 2),
we have (*)=O.

If 1=1 1 = 4, then

1 31(Clek)()6g) 1 =  1 ! 1 ± ( e  EX' —1((E, 14))

where Q , is  a polynomial at most degree /, and we have

(24)

(25)
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(*) = (1!i- Je 2  , i c 2 1 e 2 ) g +
_c 2 10 _c211ell2

+ ( ( , k))e2  ,  i 'c 2 1 e 2  ) g .

1!
= 2

'

(26)

Next, considering the fact that

_e2lien2 _c21ie112
clek (,k 2)'e2  = ie2)1CIEkie

we get the last conclusion. Q.E.D.
Put

if k i*k 2,

U- 'g „ = L „,
(li+ • •• +1; =n) (27)

Owing to lemma 3, we have

D(L', dp, c )  =  o L„

and {c1314:: .
k
i ,  ;  1, +•••+l i =n } is  a  complete orthonormal system of

Theorem 1. e k'i: (X) is expressed as a polynomial on L ' as
follows:

= 1 <X
CV1011::: kl -1.; (X) (2"1,!••• ; !)- 1 1 2 H ,  .  g( e \ /  2  

) (28)

where H„(x ) is  a polynomial in one uariable of degree n  satisfying
the following recurrence formula:

H,, 1(x ) = 2x H„(x )-2nH._1(x ),
H o ( x )  =1 ,
H 1(x ) = 2x.( 2 9 )

R em ark. H„(x ) satisfying (29) is the so-called Hermite poly-
nomial of degree n .  However we consider the recurrence formula
(29) the definition of the Hermite polynomial H„(x).

P ro o f . Owing to lemma 3 and the relation (1), we have

c X ) =  1.
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From the relation (18),

<X, = U - i dek 99(k)( )

= jeei — c21112 .
Therefore we have

ipt( e) — <x'ic' h> •

We assume 1 1, then we have from the relation (18),

<X, Ek>rick(X ) = U - 1 dek 9,4 ()

= U - 'dt k  k ) l e -  2

=  U - 1 (  
\/ 1C1

2
\/(/— 1)1

_ O W  \N/i

\(/

/
ti );±

!  (
E1  1 ' ) ' + 1 . e 2

that is,

Put

   

<X, W Ï ( X )  - \ /  1  CCDr i (X ) + 1 + 10:13 1h" (X ) . (30)

1
1,431„ (X ) —   _  H  (X);

then we have

H o (X ) =  1,
H i (X ) <X,
V  2  <X) 6e> HA X ) = 21H1-1(X )± 1 1 1+1(X) • (51)

Hence we have

H i (X ) = H  1 (<X '
/

 k>
)

(52)
c.\ 2  

where Th(x) is a polynomial in one variable of degree / satisfing
the recurrence formula (29).

Next we consider the case /- "14 4 2) (1314.1 = U - 1 <pi„1:1 ( ) .  An-
alogously to the last case, we have
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<X, '2)43'12k,,k2

= d e 0 714' 1=2
c i i ± i 2 v r c2,,,2 v , i , „ + , 2 +2

k y i -1  .(e ,  6 , 2 ) / 2 e  -   2 p ,  -r
i \Ai l — !  1 2 ! 1 I \/(11 +1)! 4 1.

x 14 ) 1 1 + 16 , 2) 12 e- c2111112 }

and
c210 \

j-12<X, /,1>c1301;i1.2k, =  U - 1 ( — .C 2 +  ( f 6z2)12e— 2 )
1 0 2!

i2 C+ 1 2 )  cr,k1.11,2k 
2 ;

that is,

chi-ph < X ,  .1;1> 1 2
k2 

Hence we have
1 u  <X, 6„>) 43 0,12 2

C IC iliell' ,1/?2 (X ) =  V 2 1 14 ! " "  (

1

 

H ii(<xcv' V )H 12(
<

, ; /
C-i2>).V 2 4 ± t2li ! 12 !

Consequently we have the conclusion of the theorem by the same
way. Q.E.D.

§ 4 . The various formulae for Hermite polynomials. In this
section, we prove the various formulae for Hermite polynomials
making use of the relations (1 8 ) and (2 0 ), map U  and theorem 1.

Orthogonality.
From (43?(X), c/37(X)) 1.2(e ,c11.4c) =  8

n , m  and theorem 1  w e have
orthogonality of Hermite polynomials :

1  H e_ .2 d  x  8 . , m 2 nn !_ ,g(x)H„,(x) (33)

Differential equation.equation.
Making use of the relation (2 0 ), we have

c2 11f112c 2 1 1 e 1 1 2 • czneii2
U - 1 ( ) 1 ) " + l e 2  - - 1 - TeO n e -  2 .
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Therefore,

H ,/, (<6.X . / 2i>) _  H  , (<c)f\ •/ >) N/ 2 <cX, ( < X ,  >\

In virtue of lemma 2 , we have

1-1(x ) = —  H,(x )+2x H n (x) . (34)

From (29) and (34), we have

11(x) = 2n11 1(x) . (35)

Therefore we have the following differential equation from (34)
and (35) which the Hermite polynomial satisfies.

(x )—  2x li(x ) +20 n (x ) = 0 .( 3 6 )

Addition formula.

Put p  =  a  + a  + • • • + a  „ , a? + a] + • • + a =  1.
Then

U H
P>)

 — 9 9 ) t e  2

c2 11e112

CY 2

2112i1c1(, a k i )te 2
j=1

•• • _c2Henz
= 2" 2 i'c 1 E  a i a P  d., , " 1)"•• q ,  f l ) i n e 2 .

l i + • • • + / , ,= / 11! • ••

Owing to theorem 1,

=  U  E 11 ( < X• II d iH "l,!•••l„! i=i c. .\/ 2 ) •

Therefore owing to lemma 3 , we have

111 (t  a i x-) E " (x,)•••Hi n (x n ) , (37)1=i 1 ,+ • . .+ 1 = 1  l i !•-•1„!

where a +  + 4 = 1 .

Generating function.

t .H . (<X,
u  g  r c i  2 n 1 2 2  t C cn !  "

)n iii2
e -  2



74 Norio Kôno

v F ic (e ,eo t _c2 11$112

e 2

=  ° C
elle - '4  i g l ii2

2

2 t < X ,  

=e - t2 Ue ./Tc
Thus, we have

tn.11".(x) _  e ux- t2
.-0 n !

Integral representations.
We have the following integral formula putting from

the relation LIC=in927
x2

r__e i"H ,z 
 x  e  (

2c2

C 2  V2n-c2

P u t  U<X, =

If n = 0  obviously we have

c222

dx  = in2"12cnx,"e - = (38)

olleri2
=  e 2

From the relation (20) we have

U<X, 1)(7+ic2t/Dt1 .
therefore

= ,)e c2111112a n d
U<X , 1>n+1 = U<X,

eiuDt ,<x, 1>n+c2q, 1)11<x,
= c'Un<X , d-c2i(E, .

Hence we have

h 1( )  = nc 2 n + c2,
c2Heil2

h1( ) 1)e f

4 0 ( o e _c2H2n2

Comparing with the formula (29) and (39), we have

U<X, =  k g )  =  i n( c  H n ( c. ( , \
2 .

c 2iien2

N/ 2 V  2  )

(39)

(40)
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Putting we have

x) = (-1)"H„(x) . (41)

Further, putting E = n „  we have
X2

c2A2—  2
ei"x"  e   2 C   dx  = i

2 c 2
n
n ( C )

2 ) "  H „  c X
2 )  e #

\/7r

We have so called Gauss transform putting --xc = t+ iX  in  (4 2 ):

-

(t +ix)" 
 n t 2 / 2

\z' d t  —  in2- "I2H„( A ) (43)

Next we consider
U(<X, i<X,E2>)" = k ( ) .
en(0 {<X, E1>(<X, + E2›)'

+ 2>(<X, Ei>+i<X,
= (d t1 + it2)k  - 1()

c21= (4+  id e2 )" e- r 2 .
_c2liell2_ 0 1 1 E - F r e i +  ire2I12

(4 +  ick )e  2 l i m  ler.+0 1r
2 —  e 2  }

c2liell2
ic22 ) }  e 2

c211112(de,+ ide) • E + 2))1 e- 2 $

= Et {( + 2)} 1 - 1  + i21+  i ( M 2 ) }  ` - '1]
o11e112 oin2

x e 2 4 " 2 ) ) 1 ( d e 1  ide )e - 2

=  * [ ( , 2)}'(dt1+ide2)e- 2 .

Therefore, we have
2c inc2n{(E, 2)1. c2lip12

(4+ ic42)"
Hence we have from theorem 1,

k . ( 0  = n
( ) k ( ,

2 ) k e  C211:112

=  1 7 2 — " P C"  i k  ( l
e ) 1 1  k GX

\
,/ 211 I I k (<X1 2>)

C 2  )  • (44)
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Thus we have from lemma 2,

2"(x + iy)" oik(ne)11„_*(x)Hk(y) . (45)

From the relations (33) and (44) we have
,,- x2

(X + iy)"H,n( x ) ' dx m
N/ 77- 2

n !  

( n  —  m )  !
H .Y) (46)

Rodrigues' formula.
Making use of the relation (18),

(dei r e - C 2 1 1 : 2" U <X ) l> " 1 7 - 1 e -C 211:112

=  U<X , 1>t i

owing to the relation (40)

_  in (  c  H  ( 1)\ _c21n2n

\V 2 / \ / - y  ) e  2 • (47)

If we put n „  we have

c211e112 _c2ite+reiii2
dt e-  2 = lim {e 2 — e 2  } 1 E=2,t , (48)

r->0 zr

11* 1 -c211$112 2
=  inn e 2 {e-c (e,e1)r-ic2 

1 }ir 2

d  _ e2A2
e  2

i  dx

Therefore we have from (47),

I d \ n
e  2  =  ( - 1 ) "  N n  I I ( cX

2V 2 n "  •V  

Put I - = cr, then we have
c 2

22 d  n  —2 2

(— 1.)n(V20
)  

e = H n
(

x ( x ,  r).
/ 2.7

(49)

This is  Kakutani's formulation [4].

A  re latio n  between Herm ite polynom ial and L egendre poly-
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nom ial.

Put UH„(-  m  ( ) .

c 2 n

Making use of the relation, (20), we have

9,)m . (0 _ u(  HPII2 (
+

<X, P>) i  <X  >H  ( ‹ X ' 9 9 >

\i V 2 C  n \CV C 2 ' '
99  n \c - 2-V ).

Where we made use of the relation

i1r  { H n  (<X, 96.9>v +;11P112)  H . (<c)(\,/ P2>)}D,H„GXA>) —

_  11p112  H ,(<X, 99>)

N / 2 c  "  N/2 / •

From the relations (29) and (35), we have

yo m m_uf11§0 112 - 1 n v -
2 H . l<X,99>) 1   H . 9 9 > 1

ic c 2 i -V2c n4-1 c-\/ 2 If •

Putting 0, we have

m.+1(0 ) = 2n(11012—  1)m„ _1(0) .

Obviously we have m0(0) = 1 ,

therefore we have

m2.(0 ) ( 2
n
n ( 1942—  1)" . (50)

Putting 119911=y, we have

_ (2nnt)! ( y 2  1 ) „
v

1
77, e - x2dx (51)

dSince d — y 1 1 2 .(y x )= 2 • 2012.--,(yx)x, we have

x''H„(yx) e-x2dx = —
2  d

1. (d
y

y 1).
r

= n! .13 „(y), (52)

where P (y ) is  the Legendre polynomial of degree n.
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W iener transform.
Putting 9 9 =  in the relation (31), we have

_ <Y,  w H  _ w  i <X,  H ( <X, 
2c2" \  c \/ j ) 2c2 n  c V  2  )
w   1   H , ( <X, 1>)

i c / j  n \ cV 2 •

owing to the relations (29) and (35)

n L  W H „ ,(‹ X ' W H  ( ‹ X " ' 1 >)
-\/ 2c c• 2  /  c2 V  2 c V  / •

Therefore we have

V 2 <17;  w/./. (<X, _  w H n ± i (<X, 
c 2  /  •

+ 2ni W H  (<X ,

Obviously we have W1=1, therefore we have from the recurrence
formula (29),

w H  (<X, _ (<X, El >)
'I c.\/ 2 ) )•

The formula (53) means by definition
. 2

H ( . \ / -
 X  +  i y )   e - 2 0

 dx — i"11,,( c . viL2 ) (54)„
c 2 N/27tc

Since W  transforms Hermite polynomials to same polynomials,
it  is  a  unitary operator on LAL', dp), hence the representations
(Yg , L2(L', d )) an d  (Sg , L2(L', dp,c) )  are equivalent each other.

§ 5. M atrix elem ents. In this section, we calculate matrix
elements of the representations of the infinite dimensional motion
group, and have the various formulae for them in  virtue of the
properties representations. Further we show that they are the
limits of matrix elements of the representations of the finite di-
mensional Euclidian motion groups [10].

Put g= (I, and

(
 H

 (<X, H r n (  <X, 
c 2  )c  /  2 / = H . (55)

V2kk! V2mm! "

(53)
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Obviously 1 - 4 , ,A )  is expressed as follows.

l i k  mM
1 e - i t e >  k <X, 1>) H . ( <X, i>) ( x ) .

. 2 "k n i! h! c.\/ 2 ) c - V 2 c
(56)

Putting we defined the special function H„,„,(x) as follows.

1
_ y2

Hk , ,,(X ) 2.± k m  1 k. / T x Y i H k ( y ) H , , , ( y ) ed y  . (57)
1/ 7r

W e have the following limit theorem between th e  matrix
elements of n-dim ensional motion groups and H„,„,(x) from the
property of the limit theorem between Gegenbauer and Hermite
polynomial [10 ].

Theorem 2.

lini = H k ,„,(x) . (58)

where JZ ,, o(x ) is  the matrix element of the n-dim entional motion
group (see [11]).

Properties of H k ,„,(x).

k +1 I - =  m  + 1  1 1 1,,,„(x)— ixH hm +i(x) . (59)

l•
d  H  ( x ) =  V m + 1 1 1 k , m + i ( x ) + V —m . (60)
d x  k

H k ,,„(x i +x ,)  =  0 H/,„(xi)1-1s,.(x2) • (61)

0 0

Hk,8(x)H3,„,(x) = 8k,. • (62)

e-= 2M2 k  H k ,„,(x)H k(y) . (63)

P ro o f .  The formulae (5 9 ) and (6 0 ) a re  obtained by the
formulae (29), (35) and (37).

The formulae (61) and (62) follow from the property of the
representation :

Putting g 1 =  2CX1)P g2 = (I, 2 cA l), we have the formula (61)
and putting y= — x, we have formula (62).
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The formula (63) is obtained by the relation (57) and com-

plete orthonormality of the system H k (x) . Q.E.D.
-V2h k !

Put g= (u, 0), and

Hk(<X.: 9 )  -1,(<c-X:\'
11,n (u ) =  T g  c  '

-\/ 2'k! (l — k)!

H  (<c
XN ) H  _  m (<c

XN  )
 L 2 (L' , d p c ) . (64)

.V2'm ! (l — m)!
k) ,

where we put,
• cos q i + sin 02
• — sin k  + cos q2
• = 1= 3, 4, •-• . (65)

Then, we can write Ig,„Xu)=H„,(cos 0, sin 0) and it can be ex-
pressed as follows.

H„,(cos 0, sin 0) —
21.\/ k! m! k)! (l — m)!

k (x cos 0 +y sin 0)1/i _k (— x s in  + y cos 0)

e -(x2+y2)
x Hm (x)H, _,„( y) dydx . (66)

7r

Analogously to theorem 2, we have the following limit theorem
between the matrix element of n dimentional rotation group and

O, sin 0).

Theorem 3.

lirn L 0 (cos 0) = 11,,„(cos O, sin û),( 6 7 )

where P;‘,.„,z ,o is m atrix  elem ent of  the n-dimentional rotation group
(see [II]).

Properties o f  I-Pk ,m (cos 0, sin 0).

Hz„,„,(cos 0 , sin 0) = (— 1) k +  M  H  k  (COS 0  sin 0) . (68)

1
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k 11 1..  =  \/(l— m) sin 01-1111,.+ N/W cos 01-11,=1,„,_, . (69)

—
d  

Hi k(1 — k +1)1-11-1,—  (k +1)(1—  k)-1/1-1, •d0 (70)

11,„,(cos (a + 13), sin (a + /3 )) = E Ht,s(cosa, sin a)./-1,,„(cosiS, sinR) •
(71)

s o

 ( — 1)s+ml-P„,, (cos a, sin a)H ,„ (cos a, sin a) = (72)

1 k! (l — k)11 ! ,(x cos û +y+y sin 0)H, _ k (— x sin 0 + y cos 0) = E, 11/m! (l—m)!
X 11,,„(cos 0, sin 0)H,k (x)H, _„.,(y) . (73)

E Ht,„(cos a, sin a)H „,(x i cos a— x2 sina)H, _„,, _,„(x, sin a + x2 cosa)..--0

= H „1 ,,,(cos a, sin a)II k „,(x i )H, _
k , 1  — n ( X 2 )  •n= 0

(74)

The formulae (68)-(73) are obtained same way as the formulae
(59)-(63). We shall prove the formula (74).

Put
= (u, 0) , g2 =  (I, , where ,

and u  satisfies (65). From the property of representation Tg i g2
=

T g i T g 2 ,  we have

(Tg  g H k ( ‹ X  1>) 1  (  
<X 2>) H . (< X ,  H  (<X, 2>))

"  c - V  2 c/ 2 ) ,  c \ / 2  " z  c /  ) / L 2 (L , ,d g e )

x

k! m! (l — k)! (l — m)!

_  ( e -  ((xi cos a— x sin  a)<X ,$1>+ (x i s in  a -FX2 coo  a )  <Y,E2> H h
(<X, 7,1 1>)

C V 2

x uE,>) H m ( <X, Ei>) H  (  <X, 2>))
c..\,/ 2 ) • \ c.\ ,/  2  /  " n  ■ cV 2 //L 2 u . , , d l y

x 2- 1 (k! m !  (/— k)! (l — m)!) - "2

2  i  ( (X i cos  — x2  s in  a )y i + (x i s in  a+ x2 cos a)Y2)

x 1 / , , ( c o s  a, sin a)H .(Y 1 ) 1 11- .(Y 2) 1 1m (Y ) 1 11- .(Y 2)  e - c p - rpd
y 1 dy 2

/2'n! (l—n)! m! (l — m)!

= E H ,(cos a, sin a )H „,(x i cos a— x2 sin a)11., _„,, _m (x, sin a”=0 •
+ x, cos a) .

1
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The other hand,

(<
c
X
\ '/ -%1)).Hr -1,(<e

X
\

7 ',,. 111„,(‹ -X . ' L> )1 _ „ „ ( ‹ X ', 2> )) 1(k  m! (1 — k)! (1 — m)!)
C.\,/ 2 c v  2  //L 2 (.c ,d p ., )

-  (xi<x,e,) +x2<x,2»
-"

 (<X' i>) .H- (  <X
/

2>)
e

k C '\ / 2 c'N 2

H  (<X, i>)11-,, - . (<X, 2>)‘)
n  C  \/ 2 / \ c -\./ 2 /Li:2 u/, dp.,)

x (I I , „ (<X  ' ' › cos a+ <X, 2> sin a)
c .\/ 2
sinc  N /a +2 <X, 2> COS cyx H, _„(— <X » 1> l

Hm ( <X, i l  H l  m (<X , E2>))
\ c \,/ 2 c .\/ 2  i / L 2 (L/,dp.,)

x 2 21 (n! (1 — n)!) - 1 (k ! m!(1 — k)! (1 — m !)-- 1/ 2

=  E .(x0H,_„,,_,,(x2)H,„,(cos a, sin a ) .=0

H ence we have the formula (74).

Osaka City University.
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