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Summary. We consider Hermite polynomials from the stand
point of representation theory of groups. We show that the
correspondence between the space of multiple Wiener integrals
[2] and the decomposition of their Fourier transform introduced
by M. G. Krein [5] is obtained by the relations which follow from
the representations of the infinite dimensional motion group in-
troduced by A. Orihara [6]. We are lead to various formulae for
Hermite polynomials, for instance, orthogonality, differential equa-
tion, addition formula, integral representations, Wiener transform
and so on, systematically from the relations, and in addition we
calculate the matrix elements of the representations of the infinite
dimensional motion group and point out that they are the limits
of matrix elements of the representations of the finite dimensional
Euclidian motion groups.

I would like to thank prof. H. Yoshizawa and prof. N. Ikeda
for their useful advices.

§1. Introduction. The Gaussian measure and Hermite poly-
nomials connected with this measure play important roles in pro-
bability theory. But they are in an exceptional situation from
the stand point that special functions are considered in a unified
way by means of representation theory of groups [12]; that is,
Hermite polynomials can be investigated by the representation
theory of the infinite dimensional motion group (def. 2) [6]. The
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multiple Wiener integrals well known in probability theory are
in this sense the space of irreducible representation of the infinite
dimensional rotation (def. 1) [13]. The infinite dimensional
Gaussian measure is understood as the limit of the uniform me-
asures on finite dimensional spheres and the Hermite polynomials
are obtained as the limit of the Gegenbauer polynomials which
are the matrix elements of the representations of the finit dimen-
tional Euclidian motion group [10].

In §2, we define the infinite dimensional rotation group and
and the infinite dimensional motion group. We consider the re-
presentations of the infinite dimensional motion group on two
Hilbert spaces L*L’, du.) and &, and we discuss the relations
between them. In §3, we have an orthogonal decomposition of
& and define Hermite polynomials as members of a complete
orthogonal base of L*(L’, du.), making use of the relations obtained
in §2. In §4, we have the various formulae for Hermite poly-
nomials from the results of §2 and §3. In §5, we calculate
matrix elements of the representations of the infinite dimensional
motion group and show that they are the limits of matrix elements
of the representations of the finite dimensional Euclidian motiin
groups investigated by N. Ya. Vilenkin [11].

Remark. We can consider Charlier polynomials in relation
with the Poisson white noise. Also in this case, we are lead to
orthogonarity and addition formula for Charlier polynomials in an
analogous way as in the case of Hermite polynomials.

§2. Representations of the infinite-dimensional motion group.
In this section we define the infinite dimensional rotion group and
the infinite dimensional motion group. We consider the representa-
tions of the infinite dimensional motion group in two way, and we
obtain the relation between them.

Let L be an infinite dimensional real nuclear space, and H be

its completion by a fixed continuous Hilbertian norm || ||. Then
we have the relation

LcHcL.
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(L’ is the dual space of L.)

Definition 1. [7] The infinite dimensional rotation group 0(co)
is defined by the following two conditions:

i) #<0(c0) is a linear homeomorphic map from L to L.

ii) This homeomorphic map induces orthogonal transforma-
tion of H.

Identifing the adjoint operator #* of u with # !, we can re-
gard O(cc) the group of transformation acting on L’.

Definition 2. [6] The infinite dimensional motion group on
L’ is the set of pairs of elements of 0(c<) and of L with the group
operator defined as follows :

(., @) (., @,) = (wt,, up,+,), for u,€0(), @,eL.
We denote the infinite dimensional motion group by G...
The Gaussian measure p, on L’ with the variance ¢* (¢>0) is
defined by the caracteristic functional X(¢) on L as follows:
_c2jel?

x@© =5 = [ evdu ), (1)

where (€L, XL/, and <X, £> means the canonical bilinear form.
The Gaussian measure p, is characterised by the following pro-
perties [8]:

(G-1) p. is 0(cc)-invariant.

(G-2) . is L-quasi-invariant, that is, for all =L, we have

Ky ol
e _ % 2t
du,

where u., is defined by u, (X)=p.(X+o).

(G-3) p. is O(cc)-ergodic, that is, u, is one of the smallest
of O(co)-invariant measures.

We denote L*L’,du,) the Hilbert space of all complex-valued
functions on L’ square integrable with respect to the Gaussian
measure u,.

Definition 3. Let g(x,, -, x,) be an n variable polynomial.
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We call function L’ expressed by

F(X) = g(<X’ El>! -, X, §n>)

a polynomial on L’, where &, -, £, are an orthonormal system of
H belonging to L.

Lemma 1. The set of all polynomials on L' is dense in
LXL, du,).

Lemma 2. Let us define

F(X)=g(KX,ED, -, <X, Ep),
FI(X) = g(X, ED, =, <X, ED)
When F(X) and F'(X), two polynomials on L', coincide with each
other as elements of L(L',du,), so do g(x) and g'(x) as polynomials.
These lemmas are trivial and so we omit the proofs.

Now we consider the representations of the group G.. on
LX L, d/-’/c)’

Put
_KX,0)
T,F(X)=¢ 2 Fu'X), (2)
_llel2+2¢Y, 0>
SF(X)=e¢ @ Fu'(X+9), (3)

for g=u, ), F(X)eL L', du,).

Then, (T,, L(L,dy,)) and (S,, L*(L’,du.)) are unitary repre-
sentations of G., in virtue of ‘the properties (G—1) and (G—2)
respectively.

We define Wiener transform W from L*L’,du,) to itself as
follows :

WX = | g/ 2<X, £>+iKY, £, -, v BCX, ED+iCY, £)
Xdl’“c(X):g(<Yr E1>) ty <Y, §n>):F(Y)7 (4)

where F(X)=g(<X, El>) ) <X> §n>) and g(xl"'xn)’ g(xl'”xn) are two
n variable usual polynomials.
By simple calculations we have

”F(X)”Lz(L’,dll-c) = ”F'(Y)”LZCLI,JI‘»C) .

Since polynomials on L’ are dense in L*(L’,du,), W can be ex-
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tended to an isometric map defined on L*(L/, du,).
We have the following relation between 7, and S,:

T,W = WS, . (5)
In fact, if F(X) is a polynomial on L', we have

llpl?+2¢X, 0>

WS, F = We 4 Fu'(X+e))

_llpl2+2vZ (X, 0> +2iKY,0)
e 4c2
S ) %4

F/2u'X+iu'Y+u'p)du(X).

If we put V2 X=+/2uX—, then in virtue of (G-2), this is
equal to
—KY,p) _

— SL, ¢ T F(/2X +iu Y)du (X))

=T, WF.
Because of the property (G-3) of the Gaussian measure pu., the
representations (7,, L(L’,dp,.)) and (S,, L*(L’,dp,.)) are irreducible
[61. '

Now we denote by & the smallest (complex) Hilbert space

with the reproducing kernel X(§—) [1] [3]. < has the following
properties :

(F-1) For any fixed oL, X(-—p)EF.

(F-2) For any fe%Z, (f(+), X(- —))g=f(p).
(F-3) & is spanned by {X(-—o); p=L}.

(F-4) ”,-2=1 aXE—o)llg = ; a:a,X(P;— P)-
Lemma 3 [3]. Put
URX) = | e OF(X)dp.(X), (6)
L
for F(X)eL*L',du,). Then U is a one to one linear isometric map
from L*(L',du,) onto <F.

Proof. For any complex numbers @; and for any {p;}CL,

n kd
U a,ei®*» = Sa, SL, ¢iFDHOPdy, (X))

j=1 j=1

- SaxEre). (7)
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n
Since {j;l ae’**p; a; complex number, @;€L} is dense in

LX(L', du.), we have the conclusion of this lemma from the relation
(6) and the property (F-4). Q.E.D.

We denote by (¢,,F) and (s,,F) the representations of G.
on & obtained from (7, L*(L’,dy.)) and (S,, L*(L’, du,)) by the
transformation U respectively. Then we have

UTUF®) = 1.5 = F(w (8- 2%)) (8)
USUF®) = 5,50 = oo (e (6-2)) (9

for f(£)eZF, UF(X)=/(£), g=(u, ). In fact

_£<Xv >
t,f(€) = UT,U-f(£) = Ue™ % Fu'X)
= e P X0du )

= [ SR ) = (0 (5 2))

llpll2+2¢X, )

US,Uf(€) = Ue % Fu'(X+9))

! (X, — lIpl”+2a<A,90) +2<X 23
l,

s, f(&)
T Fu (X +e)dp(X).

If we put X=uY— ¢, then owing to (G-2), this is equal to

_ e S KO+ VD B (VY (Y)

L’

_lieli?_; )
= e (e 55))

Now we consider the case of g=([, ), where » runs the real
numbers and I means the identity of 0(co).
Put

T,=T¢, S,=5¢, t,=1t7, s,=s¢;
then they satisfy the following relations :

i) T,T,= Tys,-
ii) 7T,=1 (the identity operator).
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iii) linolllT,—I||=0. (10)

It is sufficient to show that 7°¢ satisfies the condition (10)
owing to the relations (5), (8), and (9).

T9.T*R(X) = TS F2F(X)
q r q

_iKX,qp) _iKX,rp)

—e¢ 2 22 F(X)

i(g+7r){X,p)

¢ wm  F(X)
= T F(X).

It is obvious that 7, is equal to the identity operator, and finally

lim || T2F (X)— F(X)|

— lim SL, |(&X 79— 1)F(X) |"dp(X) = 0.

>0

Therefore we have the following expressions according to Stone’s
theorem :

T‘;" = @74y s
S‘: = ¢irBy s
° .
2 = e,
st =eirhe, 1)

where A, and B, are self-adjoint operators defined on L*L’,dp.)
and «, and b, are self-adjoint operators defined on <.
We have the following four expressions easily :

2¢°A,F(X) = —<X, p>F(X), 12)

if there exists a positive number § such that for |7| <8, e"*®F(X)
belongs to L*(L/,du.).

2¢B,F(X) = KX, > F(X)+2¢’D,F(X), (15)
if F(X) belongs to the domain of A, and D,F(X) exists, where

F(X +rp)— F(X)
ir

D,F(X) = lim

by definition, if the limit exists in the sense of norm of L*(L/, dp,).

2¢a, f(§) = —dof(8), (14)
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where

d = hmw

>0
if the limit exists in the norm of <.

200, f(§) = —2¢%(E, P)f(E)—ido S(E) - (15)

if f(£) belongs to the domain of d, and if there exists a positive
number & such that for |7| <8, ¢"“®f(E) belongs to .
From the rerations (8) and (9) we have

UA U = a,, (16)

UB, U = b,; an
that is,

UKX, poU " =d,, (18)

U(iKX, > +2D) U™ = —2¢*(E, p)—id, . (19)
From the rerations (18) and (19) we have

cUD U +ilKX, U™t = — (&, p). (20)
Further from the relation (5), we have

— WX, oW = KX, p>+2¢’D, . (21)

§3. Hermite polynomials. In this section we have an or-
thogonal decomposition of & making use of the relations (18) and
(20), and we have Hermite polynomials as a complete orthogonal
base of L*L’,du.) in virtue of the orthogonal decomposition of .

Let {¢;;7=1,2,-+,§;€L} be a complete orthonormal base of
H,

Lemma 4 [5]. & can be decomposed as follows:

F - 10, 22)

_02 “2
where F, is spanned by {(§,Ex)"r-(E,Ep)ie "2 5 L+ +l;=m,
I, : nonneganive integer, k;: integer}. Put

t'zll"?ll2
—z

‘Pkl k (E) \/l'---l~.

(g’ gkl)l (E’Ekj)lj . (23)
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Then {cpf,‘lﬁjﬁlj', L+-+1;=n}, is a complete orthonormal base of F,.

Proof. From the relations (12) and (18), the domain of dg,

_ el
(D(dg,)) contains ¢~z and

d _ <Rl T _SlEHr® e
e "2 =lim —(e 2 —e 2
£ r>0 ﬂ’(
. _CEIE _cace.e,yy — €272
= lim ~-¢™ 2 )

c2lgl?

i€, Ee 2.

c2el
Generally, D(d;,) contains (£, &,)"¢ 2

and

c2in? _cigi®

"CTE EDTe T2 = PydEge T2,

(24)

(25)

where P, is a polynomial of degree <» with 1 for the coefficient

in the highest term.

<2ligl? _cign®

At first we show that (£ &) "2 and (§ &,)2e =
mutually orthogonal if /,+/,.
We assume /,=/,. Then

2l gz

(E En)e 72, (£ Ee 2 )g
<2l SHeI?

= (@ E)he T, ke P (e g,
d;, being self-adjoint operator,

c2jgll? _cRlign?

= (Plz(dﬁk)'(gy Ek)lle—T: i~ tec™ e 2 )3’»

<2182

are

()

_ _eel
P(d;,) (£, Ex)e "2 forms a polynomial of (& &, at least degree

C2| 2

(l,—16)xe “2 andif /,—/,>0, then in virtue of the property (F-2),

we have (x)=0.
If /=/,=1,, then

Py(dy)(E, 8" = 11iT + (&, EQi (&, Er))

where @, is a polynomial at most degree /, and we have
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_clign® _clign®

(x) =(lite "2, i c e T2 g+

<2l <2l

+((‘E: gk)Ql 1((5» Sk))e 2 ’ ilcMe T2 )9
', . (26)

lN

S
1

Next, considering the fact that
o182 218112

_egl _cUuER
dﬁkl(ga Elzz)le : = (E’ Ekz)ldfkle z if kl#kz’

we get the last conclusion. Q.E.D.
Put

U's¢,=1L,,
U@ ai(B) = i@ (X) . (bt +l=n) @7

Owing to lemma 3, we have
XL, dp,) = 3 L,
and {CI> ,, ; L,+-++1,=n} is a complete orthonormal system of

L,.

Theorem 1. ‘

follows :

f(X ) is expressed as a polynomial on L' as

Ol (0 = @1y, (S 52) @

- where H,(x) is a polynomial in one uariable of degree n satisfying
the following recurrence formula :

H,.(x) = 2xH,(x)—2nH,_ (%),
Ho(x) =1 ’
H(x) = 2x. (29)

Remark. H,(x) satisfying (29) is the so-called Hermite poly-
nomial of degree n. However we consider the recurrence formula
(29) the definition of the Hermite polynomial H,(x).

Proof. Owing to lemma 3 and the relation (1), we have

DUX) = 1.
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From the relation (18),
X, & = U'dy,pi(E)
<2lieil?

= U zcz(gy gk)e Tz
Therefore we have

Ugi(p) = K,

We assume /=1, then we have from the relation (18),

X, EpiT'OUX) = 1d€k¢k(§ )

<2l¢)2
=U ldEk\/l' (g, k)e Tz
ol Ve » _cfuzeu2
=U <m(§» Ew)le
_\/(l+1)cl+2 1+1 _c2uze]|2 .
z\/m (E’ Ek) e ):
that is,
X, Ep@UX) = VIR (X)+V I+ 1e@i N (X). (30)
Put
. 1
PUX) = H(X);
then we have
HX)=1,
HX) = 24X, 80,
V2 (X, £ H(X) = 20H, (X)+ Hyu(X) (51)
Hence we have
X, Ew
H,(x) - B,(EE2) (52)

where H,(x) is a polynomial in one variable of degree / satisfing
the recurrence formula (29).

Next we consider the case i"“*2®%2 = U-'pll (£). An-
alogously to the last case, we have
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.o 0,
(X, Ek1>l Ol+12)®k‘1' i
_ 1,1
= U ld$k1¢k‘1 ;z

- cht 2\/1 n-t, he Zneu? \/—Zﬁll+lz+z
(Y o € )76 e s

_clign®
X(EE) & B0 )

and

cAigl®

|
i"2<X, Ek1>q)2'1[.2kz = U_l< i\/l '(g’ Ekl) (E: gkz)lze T)
- () ol

<X, B o

c ki kg ®

that is,
1,7
®k1 zkz

Hence we have

% 21'111 s (<f\/%>) Pl
B \/2’1’“1’211! 71 <<i/%>) H’=(<fQ%>).

Consequently we have the conclusion of the theorem by the same
way. Q.E.D.

@i‘l £ (X) =

§4. The various formulae for Hermite polynomials. In this
section, we prove the various formulae for Hermite polynomials
making use of the relations (18) and (20), map U and theorem 1.

Orthogonality.

From (®%(X), ®(X))rx1’ aue>=0x» and theorem 1 we have
orthogonality of Hermite polynomials :

Sl H(x)H,(x) % e 7dx = 8, ,2"n! . (33)

Differential equation.
Making use of the relation (20), we have

212112

_cElel” _
DU EY'e ™ = — U g e

2Il iy

L XU e
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Therefore,
(&) = 1, (EB) VIR g (k)
In virtue of lemma 2, we have
Hy(x) = — H,,(x)+2xH,(x). (34)
From (29) and (34), we have
H)(x) = 2nH, (). (35)

Therefore we have the following differential equation from (34)
and (35) which the Hermite polynomial satisfies.

H}/(x)—2xHj(x)+2nH,(x) = 0. (36)
Addition formula.

Put @ =af+ak++af,, ai+ai+--+ar=1.
Then

x,
vl, (S022) = ativeg, e

_<Y IGII2

c2igi?

= 2ICHE, S agYe 2
i=1

. I ahalz ... gt <2lelf?
=2 3 ST E B B

Owing to theorem 1,

=U .2 . 'l 7,1 .11"1 H"(Of/g >>

Therefore owing to lemma 3, we have

n !
B ax)= 3 LEGH ) Hyx), @D

where a4+ .- +ai=1.

Generating function.

o5 HED)

onlzy ”t”C”(E E )" _c2lgn?
- 'V & 7 = T 7 A5 51 —2
n=0Q n. ! n

0 n!

Mx
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212112
R

c? HE—-‘/TZ— itélnz

= e e~ P

2 2KX, &)
=¢ *Ue vzc ,
Thus, we have
é t"H, n(x) g2
=0 M. Tnl )
Integral representations.

We have the following integral formula putting £=x§, from
the relation U®}=i"p}

= IAX e_;c_ZZ — gnOn/2 ny# —c—ziz
S_e H(c\/2>\/2”_czdx i"2" " \e T (38)
Put U<X’ §1>n = hn(E) .
If n=0 obviously we have
—cZler
ho(§) =¢ 2 .

From the relation (20) we have
KX, £ = ic'(E, £)U+icUDy, .

therefore
c2|ie)f?

h(8) = i, E)e 2, and

UKX, D™ = UKX, EDLX, £
= CiUDy X, ED" +C%i(E, £,)ULX, E)"
= UnX, ED" + ik, E)ULX, ED™.

Hence we have

hn+1(‘§) = nczhn 1(E)+Czi(«‘§» gl)hn(g) >
c2jigl?

k() = ic*(E, E)e 2

2iéN?

h(§) =¢ "z . (39)
Comparing with the formula (29) and (39), we have

U, 6" = h®) = () B (CEEN L o)
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Putting £,=—§&,, we have

H,(—x)=(—1)"H,(x). (41)
Further, putting £=\%,, we have

“ eI ] e-;_cz dx = i* C_)” (C)\:) —ZLZ 42
o ot =i () H(Fg)e ™™ @

We have so called Gauss transform putting ﬁ=t+i7x in (42):

S i dr — z"Z‘”/zH( (43)

v 7).

Next we consider

UKX, ED+iKX, ED)" = ka(£) .
ka(£) = UKX, £0 (KX, E0+iKX, E)™
+iKX, ED (KX, E0+iKX, E2)"'}
= (de,+ie)kn-(E)

oooooooooooooooooo

L el
= (dgl-l-ldgz) e 2
_c?ligl1? . _RliE+rEr+ irkoll? _cHgl?
(de,+idg,)e "2 = hm.l {e 2 —e z}
r>0 17
L, ) _ R
= 1c {(E’ El)+i(f, Ez)}e 2.

<2l

(d51+id52)'((§» El)+z(E) Ez))le_ 2
= [H{E &)+, EDY T +U{(E, E) +i(EE)}H 1]

e 5 (& £)+iE, E)(de+ide)e 5" .
c?|g||?

= {(& E)+i(E, E)Y(d, +idg)e 2 .

Therefore, we have

? <2igl?

_——"ilz " 2n ; n_ -
(d51+id€2)ne 2 =1c¢ {(E? £1)+z(§’ Ez)} e 2z .
Hence we have from theorem 1,

<2lign?

k) = 7 33 (1) i%E, £ HE, B

- v e () (ERnER), o
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Thus we have from lemma 2,
2+ in) = 33 i* () Ha-sHA)

From the relations (33) and (44) we have

S:(x—l»iy)"H,,,(x)-e——x—_zdx _ (i)"‘"'L!_H,_,,,( 5.

V'm 2

Rodrigues’ formula.
Making use of the relation (18),

(n—m)!

_c2ign? c2gl1?

de)'e "z = KX, Ep"U e 2
= U<Xy E1>” ’

owing to the relation (40)

_ i”( \/%)"H,, (Cg’gl))e‘c‘z"—ze"z.

If we put £=2)\E,, we have

_cel’® 1, _Clgrrall® _cmig®

die "7 gy, = lrl-ﬁl“z—r e T —e % }le
Lo 5| r2
. - —c?(¢,8))r—-Zc2
= lim-%e 2 {e 27 =1} gy
c2\?
= ‘1T ie——Z—
i dx

Therefore we have from (47),

(%ye_c%z = (_1)"(\/07>an(\§%)6_&7;2 .

Put %=a, then we have

(~1y(vzyes (&) e s = B (o) = Hin o).

This is Kakutani’s formulation [4].

(45)

(46)

(47

(48)

(49)

A relation between Hermite polynomial and Legendre poly-
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nomial.

Put UH, (%%)=m,,(§).

Making use of the relation, (20), we have

Com - u(Er(EF) L o)

Where we made use of the relation

DHET) = i {20 (5]

- o m(5).

From the relations (29) and (35), we have

@& om@=v{2 e gn, (K2 o, (E22)]

Putting £=0, we have

m,,(0) = 2n(||@||*— L)m,, _,(0) .
Obviously we have m,(0) =1,

therefore we have
1
ma®) = E2 (gl —1)". (50)

Putting ||@||=y, we have

[ Halom) i evax = G2 (1, (5D)

Since g H, (yx)=2-2nH,,_(yx)x, we have

dy
|

where P,(y) is the Legendre polynomial of degree .

e vdx = (%) (-
=nlP,(y), (52)
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Wiener transform.
Putting ¢=E, in the relation (31), we have

LY, &> WH, (<X El>> W’<X EI>H (<X fl>>

2c? V2 2¢* V2
1 7 <X zfl>
+ch\/;z H, <c\/2 )

owing to the relations (29) and (35)

- - (Bl v (),
Therefore we have
VI, By (K 8)_iwa,.,(E5) s omiwH,. (L5

Obviously we have W1=1, therefore we have from the recurrence
formula (29),

(SR -,

The formula (53) means by definition

" H (\/7"i"y ¢ e )

S_w "\ e/ 3 >\/27rc ! ( VZ
Since W transforms Hermite polynomials to same polynomials,
it is a unitary operator on L*L’,du.), hence the representations
(T,, XL, dp,) and (S,, LXL,du,)) are equivalent each other.

(54)

§5. Matrix elements. In this section, we calculate matrix
elements of the representations of the infinite dimensional motion
group, and have the various formulae for them in virtue of the
properties representations. Further we show that they are the
limits of matrix elements of the representations of the finite di-
mensional Euclidian motion groups [10].

Put g=(1,%) and

() (55)

T, ,
£ V2R V2" m!

= H, (). (55)

LAL/, dred
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Obviously H, ,.(¢) is expressed as follows.

(56)

Putting £=2cx£,, we defined the special function H, ,.(x) as follows.

L (" oo ) S dy.  6D)
'k' e ky m\Y \/; y'

V2" k|

Hk,m(x) =

We have the following limit theorem between the matrix
elements of n-dimensional motion groups and H, ,(x) from the
property of the limit theorem between Gegenbauer and Hermite
polynomial [10].

Theorem 2.

Hm [ mo(V/ 7 %) = Hy (%) - (58)
where J ..o(x) is the matrix element of the n-dimentional wmotion
group (see [11]).

Properties of H, ,.(x).
VE+1 Hyr (%) = Vm+1 Hy p(2)—i%Hy (%) . (39)

i0 Hy o) = VL He®) 4 Homo(8). (60)
Hy (5,4 5) = 33 Hy () H, () - (61)
3 Hy (0 Hy p(2) = 8y (62)
e TV H,(y) = zx/ ’,’j—,’ 2" Hy () HW(3) - (63)

Proof. The formulae (59) and (60) are obtained by the
formulae (29), (35) and (37).

The formulae (61) and (62) follow from the property of the
representation: T, =T, ,,.

Putting g,=(I, 2cxt,), g,=(I, 2cyt,), we have the formula (61)
and putting y= —x, we have formula (62).
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The formula (63) is obtained by the relation (57) and com-
. 1
plete orthonormality of the system o H.(x). QE.D.
Put g=(u,0), and

H ((X,__E_,) H_ <<X,E_2>
Hi.m(u)=<Tg ! Wé{ig’_’;);m)
(&, (&

V2 c~ 2 >> .
V2m (I—m)! LXL', dp,) . (64)

(Izm, k),
where we put,
ug, = cos €, +sin 6E,
uf, = —sin 0%, +cos 0,
ut; = E;, i=3,4, . ‘ (65)

Then, we can write H} ,(u)=H;} .(cos0,sind) and it can be ex-
pressed as follows.

1

Hi.m(cose, sin 0) = 21\/k!m'(l—k)'(1—m)!

—o0

x Sm g‘” H,(x cos 0+ sin 0)H,_,(— x sin 0+ cos 6)

g~ CF2HID

x H,(£)H, _,(3) dydzx . (66)

T

Analogously to theorem 2, we have the following limit theorem

between the matrix element of » dimentional rotation group and
H: .(cos 8, sin 8).

Theorem 3.

lim Pyl o(cos @) = H: ,(cos b, sinf), (67)

n-poo

where Pl is matrix element of the n-dimentional rotation group

(see [11]).
Properties of H} .(cos 8, sin@).
H! . (cos 8, sin §) = (—1)**"H’, ,(cos 8, sin 0) . (68)
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VEHm=/(I—m)sin 0H}Z] ,-+\/m cos OH [ 1 m_ . (69)

& Hiw = VH—FF DHb s EFDT=BHi - (70)

H; . (cos(a+B),sin(a+R)) = 20 H: (cosa,sina)H! . (cosB,sinfB).

(71)

120 (=1)y*"H} ,(cos a, sin @)H} n(cos a, sinax) = & ,, . (72)
H 04 v sin OVH i g 6) — IVk!(l—k)!

W(xcosf+ysin@)H, ,(—xsinf+ycosf) = ,,.Z;) ml (I—m)!
X H} ,.(cos 0, sin O)H,(x)H,_,.(y) . (73)

1
2 Hin(cosa, sina)H,, ,,(x,cosa— 2, sin@)H, _,,; (%, 8in @+ %, c08 )
1
= "Z;’ H} ..(cos a, sin a)Hy, (2 )H;_; ;_u(%,) . (74)

The formulae (68)-(73) are obtained same way as the formulae
(59)-(63). We shall prove the formula (74).
Put

& = (u’ 0) y & = (Ia ‘E) ’ where E = 26x1§1+26x252 ’

and # satisfies (65). From the property of representation T, .=
T, T,,, we have

(et (AL, Tl S AL i

1
X R Ml =R =)

_i{(xl cos a—x2 sin a){X &>+ (%) sin a+x3 cos a) (Y ,&2) <X) uEl>
= <e ¢ H"( c\N 2 )
(X, uty <X, E> X, &>
X HI_"< N 2 ) , Hm( N2 )Hl_m( c\v 2 ))LZ(L/,dMC)

x27HR!m! (I—k)! (I—m)!)?

oo o
— S S e~ V3 i{(x] cos a—x2sina)y;+(x) sin a+ x3 cos a)ya)}

—oo

—o0

N Hi . (cos a, sin a)Hn(yl)Hl—n(yZ)HmQILH{jm(LZ) - 23D d
P> VIR U=n) ml (I—m) 7 ¢ Fi e

1
= g H; .(cos a, sin ) H, ,,(x, cosa—x,sin @)H; _, ; _,.(x, sina

+x,cos ).
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other hand,

(71, (50, (L)

c\ 2 V2

Tg‘_IH <<X gl>> ! m<<x——g—2>>>L2(L/’dﬂ )2_l(k!m!(l_k)!(l_—m)!)—llz

N2 c\ 2

_% (e—%'(mx,eo + 2K, E) Hk(<X El>> H,. k<<X’ _‘§i>> ,

AV
(<c)f/‘§21>> ‘- n<%%—>>>L2(L/, dred

V' 2

% ( ((X £> cos a+<X, £, sin a)

N2

xH,_,,(—<X’ £> sin a+(X, £ cos “)

V2
<c)f/‘§21>) g m<<CX_\’/E—22—>>>L2(L/,nd)

X 27! ([ —n))y (k! m!(I— k) (|—m!)~"*
= Z H, n(xl)Hz e 1-2(%)H] m(cos o, sin o) .

n=0

Hence we have the formula (74).
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