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Introduction

In 1947 Ahlfors [3] proved for a parabolic Riemann surface
F the existence of an exhaustion and canonical homology basis of
F such that for o,, w,€T

(@, 0t) =lim3 ([ 0] 8- & 4,
nreo (=1 JA§ Bi Ai B;

where &, and &, are the piecewise harmonic differentials adequately
modified from », and », which depend on the exhaustion. From
the above relation it follows that the bilinear relation for square
integrable harmonic differentials having only a finite number of
non-vanishing periods holds. In 1956 for a parabolic surface with
some conditions Kusunoki [6] proved the validity of the bilinear
relation for differentials in the class T', such that the number
of their non-vanishing periods is not necessarily finite. Later on,
some conditions which insure the validity of this relation are
found by several authors (Pfluger [137], Accola [1], Kobori and
Sainouchi [5], Marden [7], Matsui [8] [9], M. Mori [10]). On
the other hand, for the case of hyperelliptic surface of infinite
genus this relation was investigated by P.J. Myrberg [11] and
Pfluger [12]. In this paper we shall give some metric conditions
for the validity of the bilinear relation on open Riemann surfaces,
which include a part of our earlier results [5].
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In §1 we establish a general Riemann’s relation for square
integrable harmonic differentials which are not necessarily semi-
exact on the surface. In §2 for a special choice of canonical
homology basis the general Riemann’s relation is discussed by
means of the same way as in §1, but there we do not assume
that the exhausting regions are canonical. In §3 we consider an
another way to establish the general Riemann’s relation and
compare the result obtained there with that in §1. In the
following we shall use the same notations and terminologies for
the classes of differentials as in Ahlfors and Sario [4].

§1. General Riemann’s relation

1. F being an arbitrary open Riemann surface, we consider
an exhaustion {F,} (n=1,2,---) of F by regular regions and cor-
responding canonical homology basis {4,, B;} (i=1,2,-:+) such
that A,, B, ,-::, Apm, By form a canonical homology basis of
F, (moddF,) and A;xB;=38;;, A;xA;=B;xB;=0. Let F;” (i=
1,2,--+, m(n)) be components of F,,,—F, and u,(p) be the harmonic
function in F,,,—F, such that

0 on 0F,
s on oF,.,

up) = {

and its conjugate harmonic function v,(p) has the variation 2z on

oF,.,, that is, S dv,=27. The quantity u, is the harmonic

Fut1

modulus of the open set F,,,—F,. Similarly, the harmonic modulus
w of F may be defined. If we choose adequately an additive
constant of v,(p), the function u,(p)+,(p) maps conformally
F{ with a finite number of slits onto a slit rectangle 0<u,<pu,,
b;<v,<a;+b;, where a; and b, are constants satisfying the follow-
ing conditions

a; = 27:;1,,,/;1,,(,” , Z;a,- =2

and

by=0, b =Sa, (A<ism).
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The function u,(p)+iv,(p) maps conformally F,,,—F, with a finite
number of slits onto a slit rectangle 0<u,<p,, 0<v,<27. The

function w(p)+iv(p) defined by wu,(p)+iv.(p)+ 21 w; on each
j=1
F,.,—F,(n=1,2,..) maps one to one and conformally F—F, with
at most an enumerable number of suitable slits onto a strip domain
0<u<R=3 r;, 0<v<2z with at most an enumerable number
j=t

of slits. This strip domain thus obtained is the graph of F as-
sociated with the exhaustion in Noshiro’s sense.
2. Next we suppose that the exhaustion {F,} is canonical,

that is, each contour of oF,= \",'/'y,‘,"’ is a dividing cycle. Let
i=1
Dg’ (i=1, ---,m) be annuli each of which includes a contour and
are disjoint each other. We put D,= \mjD,‘,"’ and assume that
i=1

D, (n=1,2,.--) are disjoint each other. We construct the graph
of D=\J D, associated with the sequence {D,} and denote the har-

monic modulus of D{” and D, by »{” and »,, respectively. Also
we denote by u,(p)+iv(p) the function which maps \/ D, onto

the strip domain 0<u,<R,= Z” vy, 0<0,<27. Forany r (0<r<R,)
n=1

the locus v, of the points of F satisfying u,p)=r consists of a

finite number of closed analytic curves v (i=1,---, m(r)).

Now let us suppose w, is in T',,, and w, is in T',. Then o,
has, in general, a non-vanishing period along a dividing cycle.
We set di°= [ o, and 0= ,do, then for each i d® and 5
are equal to constants d¢ and 6" respectively when » is con-

n—1 n m
tained in the interval 3 »; <7< >}»;, and moreover > d{’=0 and
j=1

m j=1 i=1

210 =2r. Particularly,

=

0> = | oo, = 20 22

»< :
We shall set A(r)= max ST<,,dv,, and define a differential Sw, in D
as follows:

d(i) n-1 n .
Sw, = wz—b:—”dvo (XDv;<r< Zly") in D
¢ = i=
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At first we shall prove the following

Proposition 1. Suppose w, is in Ty, and o, is in T). If the
Ry dr
o A7)
tion {Q,} with canonical homology basis {A;, B;} (i=1,2,--+) and
numbers m¢ such that

integral S is divergent, then there exist a canonical exhaus-

pCn’d

o) = tim (5] o], 0=, 2] 0)Ra},

(%) mCn’> 4y (83 FCE
Ry =" mPds

’
=

Proof. For any r (0<r<R,) we put R,=F,U {p|up)<r} if
r is contained in the interval ’ﬁvj<r§ ivj, then R, and F,
have the same homology basis {A4;, B;} (:=1,2,---, p(r)). Set

a;= SA o, and b,:S w,, and define T,w, as follows:
i Bi

b(rd)

T,0, =2 (biO’R,(Ai) —a; O'R,(Bi)) ’

i=1

where o (A;) and o (B;) are the period reproducers in Tw(R,)
for A; and B;, respectively. Then by means of the Green formula
we have

(1) (wnm;k)R, = (Tra’uw;k)R,'i_(wl_Trwl,w;k)R,
b(r)
:E(S O‘)IS mz_g azs wz)—s u,o,,
i=1 Ag B¢ Aj B¢ R,

where u,(p)zgp (w0,— T,w,) with a fixed point p,F,. By the
F-2)

definition of Sw,

J6

_ -, d
Srgi>“r“’z = Srs">“rs“’2+§<:?>

grgi)u,a'v0 .

We put mi"=S ,u,dv,, where the integral is considered in the

i
graph of D with variable #,+i,. Then (1) becomes to
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()

(wl, w;k) - ,Z; (SAx'wlSBiGz— SAiasziwl)_ ﬁ m;”‘i;’n—saRrurgz )

=W

Since S ySw, = 0 and op (4;) and o (B;) belong to To(R,), we

have

i

Igrgi)urswzl = Srgi)ld“rlgrsi)lswzl = Srgi)lml_Trwllsr(rf)!Swzl
= [rotonl ol Senl -

We set w,=a,du,+b,dv,and Sw,=a,du,+b,dv,, then by the succes-
sive applications of the Schwarz inequality we obtain

L) = 1], wSel <3| ool wlSal

r

= 8 35 (ol bu1 a0 o 0,17
= 8|18 12a0 (10,7
Hence, again applying the Schwarz inequality, we get

Ro 27 27 2
= ([T darm+109dvdri | (" alr+ 15,1 dvidry
= llodlplISodls

Consequently, under the condition ||Sw,||,< > we have

lim L(r) = 0,

=5

and so there exists a sequence {r,} such that

Lo = 1| w, Sal—0 (u—R).
Thus if the finiteness of ||Sw,||, is proved, the proof of proposi-
tion will be completed. Now let us prove that ||Sw,||, is finite.
Since
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. dsp dv |y
||wz“Scoz||D§;) = (lem 1) [|dv o”D(.) = <IG—§.”_'> gang,a>”°dv°

= |dm|2 v |dP |2,
" 19(” 2”
we have
||Sco2||D(,) = (||wz||1_)(.)+”wz Sco2||D(,))
= 2ol +5- 40 14017)
Hence

o m | o _
“S%'lzD:ElE, |Sa)2||D(,)_2||w2|| +;§§V§”|d;f)|2-

On the other hand, we have

14501 =1 o] = (@, o0l SNl peollo (75 o

where o(v$”) is the period reproducer in T',(D$) for v{. Since
(v )P =M(y$P) =27 [vs?, where M(v{’) is the extremal length of
the family of cycles which are homologous to v (Accola [2]),
we get

o m Rl
223w 1d 1" = 27 Z 3 el -

n=1 i i=1

Thus we have

1S w,llp = 4llell”.

Therefore, we obtained the above mentioned result, q.e.d.
Next, let us consider the general case, that is, suppose o,
and w, are both in T',. The following theorem is obtained.

Theorem 1. Suppose w; (i=1,2) are in T, and ;" are the
T ,.-component of w; in the orthogonal decomposition T, =T, +T¥,.
Then if the integral r" dr

0 0’
exhaustion {Q,/} with canonical homology basis {A;, B} (i=
1,2, p(n)) and numbers ms and 15 such that

is divergent, there exist a canonical
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(0,0) = lim {pi)(SAiwlSBi(_DZ_SAiGZSBiwI)

n’ oo i=1

p(n'>
( i ) - Z ( SAiwlll SB:‘(—%N - SAiazll SB:‘ w,’) +R;’} .

=1

7 ) i
, e [ —mPdy

"' = —_— ’
= 9H

m
where ¢ = S pepen and dsp= Sﬂs,;)wz 00, =\ BY).

i=1

Proof. By means of the orthogonal decomposition I',=T,, +
T¥, we put

w; = O),-/+(0,-// ’ wilerhse ’ wi//EFz(m (i = 1) 2)

and also set
m
P = ST(;)CO1 = Sr(i)wl/, (2 =0)
r r i=1
m
a0 = [ oo = |ioar  (Fdw =0,
r r i=1

Then, by the orthogonality of T, and T},, we have

(wn w;k) = (wll’ w;k)+(0’1//, wzl*)"'(wl”a wzu*)

= (C"l,» w;k)_(wzl’ wlll*) .

By an application of the Green formula to the canonical region
R,, we obtain

(2) (@), Cl’;k)R, — (w7, mln*)R,
P(rd Pir)
= Z(S wllS az_g ‘—"28 wxl)_ Z(S wz/S' 6’1”_8 61//8 ﬁ’zl)
i=1 JA; B; A B i=1 JAj{ Bi Ai Bj
-, wro| wwr
IR,
Cr)
= (j wl’S mz_S ZS w1/)_S
=0 Ja; B Ai B; R
b(r)
+ ( S w,” S (62 _(T’z”) - S (62 - 6"2”) S “’1”)
£ . B; ; B
2(r) _ _
= 4 (S wlg wz_S sz "-’1)—2
i=1 Aj Bi Aj Bg i=1

1) — (2 7
_g u;)w2+g 2w,
R, IR,

8l
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b p(r)

where u(p)= S (0 — T,0,) with T,0,/= > ("o R,.(Ai) —aPog,
2 i=1

B, a=[ ol b0=] of (k=12
Ai Bi

We define a differential Qw,” in D and numbers /{ by the same
way as before, that is,

c(i) n-1 n .
Qo = o/ ——dv, (21 v;<r< 21 v;) in DP
j= i=

0(!)
and
5o = Sr<'>“’)d”°

Then

Ul o, = Zm u® Sw,+ d.” u dv,) = Zm] u®d Sw,

R — r(:) 2 9(4) r(l) r 0. = T(s) r 2
, =1 i
+ i m‘“(fﬁ"

(3 ) =gl

m ) m
7 1 (2) 4 72 s — 7(2) 14
SaR,ur o, = ;(Sr(,)ur le g“)STEDur dvo) ’El Srgi)ur le
4 i lf.”C,(-t)

= 0£t>

)

where Sw, is a differential defined as before and mi"—gr(,)u“’dvo.

We put
r0) = 135 [ ouSal, 10) = 1508000

i i=1

Then, by the same way as in the proof of proposition 1 we have

Ry I/
[ HOEE D dr < ol 18wl 10115 1@ 1l -
0

The finiteness of ||Sw,||p is already proved in proposition 1 and
also that of ||Qw,”||p can be proved analogously. Hence there
exists a sequence {r,} such that

(4) lim (L'(ry)+L"(rw)) = 0.

Finally,
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rhl;l {(wllr w;k)R,_(wzlv wlu*)R,} = (@,, w;k) .
>Ry

Thus, by (2), (3) and (4) we obtain the desired result, q.e.d.

The bilinear relation in theorem 1 contains the quantities /g’
and m{” which depend upon o, resp. o, and moduli 8 other
than periods of w; and »;” (i=1,2). Thus the above relation may
not be called the bilinear relation in a proper sense. But, the
above relation may be regarded as a generalization of theorem 1
given in Kobori and Sainouchi [5]. Indeed, let both », and w,
be in T,,, then o, =w,”=0 and ¢’ =d{’ =0, hence our theorem
is reduced to the previous one.

In the theorem 1, suppose o, is in I',, N\T}, and set w,= —o¥,
then ||w,||’=0. Hence we have

Ro dr
0 Ao(r)
tion, then F belongs to the class Ogp, and so, T),,=T,, and T,,=
T

Corollary. If g is divergent for a canonical exhaus-

3. Next we shall give a sufficient condition analogous to that
obtained by Accola [1].
Proposition 2. If minv,"=M>0 (M: constant) for any n,

then there exists a canonical exhaustion {Q,} such that Q, has the
same canonical homology basis {A;, B;} (i=1,2,--,p(n)) asF, and
the general Riemann’s period relation (¥) holds for w,, w,&T,.

Proof. We use the same notations as in the proof of
theorem 1, then by the same way as in theorem 1 we have

n

__E_ff ’ )
(5) (i FOYL D gy < o/, 1S wd o, + 16715, 100, I, -
E‘;; Ao(r)

By the mean value theorem we can find a 7, (ﬁvj<r”< iuj)
=1 i=1

such that the left hand side of (5) is equal to

/7 4 min v;‘“
0, LON L) () L))
Ao(rn)
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On the other hand, the right hand side of (5) is smaller than
2(lo/ | p, el p, + eIl p, llwlp,), and so we get

47
L'(r)+L"(r,) £ ——lo)lp,llwdllp,+ [l p, ll0,”l1p,)
m;nv,,
< 4n (leo | o o,y + oy oy ey 1 )
=ﬁ D1 [ Dy [1D2]| Dy W2 |IDy 11 |IDy) «

Since the right hand side of this inequality tends to zero (n— ),
we obtain a sequence {r,} such that

lim (L(r,)+L"(r,)) = 0.

Thus the proof of proposition 2 is completed.

Corollary. If inf (min»,”)>0 for a canonical exhaustion, then

npoo j=1 i

n)
@, o) =lim3 ([ wf a-{ af o)
Ai Bi Ai Bi

holds for any two o,, w,ET,,,.

We remark that this corollary is included in a sufficient con-
dition obtained by Accola [1].

§2. General Riemann’s relation for the special choice of
homology basis

1. In the proof of theorem 1 that the exhaustion {F,} is
cononical is essential. In the case that the exhaustion is not
necessarily canonical, the restriction of a semiexact differential to
region F, is not in general semiexact on F,. But if we choose
a special canonical homology basis with respect to an exhaustion
{F,} of F such that the cycles on 3F, are weakly homologous to
a linear combination of A-cycles only and if the index # of 9F,
is large, each of index of corresponding A-cycles is large (Ahlfors
[31), then a semiexact differential with only a finite number of
non-vanishing A-periods becomes also semiexact on F, for a
sufficiently large »#. In following propositions we shall use such
a homology basis.
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2. Now let {F,} be an exhaustion of F and for each » v(r,,) be
a set of finite number of level curves:

U(D) = 7 (Z_J ty = < T << e <7 = S 0)

such that at least one critical point of u(p) is contained in (r,.)
(k=+1, v), where u(p) is the function defined in §1. We shall
consider the relatively compact regions F,, bounded by v(r,.)
n=1,2,-,k=1,2,--,v(n)), then we may suppose that those
regions constitute an exhaustion {F,,} (F,,=F,, F,,=F,.,) such
that each component F¢ of F,,—F,,., is a ring domain (cf.
Ahlfors [3]). Now let us introduce the above mentioned homology
basis with respect to the exhaustion {F,,}, then the region
bounded by v(r) (7,,.<r<r7, ..,) has the same homology basis as
that of F,,. Let R, be the region F,U {p|u(p)<r} and we set

Ar) = maxs ,dv = max 0 and d¥ = Srmwz ,
i r

s
where v (i=1,2,--+,m(r)) are components of oR, and w,ET,.

Proposition 3. Suppose o, is in T',,, and has only a finite
number of non-vanishing A-periods, on the other hand w, is in T',.
R
Then if the integral S —f’(r—) is divergent, there exists an exhaustion
o A(r

such that the Riemanwn's period relation (x) holds for w,, w, and in

the right side of (x) only a finite number of terms S m,S @, are
Ai

Bi
nonzero.
Proof. For a sufficiently large » o,eT,,(R,), and so by an
application of the Green formula to such a region R, we have

Cr)
(wuw:‘)R,:Z(g wlS 62_5 azg w1)_S u,®,,
i=1 A Bg Agf Bj OR,

where only a finite number of terms S w‘S @, are nonzero and
Aj Bi

u, is the same as that in proposition 1. We define a differential
S,w, in F—F as follows ;
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(%)
r

Sow, = w,— 05"(10 (7”k<r<7’n k+1) in F§?.
Then
”Soﬁ’z_wzllzp(niz _ (|df.”| /0;1))2||dvll (,) — (ldu)l /e(t))zSaF() udv

Vi), 2l e

) ) ’
0 Monk

= (Fae—tn a)(1d012j00) < Tns—

where pf’ is the harmonic modulus of F{?. On the other hand, 2:)

(u(p)—r, ,,) is the harmonic function in F{? such that it vanishes

on the inner boundary of Fg? and its conjugate harmonic func-
tion has the variation 2z on the outer boundary of F{?, and so

the harmonic modulus Y of F¥ is equal to 2772 "nt=1  Thus

0(1)
we have
[1Sew, —w,l15¢ = IIwle}Efg-
Hence
1Sow, —wollp_p, = llell”.
Consequently,

1Sow.llm_p, < 4llwll®.
F-F,

Therefore, by the same way as in the proof of proposition 1 we
get the desired result, q.e.d.

In the general case where w, and o, are both in T',, assume
that both o, and »,” have only a finite number of non-vanishing
A-periods, then by the same way as in the proof of theorem 1
we can prove the following

Theorem 2. Suppose o; (:1=1,2) are in T, and »; are the
T)..-components of w; in the orthogonal decomposition T',=T,, +
T¥,. Then if o/ (i=1,2) have a finite number of non-vanishing
R

A-periods and S _f(_r) is divergent, then there exists an exhaustion
o A(»

such that the Riemann’s period relation (¥) holds for o, and o,.

Remark; (i) In this case the period relation also may be
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written as

(0’1) mz) = E(S @, S Ez_s 262,5 w1)+
i A Bj
. (D]
hm {Z (S 0’1”8 62’_5 6)‘2”5 a),')-l—R,,,}
n/poo =1 Bji Ag Bi
where the first sum at the right hand is a finite sum.

(ii) Since Sﬂﬁi’wl,=s ﬂwmzf:o for a sufficiently large n’, ¢’ =

S ﬂ({)a)l” and d,‘,,“=g /9(,.)@2”. So if w, and w, are in T',,, and have

only a finite number of non-vanishing A-periods, then ¢ =d{’=0
for large »’ and so we get the theorem II in [5].

§3. An another form for general Riemann’s period relation

1. In the following two sections we always suppose that the
exhaustion {F,} is canonical. For w,€T,, and o,eT,, we put
w,=w,/+o,” (0/ETWNTE,, 0ET,,, and w,=o, +w,” (0, E ).,
w,’€T¥,). Let us denote by o(A;) and &(B;) the period reproducer
in T, for A; and B;, respectively, and we set

= S tio(a) a0,

where ai=SA_w2’ and b,.=S w,. Now let O,», be the T',,NT}-

Bi
component of (7,w,’)* in the orthogonal decomposition IT'f,=T",, N
Th+ T

Proposition 4. Let w,=w,+w,” be in T, (0, ET ), 0, ETF,)

and ||0,w,’|| be -bounded as n— >, then for any o,€T,,

(0, 0f) = hmZ‘ (S A SB,’C—DZ,_SA,'GZ/S w,)—lim 2 x‘”grgnwz ,

npoo j=1 nyoo j=1
where x5 are complex numbers such that if the harmonic measure
m(n)
of v’ in F, is denoted by wr,(v:"), 0f = 2] 2 wp (V) > w,”
n i=1
Proof. By the orthogonality of decomposition we have

(0’1 P a’;k) = (0’1 ’ wzl*)—‘(wz/,’ wlll*) .
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According to the Accola’s theorem, the bilinear relation
. . p(n)
(wu wzl*) = lim (wl’ (Tn(wz/)*) = llmE (S wxs 62/—5 EZ/S wl)
nyoo npoo (=1 Ag Bs Ag Bs

holds if and only if ||0,w,’|| is bounded. On the other hand, by
the definition of T',, there exists w}éneI‘,,m(F',,) such that

o)~ ley =0 (2 —>50).

The harmonic measure w}” is expressed as a linear combination
of wp, (v

2 x(wa”(,),(t)) ,

where x$ are complex numbers (Ahlfors and Sario [4]). Thus
we obtain

m(n)
(0", 0%) = lim (0", 0F)r, = lim 33 2:5(w,", 0r,(Va")) r
o o j=

. m(n) @ m(n) *
= lim > % Srﬁ”“’z = lim >} %3 Sff."wz .

npoo =1 nypoo =1
Therefore we obtain the above mentioned proposition, gq.e.d.

Remark. Suppose that the surface belongs to the class Ogkp.
Let @; be in Fh and CO,'——'(D,'/-F(D,-”, Where Cthl’ ﬁ)z/*EFho=Phse and
Cl)l//*’ a)zl/EFhmZPhe. Then

(wl ’ w;k) = (wll’ w;k) +(w1//) wzll*) .

Hence if |0, »,’|| is bounded, we have

(@1, 0F) = lim 31 (S o/, 5/~ @/ o)-lim paEI

nyoo (=1 npoo j=1

)
7 (o) =tim 3B (| /| o[ af on-
Bi Ag

nyoo j=1

: ) = o)
lim 2 (x5 Srﬁ"a’z —Yn Srgi)ah) »

npoo j=|

where x and »{ are complex numbers defined for the T,,,-
components of w,” and w, by the same way as in the proposition 4.
Ry dr

0 0

is divergent as in §1. Then there

Suppose that S
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exists an exhaustion {Q,/} such that for ,, w,€T),, the bilinear
relation

(), @) = nh»m-o g)(SA;w'SB;GZ—yA;EZSB:wl)

holds. Thus we can prove the following proposition.

. ,
Proposition 5. If S oAdZ) is divergent, then there exist an
0 o7

exhaustion {Q,} and numbers x5 such that for o,&T., 0,ETY
the relation

(n’)
(0’1’ wz) = hmz (S w, SB'GZ,_sA'E)Z/SB wx)— hmz x5 Sr(l) 2

n >oo =1 nyoo =1

holds, where o, is the T,,,-component of w, and x5\ are complex
numbers defined for the T,,,-component of w, as before.

2. We choose annuli R (i=1,2,--+,m(n)) in canonical region
F, so that y$'CR$, RPNRY=¢ (i%j). Let n(RY) be the
harmonic modulus of R;” and define pp, to be the supremum of
min p(R.”) for all possible choices of R If up,=2M>0 (M:

constant) for n— >, then for oc&Tl,, ||0,(s)l| is bounded (cf.
Accola [1]). Accordingly the proposition 4 is valid on the sur-

face with the property upr,=M>0. We consider a surface with
the condition

R, dr
= > > .
# S NG and pp,=2M>0  for any n

It is easy to see that surface with the property mf (m1n vi?) >0

satisfies the condition (#). There exists a surface W1th the con-
dition (#) which does not belong to O,. For example, we can
find such a surface in the class of Schottkyan covering surfaces
of a closed Riemann surface (cf. Tsuji [15]). On such a surface
let us compare the result obtained in §1 with that in §3. For

simplicity let », and , in T,,, and T',, respectively. Then we
get the following theorem.

Theorem 3. On a surface with the condition (8) there exists
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an exhaustion {Q,/} such that the relation

. (') ’ mn’) m ’
im (2| o] a7-] o] o)
npee =1 JA¢ Bj Af Bi

e _x(t) Sﬂ(')w //} =0

holds for w,ET,, and w,T,, where v,=w, +w,” (0, EThs., 0, E
T%,) and x and mS’ are numbers defined in the propositions 4
and 1, respectively.

Proof. According to the first condition of (§), from the
proposition 1 it follows the existence of exhaustion {Q,} such
that

5

* . p(n") _ m(n’) m;ﬁ) .
(wl’w2)=l}m{2(s 0’15 wz_S S : Sﬂ(i)wz }°

nyeo =1 J A Bi Aj B, =1 gLy JPw
Similarly, by the proposition 4 we have

(wl ’ “’;k) hm Z ( w, 62/_ 62/ c"1)_ hm Z x50 (.)m
A Bi A Bs ﬂ

n/poo j=1 n’/poo j=1

Thus we get the desired result, q.e.d.
Particularly, putting »,=¢(A;) we have

Collorary. On a surface with the condition (#) there exists
an exhaustion {Q,/} such that for »,’€TF,

7”13 ) mﬂ’)(a'(A )) ’”
SAjwz = nl,l_fl: ’Z‘.l, (xn')(U(A ) — T] Sﬂg‘;) IOPRE

where x\(c(A,)) and m(a(A))) are numbers defined for o(A;)
as before.

Kyoto Technical University
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