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Introduction

In 1947 Ahlfors [3] proved for a parabolic Riemann surface
F  the existence of an exhaustion and canonical homology basis of
F  such that for rn m— 11  — 2 —  —  h

P(n)
( W „  6 4 )  =  l i m ( Ç  &  t 2 _ Ç 2 5  6 1 )

n÷<= 1=1 A i B i A i B i

where 6, and 6 2  are the piecewise harmonic differentials adequately
modified from co, and w2 which depend on the exhaustion. From
the above relation it follows that the bilinear relation for square
integrable harmonic differentials having only a finite number of
non-vanishing periods holds. In 1956 for a parabolic surface with
some conditions Kusunoki [6] proved the validity of the bilinear
relation for differentials in the class r h  such that the number
of their non-vanishing periods is not necessarily finite. Later on,
some conditions which insure the validity o f this relation are
found by several authors (Pfluger [13], Accola [1], Kobori and
Sainouchi [5], Marden [7], Matsui [8 ]  [9 ] ,  M. Mori [1 0 ] ) .  On
the other hand, for the case of hyperelliptic surface of infinite
genus this relation was investigated by P. J. Myrberg [11] and
Pfluger [12]. In this paper we shall give some metric conditions
for the validity of the bilinear relation on open Riemann surfaces,
which include a part of our earlier results [5].
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In §1 we establish a  general Riemann's relation for square
integrable harmonic differentials which are not necessarily semi-
exact on the surface. In § 2 for a  special choice o f canonical
homology basis the general Riemann's relation is discussed by
means of the same way as in § 1, but there we do not assume
that the exhausting regions are canonical. In § 3 we consider an
another w ay to  estab lish  the general Riemann's relation and
compare the resu lt obtained there w ith  that in  § 1. In the
following we shall use the same notations and terminologies for
the classes of differentials as in Ahlfors and Sario [4].

§ 1 .  General Riemann's relation

1. F  being an arbitrary open Riemann surface, we consider
an exhaustion {F }  (n = 1, 2, • • •) of F by regular regions and cor-
responding canonical homology basis {A „ B i } ( i  =1, 2, •••) such
that A „B ,,•••,A p (.), B poo form  a  canonical homology basis of
F t,  (mod F )  and A i x B i =8, ; , A i x f l i —B i x B i = 0 .  Let F,' )  ( i=
1, 2 ,•• m(n)) be components of F t,,,— P„ and un(P) be the harmonic
function in Fk + ,—P r,  such that

o n  aF„
un(P)= t O

and its conjugate harmonic function v (p) has the variation 27t on

a F „  that is, dv„ =27r. The quantity it„ i s  the harmonic
O F .+1

modulus of the open set F k + i —P n .  Similarly, the harmonic modulus
,ur  of F,i) may be defined. If we choose adequately an additive
constant of v n (P ), th e  function un(P)+ ivn(P) m aps conformally
Fv with a finite number of slits onto a slit rectangle 0<u k <li k ,
bi <y k <a 1 +b,., where a i and bi  are constants satisfying the follow-
ing conditions

= 27r p,„1,u,W) , = 27t

and
-

b, ---- 0 , b;  =  E a k ( 1 < i m )
k 1
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The function uh (p)+iv„(p) maps conformally F„,— P,, with a finite
number of slits onto a slit rectangle 0 < u < ,  0 < v h <27r. The

function u(p)+iv (p) defined by un (p)+iv„(P)+ , u , ;  o n  each

(n=1, 2 ,•••) maps one to one and conformally F— P, with
at most an enumerable number of suitable slits onto a strip domain

0 <u <R = 2  IL 0<v<2  w ith  at m ost an enumerable number-
of slits. This strip domain thus obtained is the graph of F  as-
sociated with the exhaustion in Noshiro's sense.

2. Next we suppose that the exhaustion {F, } is canonical,

that is, each contour of 3F =  V ryW) is a  dividing cycle. Let

DV  (i=1, •••,m) be annuli each o f which includes a contour and

are disjoint each other. We put D,s =  DV  and assume that

D„ (n=1, 2 ,•••) are disjoint each other. We construct the graph
of D = V  D„ associated with the sequence {D, } and denote the har-

monic modulus of DV  and D„ by 74) and v„, respectively. Also
we denote by uo(p)+ iv o(p )  the function which maps V  D„ onto

the strip domain 0< uo <R o =  v  o<vo <27r. For any r (0<r <R 0)>,==i
the locus 7,, of the points of F  satisfying u 0(p )=r consists of a
finite number of closed analytic curves •-y.i) ( i =1 ,•••, m(r)).

Now let us suppose co, is in r—  hse and co, is in r h . Then co,
has, in general, a  non-vanishing period along a  dividing cycle.

We set dV )= 7.,,co, and 61;2 — ,,dv o , then for each i  d r  and 19."

are equal to constants d r  and 0;,°) respectively when r  is con-
- ,

tained in the interval E vi <r< Ê u1 , and moreover 2  4`)= 0 and
J =1 5=1 , =1

=  27r. Particularly,

19;» = = 27r  v n
74) •

We shall set A o(r )=  m ax 7.,,dv a and define a differential Sco, in D
as follows :

So), = co, r  dv o (  E v i <r< vi ) in DV .
Iv ) j=1
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A t first we shall prove the following

Proposition 1. Suppose co, is in  rh s e  an d  coo i s  in F,,. If  the
Ro  dr .integral   is  divergent, then there ex ist a canonical ex hau s-

Ao(r )
lion {11„ , }  with canonical homology basis {A„ B,} (i=1, 2 ,•••) and
numbers mW,) such that

PC,,') C
( c 0  ( 4 )  =  Ern { E co, (7)2— (7)2 co,) —R,/}

i =1 A i B A B i
tn(W) 7 n T  d ( t )

R i z (  = Kc,)

where c42= )9(ni) c02 an d  O2 — ,9 2 ) clv o (al -Li, — V AT).

P r o o f .  For any r  (0 < r< R 0)  w e put 1 4 = F . u {p I tio(P) r }  if

r  is contained in  th e  interval E  E - , then R r a n d  F„

h av e  th e  sam e hom ology basis {A i , B i }  (ti =1, 2 ,•••,P(r)). Set

co, and col, and define T r co, as follows :
A i Bi

P r )T r i , =o (bia-R,(A1)—aio-Rr(Bz)),

where 0-R r (A , )  and o-R r (B , )  are the period reproducers in  rho(ky)
for A i and B „  respectively. Then by means of the Green formula
we have

( 1 ) (co', (4 )R ,. =  (T ro ),, con Er ±((pt —  Trwi, (0:)R r

P(r) r r
E ( c i , u)2— urc,—)2,
i =1 A i Bi A i Bi

where U r ( P ) = \ ( c o i —  T r co,) with a  fixed point
P0

definition of Sco2

(7 )2  =  rc ro ur S (02 + ,u  d v
v , r  0  •

(* )

P o E F i. B y  the

We put m = 7,,,,u r d v o ,  where the integral is considered in the

graph of D with variable uo + iv o . Then (1 ) becomes to
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(0)1,0)n coi 0 2— ( 7)2 coi) - 14
0 ;c1?  — 5a R r urSco2.

A i B i A i B i
,

Since r co Sco2 = 0 and aR r (A i )  and o-R r (B i )  belong to r ho (P r ), we

have

7-v)terSc021 5 7-y) IdurI1*.)1S(021 = Tr co, I r pl Sco2 I

= r . i )  I C.3 1 SC°2 •

We set (01 = ai due +b i dvo and Sco2 = a2duo+b,dvo, then by the succes-
sive applications of the Schwarz inequality we obtain

L (r) =
r •
urSw21 E 2-)1(oil

r r
l col S ( 0 21

aR r 

r
A0(r) E(3 r (1)1b,12 dvo)( r '  b212 dvo)i

2,e 2,c

Ao(r)( 0 I bi 2 dvo)i( 0 1b2 1 2 dvo ) .

Hence, again applying the Schwarz inequality, we get

(.27,(R.  L( r)r R rd r  <  o Jo { ( IC 2 dvo)i ( ) . 1b212 dv0)1} dr
Jo A 0(r)

( (  al 12 +  bi 1 2)dvodr) R
o ° ( 1 a2 I' +  b 2 I 2 ) dvo dr)i

= IlcollIDIISc0211D •

Consequently, under the condition I IS(0,11D < Do we have

O,
÷R o

and so there exists a sequence {r,/} such that

L(r„,) = lu , . , Sco2l — O R o )
8R r

Thus if the finiteness o f I IS(0211,„ is proved, the proof of proposi-
tion will be completed. Now let us prove that I iSc0211, is finite.

Since
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1102 S (02112Di) (1c01::1)2 lid  11 2 _  (1dT1)2u  d v11-v olipso )  j aDV) ° °
I d T   _  1

 7 4," 14"  12Un
(9,,i ) 2 7 r

we have

11S(02112D v ) -5 (116)211D;p+ 11, 02— S6)211Dv))2

2(11
, 0

211
2

D;,
) ± : 7r vW)1 dT 12)

Hence

-  -11S032112D  = 11S0,211 1 211(02112D+ —E E PW) 4 ° 12 •

On the other hand, we have

dT I = = (6)2, c)- (7 ) )*)j)(,1) I -5 110)21livl Icr(ra ) )IID;,i)

where o - (7 T ) is  the period reproducer in r h o(fv)) for TV . Since
(7 ) )112 = X(7V) =27t/v» , where XW,' ) )  is  the extremal length of

the fam ily of cycles which are homologous to eW )  (Accola [2]),
we get

E'" 14 ) 14 ° 122 7 - , E 110211 2D ,, •

Thus we have

11Sco2112D  5 411(02112 .

Therefore, we obtained the above mentioned result, q. e. d.
Next, let us consider the general case, th at is, suppose (0,

and (02 are both in F h .  T h e  following theorem is obtained.

T h eorem  1 .  Suppose 0 ), (i=1 ,2 ) are  in  I - ,  an d  co," are the
I t n -component o f  coi  in the orthogonal decomposition r h=r- hse - h m  •

R drThen if  th e  integral i °  is divergent, there ex ist a  canonical
Jo  A 0(r )

ex haustion { n „ , }  w ith  canonical hom ology  basis {A 1 , B  (i =
1,2 ,•••,p(n')) and numbers n4,̀ ,) an d  gi,) such that
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((oi,(4) = Jim {PE(S' (1 ) 1 (752— °2 01)
( =1 A i B i A i B i

PCW) r
E ( )  ( 0 i "  

B i
 (7)2

1=1
"  —  

A i

&-52 t 0  1" )  ± .
A i 

-42
n j = 1 0 (1, )

w here c = 19 (.0, and cl;,,!)= f i w co, (an = g»).
P roo f. By means of the orthogonal decomposition r h = r h „-:

mn we put

w j  =  ( 0 , '+ ( o i "  ,  w i 'E r h s e  ,  . 1 " E r t , ( 1  =  1 , 2 )

and also set

= r ci)(0 1 = 7-5. i)co i "

=  T c i ) ( 0 2  = r  CD2 "

( c;." = 0)
1=1

( Em  c4`) = 0 ).

Then, by the orthogonality of r h s e  and rem , we have

(coi, con = (col f• 4 `)+ (ro i", (02 ' * ) +1/41", (02")

= 4)— (6)2 ', col" * ) •

By an application of the Green formula to the canonical region
R,,, we obtain

( 2  ) conRr (01"*)R r
PC.)

= E (5i  5 2— 5(7)2 (6 )—  PE) ( (T.)," .2 ')
i=1A i B i A i B i i=1 A i B i A i B i

— t 4 1")  0 2+ 14.2) iii i
"

aR r 8/2r

PC") r

=  E d . 1 '  0 2 — (7)21 w ' ) - 5  /4
1

552+ u.2 ) .1 "
1=1 A i B i A i B i BR ,. aR r

K r )  r
+  E  ( 1  . 1 "  

B  i  
( (Ti 2 — ( 7 ) 2" )  —  

A  i
( (7 )2 — 6 ) 2' 1 ) 1  ( 0 1" )

1=1 A i .B i

=
 PC
E ( 5) .( ( 0  1 (T) z —  

A i  

(7)2
B i

( 0 1) — ( COI" 5 B i — (7)211 C ° 1 " )
i = 1A i B i 1=1 A i A i B i

— 141) (7 )2 + 17 42 ) w
aR r OR r
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where t4k ) (P) — ( ( D i ;  - T r  Wil) with T  )11 = (Mk )  R ,.(A i) — ( z(ik ) aRr

(B1)), a = c o
A i  k

' ,
B i  

ki (k = 1, 2).

We define a differential Q (Di "  in D and numbers V  by the same
way as before, that is,

Qco," = (0," —C V)   dvov i < r < vi ) in D;»
) ,=,(V 

and

4') 

Then

r 
141 ) 0 32 = E  rv) /41 ) S +  rv) W-1) dvo) = Ty) i41 ) S ( 0 2

INV) 4 i)

( 3 ) i i6 J ! )

wy) = E  r y )  iv ) (2. z )  ch)o ) =
aRr

+  E  
" 0 )

where Sco, is a differential defined as before and m;! ) =  r ( o u;.1 ) dvo .

We put

L' (r) = *.,t41) S (0,1 , L " ( r) rv)142) Q co," I •

Then, by the same way as in the proof of proposition 1 we have

(Ro  L'(r) + L"(r)
 a

,r  <
11(0,11DILS(0,11D+11(0211D19(01"11D •J0A 0 ( r )

The finiteness of 11,5(021 1 D  is already proved in proposition 1 and
also that o f  II Q , o i" I I D  can be proved analogously. Hence there
exists a sequence {r,/} such that

( 4 ) lim (E (r ,)+  L " ( r) )  = 0 .
e + c o

Finally,
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lim 04%r —(0)2'• (01"
*

)R ,.}
( c o i ,

 (0?) •
r÷R0

Thus, by (2), (3) and (4) we obtain the desired result, q. e. d.
The bilinear relation in theorem 1 contains the quantities /V

and mV which depend upon co,' resp. C62
1 and moduli OW other

than periods of coi  and co," (i =1, 2 ). Thus the above relation may
not be called the bilinear relation in a proper sense. But, the
above relation may be regarded as a generalization of theorem 1
given in Kobori and Sainouchi [5]. Indeed, let both co, and (02

be in r  hse then co," = co," 0 and cV = ( 4 2  0, hence our theorem
is reduced to the previous one.

In the theorem 1, suppose co, is in r„ n  r:„ and set (02 CO*,

then O. H ence w e have

Corollary. If 1R0  d r
 i .s divergent f o r  a  canonical exhaus-

o A o(r)
tion, then F belongs to the class OKD , and so, r— hse

r he •

3. Next we shall give a sufficient condition analogous to that
obtained by Accola [1].

Proposition 2. I f  min M >0  (M : co n stan t)  f o r any n,

then there ex ists a  canonical exhaustion { n„}  such that On  h as  the
same canonical homology basis {A „ B i }  (i =1, 2 ,• • •, p (n ) )  as F„ and
the general R iem ann's period relation ($) holds for co„ . 2 er h .

P roo f. W e  u se th e sam e notations as in the proof of
theorem 1, then by the same way as in theorem 1 we have

( 5  )
( i = i 'L l ( r ) + L " ( r )

a

, r  <  

11601D„IIS (0211D„+11(0211D„11(2 (0,11A0(r)

B y  the mean value theorem we can find a r„ v i<r„< z)i)

such that the left hand side of (5 ) is equal to

min 741'L'(r „)+ L"(r ,,) _  (Li(r,,)+ L"(r „))
Ao(r,„)

r h o an d  "hm=
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On the other hand, the right hand side of  (5 ) is smaller than
2 (11601D.1((0211D.+11(0211D,,11(0[11D.), and so we get

47r L '(r„)+L "(r.)
m i n  v ; '  

(11conDn 110)211D,, + 11(02' ID„110),.11,„)

4n 
(11(0:1ID 11(0211D +H(02/1M n

L.„11w1"IlD„) •

Since the right hand side of this inequality tends to zero (n— ..),
we obtain a sequence {r . }  such that

lim (1/(r)+L "(r„))—  O.

Thus the proof of proposition 2 is completed.

Corollary. I f  inf (min 74,")>0 f o r a canonical exhaustion, then

P )(coi,=  
l i M

( (O1 (7)2 (7)2 6)1)
i=1 A i B i A i B i

holds f o r any  tw o m  m—2 —  - hse •

We remark that this corollary is included in a sufficient con-
dition obtained by Accola [1].

§  2 .  General Riemann's relation for the special choice of
homology basis

1. In the proof o f theorem 1 that the exhaustion {F„ }  is
cononical is  essential. In the case that the exhaustion is not
necessarily canonical, the restriction of a semiexact differential to
region F„ is not in general semiexact on F .  B u t  i f  we choose
a special canonical homology basis with respect to an exhaustion
{F „} of F  such that the cycles on aF„ are weakly homologous to
a linear combination of A-cycles only and if the index n  of aF„
is large, each of index of corresponding A-cycles is large (Ahlfors
[3 ]), then a  semiexact differential with only a finite number of
non-vanishing A-periods becomes also semiexact on F „ for a
sufficiently large n .  In following propositions we shall use such
a homology basis.
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2 .  Now let { F }  be an exhaustion of F  and for each n  y ( r )  be
a set of finite number of level curves :

u(P) rnk
n - i  

j r „ , < r „ , < • • • < r „ k <•••<r„„= i b ; )

such that at least one critical point of u(p) is contained in 7(rnk)
(k *1, 11), where u(p) i s  the function defined in  § 1 .  We shall
consider the relatively compact regions F„,, bounded by ' y ( r )
(n=1, 2 ,•••, k=1, 2 ,•••, v(n)), th en  w e  m ay  suppose that those
regions constitute an exhaustion {F„ k }  (F ,= F „ , F „ ,=  F 1)  such
that each component o f F k k — F i

k k_ i  i s  a ring domain (cf.
A h l fo r s  [3 ] ) .  Now let us introduce the above mentioned homology
basis w ith  respect to  the exhaustion { F " } ,  th en  the region
bounded by 'y (r) (r„ k r< r„  k , )  has the same homology basis as
that of F„ h . Let R r  b e  the region P l u {Piu(P)<r} and we set

A (r) max
'

dv = max 0;." and cr" — . cor y ) r 7.,f) 2  )

where 7;.') (i =1, 2 ,•••, m (r)) are components of aRr  and

Proposition 3. Suppose co, is in  r—  h s e  and has only  a finite
number of non-vanishing A -periods, on the other hand (0 2 i s  in r h .SR d r Then if the integral is divergent, there exists an exhaustion

o A ( r )

such that the Riemann's period relation (*) holds for co„ (02 and in

the right side o f (* ) only a finite number o f terms co, 6 5 2  are
A% B i

nonzero.

Proof. For a sufficiently large r (01E1-  h s e ( R r ) ,  and so  b y  an
application of the Green formula to such a region R r  w e  have

PC,)
(c o i, coP)R r  = E ( col (7, 2 — (7 )2 1  (0 )— U r  

»
2

i =1 A i B i A i B i a R r

where only a finite number of terms 
A i

( 0 1  ( 7 ) ,  are nonzero and
B i

U r  i s  the same as that in proposition 1. We define a differential
So), in F— P, as follows ;
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d  S,a>2 =  a 2—> dv (r f l k - < r < r  k ± i )  i n ni.
Or

Then

— ( 'd "  / O ) 2 HdvH ( I )  =  ( ld / O ) 2 f udv—  I  r
ni. ni.J I 3 F ( i ) ni.

= (r f l h —r f l  - ) (  I d 2/O)) <  (r —r 27rIIa>2I
rn k

where p  is the harmonic modulus of On the other hand, 27t
' J " )
'-'r

(u(p) —r , )  i s  the harmonic function in F,2 such that it vanishes

on the inner boundary of F ,2  and its conjugate harmonic func-
tion has the variation 2n on the outer boundary of a n d  s o

the harmonic modulus of is equal to 27t r f l /  -  rk i  T h u sa")'-' r

we have

IISoa>2 a>2IIF Ikoli .
ni.

Hence
2

IISOW2 — W 2 F F 1 ;  H I 2

Consequently,
HS00O2HF_F14 I k 2 H 2 .

Therefore, by the same way as in the proof of proposition 1 we
get the desired result, q. e. d.

In the general case where a>, and  a>2 are both in F, assum e
that both a> '  and  a>2' have only a finite number of non-vanishing
A-periods, then by the same way as in the proof of theorem 1
we can prove the following

Theorem 2. S uppose a>. (i=1, 2) are in I',, and a>/ are  th e
r i . s e -components o f  a>. in the orthogonal decomposition  T h = F h S 4

Then if a>,. '  (i=1, 2) hav e a f i n i t e  num ber o f  non-vanishing
Ç I ?  d r  A -periods and  is divergent, then there ex ists an exhaustion

o A (r)
such that the R iem ann's  period relation  ( )  ho lds f o r a>  and a>2

R em ark ; (j) In this case the period relation also may be
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written as

(.,, = (752 j  6521  COO +
—1 A i B i A i B i

1,0:0
lim { E co," 632 ( 7 ) , " w 11)+R„' ,

A i B i A i B i

where the first sum at the right hand is a finite sum.

(ii) Since
9 ( , ) ( 0 1 ' . 4 3 ( 1 ) ( 0 2 '  =0  fo r  a  sufficiently large n',

"  and d,;') 4 9 ,n y co," . So if (0 , and (02 are in hser  and have— 

only a finite number of non-vanishing A-periods, then c;,i,) =d„",) =0
for large n ' and so we get the theorem II in [5].

§ 3. An another form for general Riemann's period relation

1. In the following two sections we always suppose that the
exhaustion {F, } is canonical. For w i Er, and (0 2 E r h ,  w e  put

coi = 0 ) 1'  ( O  E  rho n rte , oh"E r  and (02 =h.) w z '+  c o 2 "  (6 )2 ' e r h s 8 ,

co," E  rzo . Let us denote by o- (A i ) and o-(B i ) the period reproducer
in  r„ for A  and B ., respectively, and we set

T„co,' = E  (b1 cr(111)—a1 0-(Bi )),

where a i --J  co,' and bi d  co,'. Now let 00) 2 '  be the r ho n rh'co -
A i B i

component of (T,,,,,')* in the orthogonal decomposition r t o —r„, n
l h O +  h e

Proposition 4 .  L et 0)2 =6) 2' +co," be in  r h  (6 ) 2
1 E  r hse C O 2 "  E  r t . )

and 110 . 6 ) 2 1 1  be bounded as  n—*D-0, then f o r any  wiErho
P C , )  r r r r

(w1) ( 4 ) lim E ( 6521 6321
1

Bin E x h(f>j-1 A i B i A i B i i =1 -  9

where x ,')  are  com plex  num bers such that if  the harmonic measure
moo

o f  7;,,f ) in  F„ is denoted by  coF„(7,(-»), (-0"F" = E xw)coF„(7V))
n ;=.-1

Proo f. By the orthogonality of decomposition we have

( 6) 1 = ( C ° 1  w 2 / * ) ( C ° 2 "  C °1 " * ) •
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According to the Accola's theorem, the bilinear relation

P ) 1'(col, (021 * ) lim (col, ( T.(6)2/ )*) = n W I )  (7)21( 7 ) 2 1 W I)
t = I A i Bi A i Bi

holds if and only if 110.(02111 is bounded. On the other hand, by
the definition o f r h „„ there exists (0;• . E r h„,(Pn ) such that

11(0,"— a; n 1IF„ —> 0 (n

The harmonic measure C O ;.. is expressed as a linear combination
of coF„(7W

)
)

rn(n) (, )
( O F'  =  E

i
c o F „ ( 7 1 (1

t )
)n i=

where .4') are complex numbers (Ahlfors and Sario [4]). Thus
we obtain

((02", (01"* ) =  rim (0)2", (o'F'
*
n )F„ li,rn:N(n ) 4"(c02", (0F,X7W

)
)*)F„

n +c e

=
m ( n )

lim E " — .
7-i) 2 7-5,,) 2 •

Therefore we obtain the above mentioned proposition, q. e. d.

R em ark . Suppose that the surface belongs to the class O K D •

Let w i  b e  in P h  and (0, co/ + (D i " ,  where (0,', co2 '*E r— h0 f h s e  and
W1 , (02"E rhm = he • Then

((oi , =  ( W 11)  4 )  ±  (W I " ,  W2" * )  •

Hence if 110.(02111 is bounded, we have

POO n t(n )

(co i , 0 44
)  = l i m E (S (7)2' — 02 — E (x r c

i = 1A i Bi Ai Bi n+0= i=1

P ( n )

=  hm E ( (7 )2 f  C 7 5 2  S
1= 1A i Bi A i Bi

m (n ) r
,1,1,112 ( x 7 »  r(ni)(1)2 

Y n

 3  r i)" .)

)6)2

where .4`) and y ` »  are complex numbers defined for the r h ,h -
components of C O :  and (02 by the same way as in the proposition 4.

Suppose th a t  f R0  d r   is  d ivergen t as in § 1. Then there
o A0(r)
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exists an exhaustion {f2„,} such that for w, (0 2 ,i s e  th e  bilinear
relation

( W I  ( 4) = 11111 (P ' )  f f (7)2

J

c o l )
i = 1  J A i J Bi A i B i

holds. Thus we can prove the following proposition.

Proposition 5. I f  
R 0   d r  

 is  divergent, then there exist an
.10 A c (r)

exhaustion {1— /}  and numbers 42 such that f o r  , L ) _ _ h s e  02Grsh
the relation

pcno r n 2 (1 1 ') r
( 6 ) 1, c o ? )  =  li m w 1 (7)2/ NO— ii m  E  .T V  rw  652

Ai B iA B i i=1

holds, where (02 '  is  the r h 3 8 -component o f  ( 0 2 and  x  are  complex
numbers defined f o r th e  r,,,„-component of co, as  before.

2 .  We choose annuli 12," (i=1, 2 ,.•., m(n)) in canonical region
F „  so  th a t , W )c k , .K »n x ,i )= 0  ( i * j ) .  L e t  p,(R,V)) b e  the
harmonic modulus o f X »  and define p.F n  to be the supremum of
min p,(Rn for all possible choices of \ J  » .  If (M:

constant) for n—»0, then for o- - -  h„ 11°12(C)11 is bounded (cf.
A cco la  [1 ]). Accordingly the proposition 4 is valid on the sur-
face with the property W e  c o n s i d e r  a surface with
the condition

(R0  d r  
Jo  Ao(r)

It is  easy  to see that surface with the property inf (min 14st ) ) > 0
n

satisfies the condition (0). There exists a surface with the con-
dition (0) which does not belong to O H D . For example, we can
find such a surface in the class of Schottkyan covering surfaces
of a closed Riemann surface (cf. Tsu ji [15 ]). On such a surface
let us compare the result obtained in § 1 with that in 3 .  F o r
simplicity let co, and (0

2
 in  r— hse and r  h ,  respectively. Then we

get the following theorem.

(#) DO and ji, F n ./1/> 0 for any n.

Theorem  3 .  O n a surface with the condition ( t )  there exists
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an  exhaustion {SI,„, }  such that the relation

P(n0 r r r r' ) m(f;)
fim { E  ( CO (7) "

A ;
(7 )2 "  

B i
C0 1) E  (  A902). 0

Ai Bii=i 2

holds f or 6) hse and co,E f h ,  where (02=6)2' +6)2" ( 6 ) 2/ E r h s e  ,  co2"  E

F L )  an d  x V  an d  n a  are  numbers defined in the propositions 4
and 1, respectively.

Proo f. According to th e  first condition of ($$), from the
proposition 1  it follows the existence of exhaustion {i2„, }  such
that

P(W) r r r r n t ( n 0 ( 0
t.

( c o l  c ° : )  = { ( i n (
Mn/

- 7 2— B i W  1 )    g c  T.),i) f
t
 •

Similarly, by the proposition 4  we have

P(n0  r r r rn s ( n ' )
(coi , ( i l :  =  lim E ( (01— (7),/ co  —  urnE .

„ i  Ai B i Ai B i

Thus we get the desired result, q. e. d.
Particularly, putting co ,=(2 4 5 )  we have

Collorary. O n a surface with the condition (#t) there exists
an  exhaustion {S1n , }  such that f o r (02"  E r t ,

(02
"  = ( 41 (0 - (A  i ) )  

A • g ( ) C û 2

where x V (c r (k )) an d  m;!,)(0-(AJ )) a re  numbers defined f o r cr(k )
as before.

Kyoto Technical University
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