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Summary

The purpose of the present paper is to prove a  dual relation

between locally compact groups G  and the set D (resp. 6) of equiva-

lence classes of (resp. all irreducible) unitary representations o f  G.
This duality may be considered as an extension of Pontrjagin duality

for abelian groups and Tannaka duality for compact groups.

In  such a  duality theorem, G  is characterized as the "dual

group" of Q (resp. 65, that is, as the set of all "birepresentations"

which are operator fields over Q  (resp. /d) com m uting w ith  the

operation of Kronecker product. "Birepresentation" is a generalization

of a  character over the dual group in abelian case. And the initial

topology o f  G  coincides with the "weak topology" on the set of

operator fields over Q.

The duality between G  and D is called the weak duality, and

the one between G and GN  is called the strong duality. The first one
is proved for general locally compact groups, but the strong duality
is proved under the type I  restriction for G.

The results are strengthened for special groups.

§ 0 .  Introduction.

1. In the theory o f  representations o f  locally compact groups,
the dual object, that is, the set of all equivalence classes of unitary
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irreducible representations o f the given group, plays an important
role. A nd  many investigations have been done about topological
structure or Borel structure of this object.

From the name "dual object", naturally, there arises a question
whether the initial group is characterized by its dual object in some
canonical way, or in other words, whether two different groups have
dual objects o f different structure. But the fact that any separable
compact group with infinite elements has discrete dual with countably
infinite elements shows that i f  we consider only topological or Borel
structure on the dual object, then it cannot characterize the initial

group.

However there exists algebraic structure, that is the so-called
Kronecker product o f  representations. C onsidering that the dual
object having topological or Borel structure is furnished moreover by

the structure defined by Kronecker product, we have some examples
for which the above question is ansowered affirmatively.

2. In the case of a locally compact abelian group A, the well-
known duality o f L. Pontrjagin [18] is va lid . Th is duality is stated
as fo llow s. The dual space Â  o f A  can be identified with the set
o f all continuous unitary characters on A, with the locally compact
topology defined by uniform convergence on any compact set, and
with the Borel structure generated by this topology. The Kronecker
product o f  elements o f  Â  corresponds to  the ordinary product of
characters as functions. With these structures, Â. becomes a locally
compact abelian group.

A
Now consider the dual group A  o f locally compact abelian group

A
A. T h a t  is, A  is the set of all functions 2 over Â  such that

(1) 12(x)1-1, for any x in A' N  (unitarity),

(2) 2 (x i )  (22) = (xi x2) , for a n y  l ,  262 in  Â
(commutativity with product operation),

(3 )  2  is continuous, or more loosely, Borel measurable on Â
(measurability).
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A
Consider an element a in A  as a function Ci in A with the equality

d(x) = x(a ), for any x in  Â.
A

Then we can define a homomorPhism çp o f A  in to  A.
A

The duality theorem asserts that ço is an isom orphism  onto A.

3. For a compact group K , T . Tannaka [19] gave a  similar
duality theorem . In  th is  case we attach discrete structure to  k
Generally an element in  le is not one-dimensional, so Kronecker
product p®o- of a pair of elements p and a in  k is decomposed into
a direct sum z-,E1)•••ez- ”, o f finite elements in k

A
As the dual group K  of K , we consider the set of all operator

(m atrix) fields T =  {T  (p )}  over k' such that

(1') T (p )  is  a unitary matrix on the space o f representation p,
(2') T (p )0  T  (a) = T (rDED • • • Ea ) ,

for any pair ( p, o- )  in  i? and the above decomposition formula. Define

the group structure into K  defined by componentwise product

T 1 T 2 = {Ti(P) T2(P)} fo r T  { T i ( P ) }

and the weakest topology among those which make all matrix ele-
ments {<T(p)u, 0} continuous. (We call such topology the "weak

A
topology".) It is easy to see that K  is  a  topological group and the

matrix field W k= { Wk(p)} , of which W k(p) is the matrix o f represen-
A

tation p, gives an element in  K .  Therefore we can define a homo-

morphism ço o f K  in to  K  by assigning k  in  K  to  Wk.
A

Tannaka duality theorem says that (to is an isom orphism  onto K,
as in the case of abelian groups.

4. The third example is given by the real unimodular group G
o f second order [ 2 0 1 .  T h is  duality is stated in quite the same form
as in compact case. In the case of G , the Kronecker product p®o-

of elements o f G' is  decomposed into a non discrete but continuous

direct sum of irreducible representations, in general: p0a 4)d,i0,0 (w).
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Let this equivalence relation be given by an isometry U  of the space

o f ,o i onto the space of the right hand side.
A " .

Take as the dual G  o f G  the set of all operator fields T =  {T (p )}

over G such that

(1") T (p )  is  a unitary operator over the space o f representa-
tion p,

(2") U (T  (p )  T (a )) U - ( c o ) d v , , , , - (w) ,

for any pair (p, a ) in GN  x G and any irreducible decomposition o f pOo- .
By the same group structure and topology as in the compact case,
A
G  becomes a topological group. And a hornomorPhism ço o f G  in to

G  is defined by considering the fie ld  o f representation operators

g  { U g ( p ) )  as an element o f G.
The main result o f the previous paper [20] asserts that Ç O  iS

an isom orph ism  on to  G .

5. From the above three examples, we may make a conjecture
that the following theorem holds fo r  some wide class o f  lccally
compact groups G.

Consider the set G  o f  all operator fields T = { T  ( p)}  over the

dual GN  o f G  such that

(i) T (p )  is  a unitary operator over the space o f  representa-

tion p,
(ii) for any irreducible decomposition of the Kronecker product

pg0- 4 0 c/ v ,,((p ) o f  any two elements p, 6  of which are related

by an isometry U of the space o f pSo- onto the space o f right hand

side, the following equation is valid

U (T (p)0 T (0)) (1 - 1 =T (to)dvp,0 - (a)).

(iii) {  T (p)}  satisfies som e measurability condition with respect
to the Borel structure on G .

We shall call such an operator field b irepresen tation . The con-
dition ( i )  will be weakened later.
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A
W e give a group structure in G  by introducing componentwise

product
T, T2

=
 {  T l ( P )  T

2(P)} 7

and consider certain topology which is compatible with this group
structure.

A
Then a  homomorPhism ço o f G  into G  is defined by the cor-

respodence of g  to a birepresentation Ug = { Ug (p)}
Our main theorem is stated as follows.

A
Theorem. ço is an isomorphism onto In other words, for any

given birepresentation T , there exists a unique g in G such that
T =U g ,  and the initial topology of G corresponds to  the above

A
given topology o f G  by y9.

Although our main purpose is to find a fam ily o f groups for

which the above mentioned duality theorem holds, the above definition
A

o f G contains the ambiguous condition (iii) and the ambiguous to-
pology, as readers may notice.

The last two examples do not need the measurability condition
(iii). But in the case of non-compact abelian groups, i f  we omit
th is  condition then there exist non-measurable unitary characters
over the dual group Â  and it gives examples which satisfy ( i )  and

(ii) but are not in A .  The first problem is to make clear the reason
why such difference arises, and to seek adequate condition for measur-
ability.

Analogously fo r th e last two examples, the good topology in
A
G is  ju st the "weak topology". But for non-compact abelian case,
its "weak topology" is equal to the simple convergence topology of
characters over Â ,  and strictly weaker than the initial topology of

A . I t is  the second problem to set up a generally applicable topology.
The third problem is how we can loosen the unitary condition

(i). C. Chevalley [2] shows that in the case of compact Lie groups
the fam ily o f  m atrix fields satisfying the conditions (1') and (2')
except unitarity o f T (p) gives the complexification of K .  Moreover
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the condition o f  re a lity  T (p )=  T (p ) y ie ld s the unitarity. This
circumstance may he comparable to  the existence of non-unitary
characters over an abelian group.

Therefore it seem s that the unitarity condition is necessary
fo r  th is theorem . But as silcwn in the following fen t i c  case of

non-compact connected simple L ie  groups w ith finite centre this
condition can be replaced by a weaker condition o f boundedness (§5.

proposition 5 . 2 ).  This fact is based on a property that the main
Part o f âN  is finitely generated for these groups.

6. The first step o f solving these questions is to prove a duality
theorem o f somewhat weaker type w hich w e state as follows (§2.
proposition 2. 1).

Let G  be a locally compact group. We consider the set o f  all
equivalence classes ..(2 of unitary (in general, not irreducible) represen-
tations of G, dimensions of which are lower than a sufficiently large
cardinal number equal to, for instance, the square of the dimension
o f  L 2 ( G ) .  F or brevity of notations, w e a ttach  a  representative
co= { Ug (w ) ,  (co)} to each element of Q .  In S2, as usual, the opera-
tion  "e" (direct sum) and " Ø "  (Kronecker product) are defined.
It is shown later that the set of multiples of the regular represen-
tation R  o f  G  i s  an analogue of an ideal with respect to these
operations.

As the dual S2 o f 9,, take the set of all operator fields T = { T (0))}
over D such that

(i) T(co) i s  a closed operator o n  -,."(co), and T (R )  is  a non-
zero bounded operator on L 2 (G),

(ii) U1(T(0)1)G T(w 2)) 
where coi @co, and co, are connected by the isometric operator U, of

((.02) onto (WO,
(iii) U2 ( T(co i  ) 0  T (o ),)) T(0)4)

where col Oco, and co4 a re  connected by the isometric operator U2 o f

(0)0 o n to  (01 ) .
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We shall call such an operator field a w eak  b ir eP r e s en ta t io n .
Being equipped with the componentwise product and the weak topo-

,.
logy as above, D becomes a topological group, and the map çp: g ( G)
---, Ug l-- -- {Ug (c0)} gives a  h om om orP h ism  o f G into S2.

In this form, we can prove generally that ço is an isomorphism
onto S2 a s  a  topological group.* )  T h i s  fact may be called weak

duality.

The proof o f this weak duality runs as follows.

The Kronecker product of two right regular representations R
o f G  is decomposed into a discrete direct sum o f R  with multiplicity
equal to dim D (G ):

R 0 R -E v ? „  ,  ( R R ) .

There are many equivalence relations A  connecting the represen-

tations o f both sides. Denote the left regular representation o f  G
by L = {Lg , P (G )}  . Let T  be a non-zero bounded operator on L2 (G)
such that

a) TLg =L g T ,  for any g in G,
b) for any equivalence relation A,

A (T f1® T f2 )= {T ha}a,  i f  A ( f i0 f2 ) - -- - { ha} ,

Call such an operator T  to be adm issib le . It is easy to see that

the component T (R ) on R  of any weak birepresentation is admissible

and T= {T(0)) } is uniquely determined by T ( R ) .  So ,S2 is imbedded

in the space ao of all admissible operators in D ( G ) .  If we introduce

the weak topology o f operators in Do , this imbedding is continuous.

To prove the weak duality it is sufficient to show that Do is iso-

morphic to G .  This is done in §2.

7. Now  we shall return to the duality theorem in the stong
form . The weak duality assures that for any given birepresentation
T  over GN , i f  we can define non-zero bounded operator T ( R )  on
L2 (G )  satisfying a ) an d  b ), which corresponds to  T, then by con-

*) The definition of an adequate topology is given in J. Ernest's paper [4].
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sidering the topology which is induced by the weak topology of
S20 ,  the duality theorem is proved for G.

T h e  meaning of "co rresp on d  to " is  a s  follows. Let R =

D( R)

codpR (w ) be an irreducible decomposition of the regular represen-

tation, then the equation

R g = 0 ( 8 ) Ug (w)C11)R((o)

holds for every g  in  G . Therefore, if the theorem can be proved,
the corresponding admissible operator T (R )  must be defined by

T (R ) 0 ( R ) T  ( ( 0 )  d  R  ( 0 ) )

But this integral defines a non-zero bounded operator, if and
only if

a )  T (w ) is vR -measureable; that is, for any {v(w )} in the space

of wchR (w ), { T (w )v (w )}  is also in the same space,
D(R)

) (CO is -essentially bounded,

r )  { T (o ))} is not zero on a v 8 -positive set.

8. In this view point, the difference between abelian and compact

cases becomes clear.

The dual object o f a  compact group has discrete structure, so
we do not need any assumption of measurability, and weak convergence

A
in K  gives rise to weak convergence o f  T (R ) immediately.

The conditions 13) and r)  should be given in both cases, and for

this it is sufficient to assume the unitarity of T (R ) (condition (i)).

Then what happens in the case of S L (2 , R )?  To make clear

this situation, we attend to  the condition (ii) of birepresentation.

In order that the formula

U (T (p )O T (6 ) )U - ' =T (w )clv p,o(w )

is possible, the right hand side must exist and define a  bounded

operator. Th is assumption hides the v,,,-measurability of { T(0))}

Extending this consideration to repeated product, we conclude that

i f  R  is contained as a subrepresentation of a discrete direct sum of
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Kronecker products o f irreducible representations taken from a count-
able family (shortly, R  is  countably generated), then a) follows from
the condition ( i i )  of birepresentation.

For som e class of semi-direct product groups, R  has such a
property. (§7. proposition 7. 1)

Moreover, from the equality

T(6)® T(6) II = T(6)11 . 11

the boundedness of operators T (p ), T (a ) gives the essential bounded-
ness o f T (w ) over the carrier of T h e  consideration as above
shows that i f  R  is contained as a subrepresentation in a direct sum
of Kronecker products of finite number of irreducible representations
(shortly, R  is finitely generated), then the boundedness of T (p )  on
the basic finite irreducible representations leads us to  J3). And it
is easy to  show that the weak convergence of T (R ) 's  follows from
the weak convergences of T (p ) 's  on the basic representations.

W e shall show that R  is finitely generated for SL(2, R) , and
more generally, for non-compact connected simple Lie groups with
finite centre.

9 .  The contents of this paper are as follows.
§1 is devoted  to  state the notions and elementary properties

which are used in the following §'s.
In §2, we shall prove the weak duality theorem which holds for

general locally compact groups.
This weak duality is extended to the case of homogeneous spaces

o f G by a compact subgroup, after N. Iwahori's paper [12] , in §3.
The connection between weak and strong form s o f  duality

theorem is discussed in §4.
In the case of connected semi-simple Lie groups with finite

centre, w e can prove a  duality theorem under weaker conditions.
In §5, we consider this fact, using the result of §6 which states a
property of orbits space on such a group.

For some class of semi-direct product groups, which contains
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the motion group over m-dimensional Euclidean space, and the m-
dimensional proper inhomogeneous Lorentz group, we can show that
R  i s  countably generated, which means that the orbit spaces are
"well-behaved". So in §7, we prove a  duality theorem in  stronger
form for such groups.

The author wishcs to thank Professor H. Yoshizawa for his kind
advices.

Short summaries of the results o f this paper have been published
in [21 ] and [22] .

N ota tions. Locally compact groups will be denoted by G , H ,
K ,  N  etc ., and their elements by corresponding g ,  h ,  k ,  n  etc.
respectively. W e  m e a n  b y  representation o f  a  group a  unitary
strongly continuous representation o f th e  given group over some
complex Hilbert space, through this paper. A  representation co=
{ U g (a)) , , co)}  is given by unitary operators Ug (w ) on the Hilbert

space -,?(03). Elements o f , (0 )) a re  shown by u , y , w  etc. /((o)

(or /) shows the identity operator over (0)). Representations of

a given group are shown by Greek alphabet such as (0, p, 6  , r  etc.
The restriction of a representation co o f G  to a subgroup H  o f G
is denoted by co I,. We denote by 1 the trivial representation, whose
operators are the identity operator over one-dimensional complex
vector space C.

O n G , we can define right Haar measure i t ,  (o r p )  and left
Haar measure p .  T h e n  the modulus o f two Haar measures

4 ,( g )  (or d(g))=(dp/cItc,)(g),

is  a positive continuous function on G.
For a  function f  over a  locally compact space M ,  [ f ]  means

its  carrier, and f  means its complex conjugate.  C ( M )  is  the set
o f all continuous bounded functions on M , and G (M ) is  the set of

elements with compact carrier in Coo(M), moreover C(1- (M )  consists
o f all elements which takes real non-negative value in G ( M ) .  For
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Oven measure I) on M, L ( M )  means the Hilbert space o f  all I,-

sc,uare-summable functions on M . When M  is  a group G, we denote

L ( G )  by L 2 (G ) shortly.

The right regular representation R  { R  g  , L2 (G )}  o f  G  is  the

representation on D (G) , operators o f which are given by

(R g  o  f ) (g ) (g g o ) , for any f  in  L 2 (G)

and the left regular representation L= {L g , L 2 (G )}  is defined on the

same space L 2 (G ) by

(L g , f ) (g) = (J(g e ) ) ' 12 f(g,;- ig), for any f  in  L 2 (G).

I f  two It-measurable sets E  and F  in  G  are different only by

a set o f /2-measure zero, then we denote E— F.
By xE we denote the characteristic function o f E ,  that is, the

function which is equal to 1 on E  and to zero on the outside o f E.
C , R  mean the fields of all complex o r  o f  all real numbers,

respectively.

F or a  se t o f bounded operators {A } on th e set o f all

bounded operators which commute with each element o f s-21, is  a

weakly closed *-ring; we denote this ring by r o r  {A}'.

§ 1 .  Preliminaries.

1. When a locally compact group G  and its representation fo,

are given, we call a  bounded operator A  in . ) (0 ))  G-invariant, if

(1.1)A U g ( w ) =  U g (o))A, for any g  in  G,

and a subset V  in .7.)(0)) G-invariant, when V  is  invariant as a set

b y  Ug (w ) for any g  in G . When moreover V  is  a closed subspace,
it means that the projection 1 ), with the range V  is  G-invariant.

A  representation w o f G  is called irreducible when there exist
no proper non-trivial closed subspace of (w ) which is G-invariant.

Two representations co, and co, o f G  are unitary equivalent (or
shortly equivalent) b y  U , when U  is  an  isometric map o f  :)(co1 )

onto , (to,) such that
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( 1. 2) UUg(0),) =  Ug (oh) U, for any g  in  G.

We denote this relation by or simple by col— ah. The unitary
equivalence gives an equivalence relation on the set of representations
of G.

2. We refer the readers to Dixmier's book [3 ] for the definition
and elementary properties of Kronecker product o f finite number of
Hilbert spaces and operators on these spaces. And we shall remark
now only the following:

L em m a 1 . 1 .  For non-zero vectors u  in , ((01 )  and ?) in , (0)2 ) ,

(1 .3 ) u S v + 0 , in  •.(co1) e ( (0 2 )•

Therefore fo r  tw o vectors ill, u2 in k)(0h), if  th e re  e x is ts  a non-
z ero v ector z) in • ((o i )  such that

(1 .4 ) u ,®  = u 20v,
then Ul = U2 •

(The proof is trivial.)
Now we shall turn to the definition of Kronecker product of

representations.

Definition 1 . 1 .  I f  a  f in ite  set of locally  compact groups
i , ; <„ and representations 0); =  {U g 3 (0),), N  o f  e ac h  G ;  are

giv en, then the f am ily  o f un itary  operators { Ug 1 (0),) O U g 2 (c02 ) 0

••• O U g „(c0„)} o n  ,% 0 2 0 . ••® •t'„ g iv e s  a  representation of the
product group G i  X  G 2 X  • • • X  G„. W e call this representation the
outer Kronecker product o f  {wi }  and denote by  ahalhg•••(%/DN (0.•

"
Lemma 1. 2. The outer Kronecker product (01 (020.••(>_çeo. is

irreducible if and only  i f  each wi  is irreducible.

P r o o f .  I t  is enough to show it when n = 2 .  A nd obviously

H2),(a)2 ) i s  a non-zero closed proper G-invariant subspace of
k)(0)i ) 0 . (0 ) 2 )  fo r any non-zero closed proper G-invariant subspace
H  of ( 0 i ) .  This shows "only if" part.
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Conversely, let (01 , oh be irreducible and A be a bounded operator
on (0)1)(3 .(e0 2)  com m uting w ith all Ug i (a),) ® Ug ,(0)2 ). T ake a
complete orthonormal system {Y ,} in  ,î2((02) ; then the vector A (u 0 v )
is expanded uniquely as

(1. 5) A (u 0 v )= E u iO y i.

For a fixed y, the map A i (v )  on k)(oh), defined by

(1. 6) A i(v )u=u ,

is  a bounded operator commuting with { Ug i (w ,)} .  Hence from the

irreducibility o f oh, for some scalar ci (v ),

(1.7)A  (v) = i(v) I (oh) ,

(1. 8) A (u 0 v )= E c i(y )u O y i= u 0 c , (y )y ,  .

Next put A o a  bounded operator o n  (0)2) defined by

(1.9)A o v =  ci (v)v f

Then A o commutes with { Ug2(w2)} . That is, A o i s  a scalar operator.
Thus A = 1(00® Ao is a scalar operator. This gives the irreducibility
o f 0),(2)(02 .

Definition 1. 2. In the product group G"=Gx • •• xG o f same
locally compact group G with multiplicity n, the set U„ of all dia-

gonalelem ents {(g, •••, g): gEG }  is a closed subgroup in G ' which
is isom orphic to G w ith the induced topology  and b y  the map

g--)-(g, ••, g). W e call G „ the diagonal group in  G'.

Definition 1. 3. In the definition1. 1, i f  all G 's  a re  equal to
sam e group G, we can consider (0)A N  to,63)••• (,)„) a. the restriction
of oh&coA•••(2)(0„ to the diagonal group -6 n in G", a sa representation
of G  by the map 1V, . T h is  representation of  G is  called  the inner
Kronecker product (o r  shortly  Kronecker product) o f  { 0 ) , } ,  and is
denoted by  (.0, 0 0 ) , ® • • • O c o n  •

Lemma 1. 3. For given bounded operators T .  o n  . : ) „
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(1.10) .11 = T x x 117

P r o o f . The proof of inequality II T®...Ø   Till x • • • x II T”II,
is g iven in Dixmier's book [3] (p. 23).

Conversely for any e> 0 , there exists y, in I 2  such that II T1 y,If
>(îI T  I —e) IIvII. T h e n

II T„ H (II e) IIVII!

= (II T1II —  e)

That is, the converse inequality is deduced from

(1.12)T i ø  — 0  7 ' .11 I I  ( I I  7 ' — E)

F. J. Murray and J. von Neumann [17] studied rings of operators
on Hilbert spaces, and defined "factor" as W *-ring with 1-dimensional
centre. By their classification, there are three types of factors, so-
called of type I, II, III.

Applying the theory to the rings of operators on representation
s p a c e  (w) generated by the operatcrs Ug (w ) for some representation
w o f G, we get following definitions.

Definition 1 .  4 .  A representation w of G is called a factor re-
presentation when the W*-ring generated by {Ug (e0)} is a factor.

Definition 1. 5 . A group G such that any factor representation
o f G  is of type I, is called a group of type I.

3 .  In this section, we assume that all Hilbert spaces which we
shall consider are separable and all groups G are separable too.

The author refers J. Dixmier's book [3 ] for the definitions and
simple properties o f d irect integrals of H ilbert spaces etc. Let
{X, 0, v} b e  a measure space, and  let for any x  in X , a Hilbert
space H (x ) be attached, the direct integral o f {H(x )}  with respect

to  {X, 0, 1)} is denoted by H (x )d v (x ). Direct integral of operators,

and of representations are denoted in analogous way.

The followings are well-known results o f classical theory.
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Lemma 1.4. (F .  I. M autner, [15 ]). For any  representation (0
of a  separable locally  compact g ro u p  G , th e re  ex is t a  measure
space ( X, 0, y) and a f am ily  (0 )(x )} of irreducible representations
o f G  w hich is associated to each x  in X, and

(1. 13) co(x)dp(x).

Such an integral form of the given representation 0) is called the
irreducible decom position of co.

Lemma 1. 5 . For any  representation 0) of G, the irreducible de-
composition of the W *-ring which is generated by { Ug ((0 )}U{Ug (0))}'
is  unique u p  to  u n itary  e q u iv ale n c e . And its alm ost all com -
ponents are factors.

This decomposition o f co is called the central decomposition
o f (0.

Lemma 1.6. If G is a type I group, then for any  representation
0), its irreducible decom position is unique up to unitary equivalence.

Lemma 1. 7. For type I  g ro u p  G , operators o f alm ost all
com ponents p  in the central decom position of the giv en repre-
sentation are of the f orm

(1. 14) U g (p ) „( 0 0  U g  (w (p ) )  ,

where co ( p )  is an irreducible representation and I 0 ( 0 i s  the identity
operator in  som e n(p)-dimenfional Hilbert space

P ro o f. In fact, operators of representation of type I factor are
of the form o f (1. 14).

Lemma 1. 8. For a direct integral

(1. 15) co= =  (.0(x)d).(x),

if y -alm ost all com ponents (0 (x) are equal to the same representa-
tion  (00, then

(1.16)o i — E e w o

w ith  the m ultiplicity  w hich is equal to dim  1.;,(X ) .
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P r o o f . I t  is considerable that all the spaces (0 ) (x ) )  are same
to , ;)(0)0). Let {y5, } be a complete orthonormal system of L ( X ) ,
and consider for any element

(1.17) v {v  (x ) } , in( w ) ,

(1.18) v (x)yoa  (x)dv (x)

Then it is easy to see that the map ça; {Doc} gives the equivalence
relation of (1.16).

Lemma 1. 9. W hen a d irec t integral

(1.19) w (x)dv(x)

is giv en, then there ex ists an  irreducible decomposition

(1.20) —  g ( 0  (x , y) dv .(y)}d1)(x) = (0 ()d )

such that, f or v -alm ost all x,

(1.21) ( x ) 0 )(X , y )dv (y )

gives an  irreducible decomposition of (0(x).

P r o o f .  Let t  b e  the abelian ring generated by the diagonal
elements of the direct integral (1 .1 9 ).  (That is, the map: f(x)---.
c (x ) f (x )  in k)((o) where c (x )  is a v-essentially bounded function on
X ) .  Consider a maximal abelian subring g of {  Ug (o))} which
contains K. Then the irreducible decomposition o f co with respect to
g  is given as follows:

(1.22) (0,-- „,(0(2)di)(X).

But because o f  separability of and G, X  contained in  if
separates th e measure space {X, VI as a  dou b le  integral form

{ {(x, .Y)} : X G X, y e  Yx, .  A n d  it is easy to see that the
both hand sides of (1.21) are equivalent for almost all x, so (1.20)
gives an irreducible decomposition.



A  duality  theorem  fo r  locally  comPactgroups 203

Lemma 1. 10. For given tw o direct integrals

(1. 23) x, to(x)dv,(x), ( j =  1, 2),

we have

(1. 24) , , , , , x (:)(x) ®(0(y)dpi(x)dv2(Y) •

P ro o f. Consider the linear map ç generated by u0Y--- {u (x)
Ov (y )}  from ,;), (0)10(02) to the space o f representation o f right hand

side o f  (1. 24), where { u (x ) } ,  { v (y ) }  are corresponding vector to
u, y in the integral (1.23).

The map q, gives the unitary equivalence of (1.24).

Corollary. If the irreducible decompositions of representations

to, (j =1, 2 )  of type I  g ro u p  G  are given by to(x)clp,(x)
Idj

respectively , then the irreducible decomposition o f  (0,00) 2 h as  a
form

(1. 25) (01®0)2— dp1(x)(iv2(Y){ 0)(w; x, y)dv.,y(w)},
x 9 2 D(x, y )

where
(1. 26)c o ( x ) 0 ( 0 ( y ) — (0(w; x, y)dp,., y (w),

42 ( , , y )

is  a f c r m  o f irreducible decomposition o f to (x )® to(y ).

P ro o f. From lemma 1. 10,

(1.27)t o i 0 ( 0 2 4 T  (x ) (Y ) (x)ch)2( Y) •

Apply the result o f lemma 1. 9, then uniqueness o f  irreducible
decomposition leads to (1. 25).

Hereafter we assume that G is type I  group.

Now consider the set Ô  o f all equivalence classes of irreducible
representations o f G .  From each element of Ô ,  we choose a repre-
sentative (0.

Let T =  { T (w )}  be an operator field on Ô  in which T (w ) is a
bounded operator o n  (c.o), fo r  any irreducible representation w0 , T
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is extendable uniquely by

(1. 28) T(0)0) UT(0))11 - ',

where co is the representative o f equivalence class containing coo and

U  is  the equivalence relation connecting wo to  to.

Let oh be given representation o f  G  and let its irreducible de-
composition is given by

(1. 29) oh— (r) dp,(r) .
J2(0, 1)

And let vectors u ,  y in :)(coi) correspond to  f u ( c o ( r ) ) ) ,  {v(0)(r))1
respectively in this decomposition, by U.

Definition 1. 6. T  is called integrable on 0)1 w hen fo r  any
v ectors u, v in k)(0),), the function

(1. 30) < T(co)u((o),v(0))4 ( . )

is p i -m easurable over .Q(ah)•
It is easy to see that integrability does not depened on the way

o f irreducible decomposition.

Lemma 1. 11. I f  T  is integrable on  (,)„  th e n  IIT (0 ))4 ( . )  i s
1)1-m easurable function over S2(00•

Proof. L e t  {1)5}  b e  a dense countable set in k)(a),) ; then,
for v i -almost all co,

<1.31) !IT (w) ) =-- 7cD  i]n[vo
) ;(0))1Iliv),(0))11

< T(0)) y ; ((o), v k (0))> 

That is, T (0 ))  4 ( . )  i s  vr measurable.

andDefinition 1. 7. I f  T  is integrable on

(1. 32) 1,1-ess-supll T(w) If (.)< + oo,

th e n  T  is called bounded on 0)1 .
And if

(1.33) press-supll T(w)  ( . ) *0 ,

th e n  T  is called non-zero on 0),.
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Lemma 1. 12. I f  T  is integrable on oh, then,

<1. 34) T(o),) Q ( . , ) T(co (r))dv, (r)

is defined as a closed operator on  .3.(0 1)  with dense domain.
When G is  type I, T ( oh) does not depend on the fo rm  of

irreducible decompostion.
Moreover, if T  is bounded on co„ then T (co i )  is bounded and

(1. 35) vress-sup II T (w ) h  () =  T (w 1
)

Especially, i f  T  is  non-zero on oh, then T(0) 1 ) * 0.

P ro o f .  Divide S2(0)1 )  into a disjoint sum of measurable subsets,

(1. 36) S2 (ah) = S21+ S22+ ,

where

(1. 37) {co; n -1 1 1 T  (a)) II<n} •
Evidently . (coi )  is the direct sum of closed subspaces

(1. 38) {v; [v(0))] cS 2„),

and the norm o f T(e01) JH„ is smaller than n .  This shows that T(ah)
is  a closed operator with a dense domain.

Uniqueness o f  T ( o h )  follows from the uniqueness o f  decom-
position.

Next, since

(1. 39)J  T (0)1) = 7 ' (0 )(r)) • v (0)(r)) !I' k ) ( . ( , ) ) dvi(r)

T (a) (r)) 112 liv (0)(r)) II 2k) („(,))dvi(r),

the right hand side o f (1. 35) is smaller than the left one. But for
.any given e> 0 ,  we can select adequate non-zero {v (0 ))} such that

(1. 40)I I  T (co (r)) v (co (r ) )  112
) ) dvi  (r)

(vr ess-suP II T(w) )) (0)(T)) V dvi (r).

This shows the converse inequality.
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Lemma 1. 13. I f  T  is integrable on  w„ then f o r  any  sub-
representation oh o f  fo„ T  is integrable on ah too.

P ro o f. The irreducible decomposition is given by the decomposi-
tion (1.29) o f  0)1 and a vy measurable subset 2(0) 2 )  of 2(0),), as

(1.41)0 ) 2 1 (r) dvi (r).
ac,02)

The integrablility o f T  on 0)2 follows immediately from vr measura-
bility of functions
(1. 42) xa(,0„ (0))< T(0)) u (0)), v (0)) 4 ( . )  .

4. Now we shall give a simple sketch of the theory of induced
representations developed by G. W. Mackey [13] .

I f  a  locally compact group G  and its closed subgroup K  are
given, the homogeneous space K \ G  of left K-ccsets is a locally
compact space over which G  operates as a transitive transformation
group. Denote, by n  the canonical map from G  to M  which transfers.
an element g  o f G  to the left K-coset containing g.

For a measure y over M  and g  in G, we can define a measure
Id, b y  y g (E )=  (E  g )  fo r all measurable set E  on M . y  is called
quasi-inv ariant if and only if vg and v have same null sets, that is,
mutually absolutely continuous.

Lemma 1 . 1 4 . There exists a quasi-inv ariant m easure  on Ill
alw ay s. A n d  an y  tw o  quasi-inv ariant m easures a re  mutually
absolutely continuous. For such a y, a  measurable se t E  on M  is
y-null se t i f  and  only  i f  n ( E )  is  g-null set, w here p is  a  Haar
measure on G.

We refer to Mackey's paper [13 ] for the proof of this lemma.
N ow  w e shall assume G  is separab le, and  a  representation

r = { W k, H} of K  on a separable Hilbert space H  is given. Denote
by the set of all H-valued function f  on G  such that,

(i) < f (g )  , v> is  a Borel function of g  for any y in H,
(ii) f ( k g )= W k ( f ( g ) ) ,  for any k in K  and any g  in G,

Ilf 112 =  <f (7r-  ( x ) )  f ( ' ( x ) ) >  d  ( x )  <  +  0 0 ,
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where <f (g), f ( g ) >  is considered as a  B ore l function on M  from
the conditions ( i )  and (ii).

It is easy to verify, becomes a Hilbert space and the family
of operators {Ug }  on which are defined as

(  Ug f )  ( g o)==-- (c 1 v(rc (go)g)/dv (n( go))) 1/2 f  g 0 g

gives a  representation of G on

Lemma 1 . 1 5 .  {Ug , .) }  is independent of the selection o f  y
within unitary equivalence.

P ro o f. Let pi, 1)3 be two quasi-invariant measures on M , and let
,p ( g) ( d v ,  ( g ) )  / cli),(7-c ( g ) ) )  be the modulus of these measures based
on lemma 1. 14. Then the map f (g )-- ( p ( g )) 112 f ( g )  gives the unitary
equivalence between the spaces defined from y1 , and from y2

Definition 1 . 1 8 .  The representation {Ug , . }  is called as the
representation o f G  induced by the representation o f  K , and we
shall use the notation, Inch, fo r  this representation.K-3•G

The following lemmata which we state without proof are obtained
by G. W. Mackey [13] , and will be used in the following sections.

Lemma 1 .1 6 .  I f  ro —=Zer ;  then

(1. 43) Indro— EEDIndr, .

Lemma 1 .1 7 . Let If 1 , K2 be closed subgroups of G and K1gK2,
and let r  be a representation of K „ then

(1.44)I n d r  — I n d  {  I n d r} .
K 1 ,G K 2-.G 1—.K 2

Lemma 1 .1 8 .  Denote by { e}  the closed subgroup consisted
of only the unit element e  of G, and by R  the regular represen-
tation of G, then

(1. 45)R  — I n d  I .
I e ) ,G

C orollary. Let R K  be there g u lar representation of a  closed
subgroup K  of G , then
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(1.46)R  — I n d  R i, .

N ow  consider a fin ite  fam ily  o f groups G , and rep resen ta tio r

{ Il;} of closed subgroups K , of each G • , then for their outer
K ro n e c k e r  product, the follow ing is valid.

Lemma 1. 19.

(1. 47) (Ind r i ) §  (Ind r2 ) ('73 • • • g  (Ind r„)
I f K 2 -->G2

Ind TATA • • • ® r .
i x K 2 x  ..• ,< K ,,— > G 0 ,G 2 X •••x G n

And the equivalence relation betw een both sides is generated
by  the correspondence o f  vectors

(1.48)f& D f20 ...0 f.--> fi(g0C  f 2 (g 2 )® • ..0 f .(g ,) ,

w here f ;  i s  a v ector in and the righ t hand  side  is  regarded
as a (111 0 H 2 0.••OH„)-valued f unction  on Gi X G2X •  •  •  X  G„.

Definition 1. 9. T w o closed subgroups K , and K 2 in G are
regularly  related w hen the sp ace  Z  of double If 1 —K2 co se ts  in G
is countably  separated ex cept i t-null set. T h at is, there ex ists a
sequence E0, E l , E2, • • • of double K 1 —K1 cosetwise measurable sub-
se ts  such  that g (E 0 ) = 0 , and  any  double K 1 —K2 c o se t  n o t  in  E,
is representable as the intersection of E,'s which contain this coset.

Lemma 1.20. (J. G lim m [8 ]) . For the case of Eo= 0, regularly
relatedness o f K , and K ,  is equiv alent to the property  that the
sp ace  Z  is  T 0 -space.

Lemma 1. 21. Let p  b e  a f inite m easure in  G  w ith the same
null sets as the Haar m easure g o f  G . For any  m easurable set F
in  Z , let F, be the subset o f  G  w h ic h  is  the union of double

cosets belonging to  F and put v 0 ( F ) = - 1 ) (F 0 ) ,  then I), gives
a m easure on Z.

W e sha ll ca ll such  a m easure yo admissible.

Lemma 1.22. Let r =  {Wk, H} be a representation of K i  and sup-
pose that K i  and K ,  are closed subgroups of  G w hich are regularly
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related. For each g in G, consider the subgroup K 2 rl e K 1 gr=K2(g)

of K ,, and the representation, 0)(g) -=  Ind { W g z g j , H } of K o .  Then
K2(g)->K2

( 0 ( g )  is determined to within equivalence by the double coset

K ,g K ,, and we may write 0 )(g ) = 0 )(D ).  Finally (Inc 1r)IK2 is  ct
direct integral over Z ,  with respect to any admissible measure vo,
in  Z ,  o f  the representations 0 ) (D ) .  And the equivalence relation
o f this decomposition is given by the correspondence o f vectors

(1. 49) f(g))—>fg(k2)-=-= f(gk,),

where f  is in the space o f Ind r  given as a function on G, and
KI-4•G

f g (k 2)  is regarded as a function on K , and as the component of f
on the representation c o (D )= c o (g ),  (g E D ), i n  (0(D)dv o (D ).

Combining the lemmata 1. 19 and 1 . 22 , w e get the followings.
which is useful later.

Lemma 1. 23. Let K , be closed subgroups of G and let z -,—
{ W  H ' }  be a representation of each K. Now we assume the sub-
groups k K1 ><•-• x I f„  and the diagonal g r o u p  „ are regularly
related in G '.  For each  g  (g,, •••, ,g- )  consider the representations
• W g ,1 of the subgroup r(g) -, ---gV K ,g irl•••FIR V K „g„ of G. Let
us denote their Kronecker product by r(tr,} : g )  and put

(1. 50) Ind r {r,} : : g).

Then o ( { r } :  g )  is determined to within unitary equivalence by
the double coset D in G", and we may write (0 ({r,} : g ) by
(0 (D ). Finally

(1. 51) Ind r i ®Ind rig•••® Ind  1-„1  (D) dv(D) ,
K .-*G DK1-).G K 2-4C

where D is the set of double .k -  „  cosets and y is any admissible
measure in T h e  equivalence relation of this relation is given by

(1. 52) f
1
at-20 • • • Of„--V*1 (g , g )0 f ,(g , g )0  • • • Of. (g. g) ,

where the right hand side is regarded as a function of g.
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5. The regular representation R  o f G  i s  in special position in
the set of representations. The followings state this situations.

Lemma 1. 24. For any  representation w and the right regular
representation R  o f  G , wOR is unitary  equivalent to the m ultiple
o f  R  w ith m ultiplicity  (dim  w ). A nd  the  m ap w hich giv es this
equivalence, is generated by

(1. 53) v 0 f — > {< Ug v, (pa > f (g)} a ,
f o r an y  v  i n  2(c0), f in  D (G),

w here { p a }  is any  f ix ed com plete orthonormal system  in , , (0)) and
the right hand side is considered a s  a  v ector in  ZeL2(G) with

a
a-th  component <Ugv,çoa>f(g).

P ro o f. We consider the m ap generated by (1. 53). Obviously
this m ap is isom etric onto, and by th is map,

(1. 54) Ugo vj '? Rg 0 f  {E< U gg o V,, y9a > f , ( g g , ) }

This gives the operation corresponding to Z e R .

Rem ark. This lemma is deduced as a special case of lemma 1. 23
in the case of G  a n d  (w) being separab le . And the general case

w as given  by J. M. G. Fell [5] .

Lemma 1. 25.

(1. 55) ROR—E@Re, , ( R R ) ,

w ith m ultiplicity  o f  dim D ( G ) .  A nd  the  equivalence relation is
generated by

(1. 56) f iC .A l f i ( g i e ç o a ( g i ) d p ( g i ) . A ( g ) }

f o r  any  f , ,  f ,  in  D (G ),

w here 0= {g9a }  is  an arbitrary  f ixed com plete orthonormal system
in  D (G ).

P ro o f. This lem m a is an immediate corollary to lemma 1. 24,
when w — R.
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N ota tion . W e denote by A (0 ), the  m ap f rom  L 2 (G )0 L 2 (G )
onto E e p (G ) ,  w hich is giv en in  lem m a 1.25 (1.56), f or f ix ed
complete orthonormal system  0= {ÇpOE} i n  L 2 (G ).

C o ro llary . Let 1,==- {Lg , L 2 (G )}  is the  lef t regular representa-
tion o f  G , then

(1. 57) L0L—EeLa ,( L L ) ,

w ith m ultiplicity  o f  d im  D ( G ) .  A nd the equivalence relation is
generated by

(1 . 58) vOEM (g )}
_ { f i . ( g g i )  (LI ( g ) ) 1 I2 p a  (g i ) d f2 (g)1. a

f o r  f , f 2  in L 2 (G ) and a complete orthonormal system  {ço,OE} in L 2 (G ).

Proof. S ince the left regular representation L  is equivalent to
right regular representation by the equivalence relation,

(1.59) f  ( g ) ,  ( 4 (g ) ) - 112 f  (g - 1 )

so the result follows from lemma 1. 25, immediately.

§ 2 .  D uality theorem  in  a  w eak  form.

1. Let S2 be the set of all equivalence classes of representations
of G. dimensions of which are lower than a certain fixed sufficiently
large cardinal number (for instance the square of the dimension of
D ( G ) ) .  We attach a representative co to each class in D. Hereafter
we deal D as the set of (o's.

Definition 2. 1. A n operator f ield T =  {T  (w )}  over D  is called
a  weak birepresentation when

(i) T (w) is  a  closed operator w ith dense dom ain in  k)(w),
an d  T (R )  is  a non-z ero bounded operator on  L 2 (G ),

UI(ii) i f  (0,002— oh, then

(2. 1) U1(T(ah) ED 7' (oh )) U1 1 ÇT (w3) ,
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U2( iii)  i f 0, i '57 (04, then

(2.2)U , ( T T(02)) 11 1 Ç T (.),)

Denote the totality of weak Eirepresentations by S2 , then a product
operation in S2 is introduced by the definition

(2.3)T , •  T 2 = { T ,(w ) • T,(w)} , fo r  T 5 = { T 5 (w )}  (j =1, 2).

As shown later all weak birepresentation is invertible, so with this
product ard identity 1 = W O ; identity operator over ( w ) } ,  D  be-
comes a group.

For given g  in  G , the operator field { Ug (w)}  over D is  a
weak birepresentation. And it is easy to see that the map ç9:
gives an algebraic hom om orphism  o f G  into sz. W e shall show the

following.

Proposition 2. 1. ÇO' is  an (algebraic) isomorphism o f G  onto
T hat is the same, fo r  any given weak  b ire  presentation  T ,  there

ex ists unique g in G such that

(2.4)U g =  T.

On the other hand, we can define topology r  on S2 , as the weakest
topology which makes all matrix elements <T (w)u , v> (w and u ,  y

in ,(0 )) are fixed) continuous.

Definition 2. 2. r  is called the weak topology on s2.

Hereafter we consider D with the weak topology; then,

Proposition 2. 2. Ç P  is  a bicontinuous map.

Co7neetii- g  the above two propcsitiors, we get

Theorem 1 . G is isom orphic to S2 as a topological group, and
the isom orphism  is giv en by  ço.

In the following section 2 and 3, we shall prove the proposition
2. 1, and the section 4 is devoted to show proposition 2. 2, some ex-
amples are given in the section 5.
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2. L e t T =  { T (0 ) ) }  be a given weak birepresentation.

Lemma 2. 1.

(2.5) T(1) = /(1).

P r o o f .  Put 0)1 = 0)4 = R ,  0)2 =1, and U2 = I ( R ) ,  in (2. 2), then we

get the result.

Lemma 2.2.

(2.6) T(0)) E  { Ug(co) : gE G }" .
( T ( w )  commutes with any element o f  {Ug (a )) : gE G }'.)

P roo f. A ga in  in (2. 2) put 04=0) 4 =0), 0)2 =1, and let G be any

unitary operator in { Ug (0)) : gE G } ' over , (0 )), then the result follows

from lemma 2. 1.

From lemma 2. 2, i f  we define for any representation 0) o f G,

(2. 7) T(0)) U - 1 T (0 )') U,

where (0' is the representative in Q belonging to the same equivalence
class of 0), then T (0 ) )  is uniquely defined and the relations (ii) and

(iii) are true for this extendedly defined T ( 0 ) ) .  Only for simplicity

o f notions, we shall use this extension o f T  under the same notations.

Lemma 2. 3. L et A  be any se t o f  parameters a .  I f

(2.8) EIED(0«
aEA

an d  T (w Œ) ' s  are  all bounded operators, then

(2. 9) U(EG) T(0) )) =  T ( ( 0 ) .
a EA a

That is , the  re lation  ( i i )  is extendable to infinite d irec t su m 4

Proof. W hen A  is a finite set, (2. 9) follows from (2. 1) easily.
Let A  be infinite, and put T „.U (T (0 )0 )1 1 - 1 ,  and 17,-.)(0)„),

P a = (the projection of (co), im age o f which is then it is
sufficient to show,

(2.10) E e T c c =  T(0)) T ).
aEA



214 N obuhiko Tatsuum a

A t first the left hand side, ---  EG) T a  is  c lo sed . In fact, let
ceE A

{ e }  be a sequence in  ..)((o ), such that v = lim y ', and vo = lim
Since P a y =A im P vl and T r, is bounded,

(2. 11) T OE P a v  =lim T  P v i =lim P„T  v =  OE lim vi = FOEvo

This assures that Tv =  T ,  P a  v exists and is equal to y 0 . T h a t  is,

v is in ( 1-' )  and vo = Tv therefore, is closed.

W hile fo r  any given finite set F  in  A , put gp.,— E (a

subspace of ' --) (co)), and (OF  the restriction  of co onto F. T h e n
UF

Z E D W a — COF where U F  is a restriction of U  onto E ER)(coa). Thus
aEF aEF
from the finiteness o f F , E ,  in which T F  is the restriction

aEF
o f  T  on g,:), and zero on S:2. F1 . Then for any v in S.:,?F

Tv— ETOEv=ETav— T,v= T v.
aEA aEF

But the union of in which F  are finite subsets in A , is
dense in .?((o) , and T  is closed, so T  must be equal to -1", as two
closed operators which coincides on a dense set.

Lemma 2. 4. Fo r tw o w eak  birepresentations T , an d  T 2  i f

(2.12)T i ( R )  =  T , ( R ) ,

then T 1 = T ,, th at is  th e  sam e, T i (w) T z (0 ) )  f o r any  w  in  Q .

P ro o f . For (2. 2) and lemmata 1. 24 and 2. 3, T ,(w )v OT ,(R )f ,
(j = 1, 2), correspond to the same vector IT i (R )(<U .v , OE>f)( g)}  OE =
{T,(R)(<U.v, g9a >f) (g)}  OE in  E e L 2 (G ) by (1 .53 ). That is, T 1 ((.0)v
Ø T 1 (R )f= T 2((o)vOT 2(R )f , for any v in (w) , f  in L2 ( G ) .  Since

T i (R) = 2"2 (R ) +0 by the assumption, there exists a non-zero vector
f  in L 2 (G) such that T i(R )f = T ,(R )f * O . Therefore, by lemma 1. 1,
T i (w)v= T2 (C O ) V  for any v in ). (w). That is, Ti(w) = T 2 (w) for any

Lemma 2. 4 asserts that fo r given weak birepresentation T , if
there exists an element g  in G  such that T (R )=R g , then T=U g .
While the regular representation separates any two elements in G,
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so such a g  must be unique, and in  th is case proposition 2. 1 is
proved. So we have to determine the form o f operator T (R).

Lemma 2 .  5 .  For any weak birepresentation T, T  (R ) (denote
by  T )  satisf ies followings.

(i) T  is  a non-zero bounded operator on L 2 (G) ,

(ii) f o r  any  g in  G ,

(2.13)T L g  =  L g T,

(iii) f o r  any  com plete orthonormal sy stem  o  in  L 2 (G) , i f

A(0) ( fz) = {ha} a, then

(2.14)A ( 0 )  ( T f i®  T  f 2 )  =  { T h Œ } Œ.

P r o o f .  ( i )  and (iii) follow from the definition of weak birepre-
sentation and lemma 2. 3, immediately. From L g  E  {R g ,: g 1 E G }' for

any g  in  G, lemma 2. 2 results (ii).

Lemma 2. 6. Fro m  the cond itions (i) and  ( i i i )  o f  lemma
2.5, it results,

(2.15)1 1 7 ' 1 1 = 1 .

P r o o f .  (iii) asserts that T ®T corresponds to a multiple of T,
so 1171 2 = 11 ®  =  T j I  (see, lemma 1. 3). The assumption ( i )  of

" T O " ,  leads to (2. 16).

R em ark . The same argument as lemma 2. 6, applying to the

relation between T(0))®  T (R ) and multiple of T (R) , results

(2.16)T ( 0 ) ) 1 1 < 1 ,  for any .0) in Q .

Definition 2 . 3 . An operator T  over .1,2 (G ) satisf y ing the con-
d itio n s  ( j)  ( iii)  o f  lem m a 2.5, is called an admissible operator.

3. As a  consequence o f previous section, for proving the pro

position 2. 1, it is sufficient to show arbitrary given admissible operator

T  is the form o f R g ( T )  fo r  some g ( T )  in  G.

Lemma 2. 7. Under the assum ption of conditions (i) and (ii)
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in lemma 2 .5 , the condition (iii) is equivalent to the following (iii)',

( i i i ) ' f o r any h  in  Co ( G )  and f  in  D (G ),

(2. 17) T (h . f )  (g) =  ( T h ) ( g )  ( T f ) ( g ) ,

where " • "  show s ordinary product of  functions.

P ro o f. WO—. W e use only properties of boundness of

T  and  (iii). Because o f h, f ,  h •  f  are all in D ( G )  and T  is bounded,
both sides in (2. 17) are determined as functions o f  g  except on

a p-null set.
B y the lemma 1. 25, the followings are valid,

(2. 18) {Tho} I T [h (g i• )ç o a(g i)d it (g i) • f l(g ) }  OE ,

(2.19)A ( 0 )  ( T h ® T f ) =  I S ( T h ) ( g i g)çp c ,(g i )d i i ( g i ) ( T f ) ( g ) }

The condition (iii) asserts the coincidence o f  each components
of the right hand sides in (2. 18) and (2. 19) as functions in L 2 (G),

that is, for any a,

(2. 20) ( Th) (g i g)(p c ,(g i )d ,u(g i ) • ( T f ) ( g )

=  T [ h ( g i •)çoa (g ,)d t t(g i )  •  f l(g ) , a.e.,u.

But from arbitrariness o f complete orthonormal system  0  in P (G ) ,
(2. 20) is  true  even  i f  w e replace ço c,  by any function go in L 2 (G).
So

(2. 21) ( T h) (g i g ) k g i )d ,u(g i ) • ( T f )  (g)

= T [ h ( g l • )0 (g l )d,t2(g i )  •  f l(g ) ,

Now consider a filte r base of functions on Co ( G )  which tends

to  the Dirac's measure ô on e  o f G .  That is, for any neighborhood
V of e, le t  Fv = {çov} be the set of non-negative functions in  Co (G)

su ch  th a t [o v ] c  V  a n d  çç,
v (g )d p (g )  = 1, then =  {F v } v generates

a filter base which converges to  8.
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In  the left s ide o f  (2 . 21 ), T h  is  in L 2 (G )  and (T h) (g i g )  is
equal to d(g,) - 1 1 2 (L g , T h ) ( g ) ,  so it is near to  T h  in D (G ) i f  g , is
sufficiently near to e G .  The convexity o f norm assures that

( T h)(gig)çov (g,)dtt(g,)= ( g i) '''( L g iT h)(g)gov (g,)dtt(g,)

(denote by ( T h ) ,( g ) )  is near to Th in P ( G )  for sufficiently small
neighborhood V  o f e. This shows that {( T h) v } v converge to (Th)
in L2 (G).

O n the other hand, in  the r igh t side, ( g i g ) ( p v ( g i ) d k e ( g i )

(write by h ( g ) )  converges to h ( g )  uniformly, Vien h v • f  converges

to h• f  in D ( G ) .  Using the boundedness o f  T , the convergence of

right sides to T ( h f )  in  L 2 (G )  follows.

Since D ( G )  is  a metric space, we can select a sequence { V( j)}

o f  neighborhoods o f  e ,  such that both sequences {( Th)  V U ) )  and

{ T (h v ( J ) • f ) }  converge to T h  and T ( h • f )  in  1 2 (G )  respectively.
I f  it is necessary, taking a subsequence, the functions { (T h)  v (g)}
and { T (h, ( J ) . f ) (g )}  converge to (T h) (g ) and T(h • f) ( g )  almost
everywhere in satisfying (2 . 2 1 ) . So in the limit, we get (2. 17).

(iii) (iii)'. It is sufficient to show (2. 21), for any h , ço, f  in
1,2 (G ) .  A t first, i f  h  and ço are in Co ( G ) ,  from the conditions (i)

( ii)  ( iii) ',

T [h (g ,•)y 9 (g i)d  ,a(g ,)  f l

= T  (1 ,z(g,•)ço(g i )d tt(g,)) (g) • ( T f ) (g)

=(T h )(g ,g )g o (g ,)d tt(g i)  •  (T f )(g ) , in L 2 (G).

That is, (2. 21) holds in th is case. While C o ( G )  is  dense in L 2 (G)

and from

f 1 (g
i
g ) f 2 (g 1) d ( g 1) I <R g A> _111;112• 111;112 ,

Ilk •f 112 11k -II f112
the above equation is easily extendable to the case in which all h,
ço , f  are any elements o f 1,2 (G).
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Hereafter in th is §, le t T  be a given admissible operator.

Lemma 2. 8. L et E  be a  Ge -compact s e t  in  G ,  then there
exists a  measurable s e t  T (E ),  such that

(2. 22) T(xE)=26,(E), in  L 2 (G).

P ro o f. There exists 'tiff' E in Co(G) such that 0<qp•E(g)<1, and
E =  {g :* E (g )= 1 } (see, P. R. Halmos [11 ] ). Obviously 1K  converges
to xE  in  /2 (G ) when n  tends to  00. From the boundedness o f  T,
(T(Jp E ) ) "  T  ( iK )  T  (x E ) , (n—› 0.) , in  L 2 (G) . I f  it is necessary,
select a subsequence (T (* E ))"--->T(x E ) ,  (n--->00) a.e.re. Put •tr E  as  h
in lemma 2. 7, and take the limits,

(2. 23) T (x E •f )=T (x E )•T (f ), a.e. g .

Especially T(xE) =  T(x E  • xE ) =  T(xE)•T(xE), a.e.g.

Thus TO O  must take only values 0 or 1  except over null-set. Put

T (E )=  {g :(T x E) (g )= 1 } ,  then

T (xE) —xT(E), in  L 2 (G) .

Lemma 2. 9. F o r  any G a -compact s e t s  E  an d  F  in G,

(2. 24) g (T (E ) )<g (E ) ,

(2. 25) T (E n F )— T (E ) n T (F ),

(2.26)T ( g E ) — g T ( E ) , f o r  any g  i n  G.

P ro o f. F ro m  Til =1, II Tx E ll iixE ll follows, so that,

tt(E ) =xE(g)clit(g)=11xEll'ilTxEll 2 =1IxT(E)Ii 2

—2e, ( E ) (g)d t e (g )= (T (E ) ) .

Next from ( 2 .  2 2 )  and (2. 23)

X T (E n F ) —  ( X E n  F )  T ( X E  • X F ) T (X E ) • T (x F )

— xT(E). xr(F)— XT(E)nr(F) •

This leads to ( 2 .  2 5 )  immediately.

Lastly we use the condition ( i i )  o f lemma 2. 5,
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xr( g E ) = T (x ,,,)=T (J(g) i2 L g x o _  ( j (e)-112 r
 g (X E))

=  (A( g ) ) - 1 1 2  g X T(E)= X0-(E) .

This shows, (2 . 26 ) is  true.

Lemma 2. 10. T  gives an isometry on L 2 (G).

Proof * ) .  Now we consider a  s e t  function ,u(
7) ( E ) = I I ( T ( E ) )

on the class of all G s-compact se t in  Go , which is an open closed
subgroup o f  G  generated by a  compact neighborhood o f  e. It is
easy to show f i a t  ,4 is si-finite and countably additive on Ci*, by ex-
tension theorem (fo r  instance see P. R. Halmos [1 1 ] p . 5 4  ThA ),
there exists a  Bair measure /LT  over G o which coincides to /.4 on
T his measure is uniquely extendable onto whole G  b y  (2 . 2 6 ), we
shall denote this extended measure on G b y  /.2T  to o . (2 . 24 ) asserts
the *absolutely continuity o f g r  w ith  respect to t t  an d  from (2. 26)
it is follows that f i r  m ust be coincide with c r ft fo r  some constant
c r . I .e .

liTxE112 =x 7 (E)(g)dit(g) —  12(T(E))=117- (E)=cyle(E)=c7-11xEli 2 .

And it is easy to  see, for any step function f  on G,

(2.27)1  T f c7-11 f

But the space of all step functions is dense in L 2 ( G ) ,  (2 . 27) is true
for all functions f  in  D ( G ) .  A nd (2 . 15 ) results cT  = 1.

Corollary. For any Ga-compact set E,

(2. 28) g ( T ( E ) ) = , u ( E ) .

Proof. In  th e  proof of lemma 2. 10, it is shown that A T =  cTp,
and cT = 1 .  So that (2 . 28 ) is deduced.

Remark. From the relation (2. 22), and the linearity of bounded
operator T , easily it is proved that T  is real, i.e., for any real valued
function f  in  D ( G ) ,  T ( f )  is real valued too. M oreover, using

* ) This proof was given by Professor H. Yoshizawa. It is shorter than the
author's original proof.



220 N obuhiko Tatsuum a

(2. 23), T  is  positive, that is , fo r any non negative real valued f
in  L 2 ( G ) ,  T ( f )  is  non negative too.

Conversely if  we presuppose that

i) T  is a closed operator on L 2 (G) such that its domain Z (T )
contains Co (G),

ii) T L g L g T ,
iii) for any h  in C 0 (G ) and f  in  Lz(G),

T ( h f ) =T ( h ) T ( f ) ,

iv) T  is real, (therefore combinating with i i i ) ,  T  is  positive),
then the boundedness o f T  follows.

In fact, simple argument starting from i )  i i i )  and iv), as the
theory about Radon measures, shows that T  induces a regular measure
k e r on G .  B ut from  i i ),  J - 1 ,uT is  le f t  invariant, therefore by the
uniqueness of invariant measure, / I T  -C rk t  for some positive number
C T . T h i s  results (2. 27), i.e., c77.1 T  is  an isometry.

So we can take i) —iv) a s  a  definition of admissible operator.
Indeed, this is done in a formulation of Tannaka duality theorem.

Lemma 2. 11. (N . lw ah o ri) . Fo r any h  in  C o (G),

(2. 29) Ilhijos= T h ,

where 11_ show s essentially superior norm.

P r o o f .  Denote by If IL, the norm in  LP(G) - space then,

ThHP, =1 (T h ) (g )1 2Pd p (g )=1 ((T h )(g ) )1 2cltt(g)

=1 (T (W )) (g) 1 2 4( g) —11T ( 1e)112 =11 11112

= (h  (g))'' 'c l,a(g) =

Taking the lim its o f  2P-roots o f both sides for P-->00, we get the
result.

Lemma 2. 12. For any Ga-compact set E, there exists an  ele-
ment g ( E )  in  G  such that
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(2. 30) T (E )— E g (E ).

P ro o f. Consider the function

(2. 31) ço (g )  -- - x E (g i ) x ,(g ig )d p (g ,)=p (E n E g - ').

Then from (2. 26),

(2. 32) (Tço)(g) Jx E(gi)T x giiE (g)dp(gi)

= x E (g i )x , i ir ( E ) (g)dp(gi)

= x E (g,)x , ( E ) (g ig )d p (g i)— p (E n T (E )g - ').

O bviously  is in  C,;(G) and Tgo is continuous, so we can apply
lemma 2. 11, and get,

(2. 33) s u P  I (TO  (g)1=11T011 - =lia - = max I g9(g) I = (P(e)=1_1(E).

There are two posibilities.

(1) There exists g ( E )  such that ( (g (E ) )= p (E ) .
(2) There exists a diverging sequence {g ,} such that {( To) (g ) )1

increase to /L (E).
But the second case is  exc luded . In  fa c t, if (2 ) is  true, then

for sufficiently large N , (T O (g i ) >(1 /2 )p (E ) , for any j > N .  While
the compactness o f E  assures the existence of j  larger than N  such
that

(2. 34) E g 3 g 1 n E =0 .

So
(2. 35) te(E ) = tt(T (E )) =p(T (E )g7v 1)

> k t ( E n T ( E ) g -N 1 ) +1 2 ( E g ig ln  T ( E ) g ')

=(T ço )(g N )+p (E n T (E )g i')=(T ço )(g N )+(T ço )(g i )
(1 / 2 )fi(E ) + (1 / 2 )/ 2 (E ) k t(E ).

That is contradiction.

For the only case  (1 ), p ( E n T ( E ) • g ( E ) ') =( T ç o ) ( g ( E ) ) =
p ( E ) = p ( T ( E ) ) .  This leads to the result immediately.
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Lemma 2 . 1 3 . For a fundamental system {E a } o f Gs-compact
neighborhoods of e in G, the family { F a =  { ga: E3gE a }} a , where
g a = g ( E a )  satisfies (2. 30) fo r  each Ea respectively, constructs a
base of Cauchy filte r  in  the  complete space G. Consequently,
there exists unique lim it point

(2. 36) lim ( g ) ' , G.

P ro o f.  S in c e  it  is  a  Haar measure, any open set in G  is not
n-measure zero . From  (2. 25), for any a and [3.

(2. 37) 0* tt(E a n = p (T  (E. fl ER))

ii(T (E a) n  T (E ) )  = kt(Ea g „nEogr3).
I.e.,
(2. 38) gag1E E ;1E f 3 , for any a  and [3.

Because {E a } i s  a fundamental system o f  neighborhoods o f  e,

the family constructs a base of Cauchy filtre.

Lemma 2 . 1 4 . F or any f  in  1,2 (G),

(2. 39) T. f  = R g r  f .

P ro o f. L et {Ea} be a fundamental system of neighborhoods as

in lem m a 2 . 13 . Now, for any h in Co (G ) define a function ha by

(2. 40) h0,(g)--=(1 /1 1 (E a))h (g x E,(gig)di1(gi).

Then,

(2. 41) ( T h a) ( g ) = ( 1 / /t(E a )) h (g i- 1 )(T x ,,E „)(g )d p (g 1 ).

Substitute the following in  (2. 41),

(2. 42) (T x gy E,)(g)=x 7 -(, -,i,,)(g)=26,_,,,(E)(g)=xg7is.,.g,(g)

So, we get,

(2. 43) (T ha)(g)-- (1 /11(E a )) h (g i- ')x E ,(g iggV )d tt(g ,)

= (1 /  t t(E a))h (g ag i-1 )x E ,(g i)d ,a(g i) .
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Now take the lim its o f both sides for E a ---> {e} . Since ha  con-
verges to h in P(G ), T h a  converges to R g T h  in L 2 (G), so we get

(2.44)T h — R g r h , in L 2 (G).

While both T  and R g ,  are bounded and Co (G) is dense in L 2 (G),
th is shows (2. 39) soon.

(2. 39) gives the assertion of proposition 2. 1.

4. Now we shall state the proof of proposition 2. 2, following
to the paper of J. Ernest [4] . Based on the proposition 2. 1, which
is just proved, we shall identify S2 to  G in  th is section.

./N

Lemma 2. 15. The weak topology r  on Q =  G is weaker than
the initial topology ro on  G.

P ro o f .  Since any matrix element < Ug (w)u, y> is  a continuous
function on G  w ith  respect to  ro , and r  i s  the weakest topology
which makes all matrix elements continuous. Thus r must be weaker
than ro.

Lemma 2. 16. The topology r' which makes matrix elements
{<Rg h, h>: (hEC o (G ) ) )  continuous, is stronger than z- o.

P ro o f. I t  is sufficient to show that for any neighborhood V of
e  in G , there ex ists non-zero matrix element <Rg h, h>, the carrier
of which as a function on G is  in V . Let U be a neighborhood of
e  such  th at U U 'c  V, and h  b e  a  function in C ( G ) ,  carrier of
which is in  U .  Then the carrier of function

(2. 45) <R g h, h> 1 h ( g i g )h (g i )dp(g i ),

is  in  U lf ' c  V.

It is evident that r  is stonger than r', so combining lemmata 2. 15
and 2. 16, w e get a proof of proposition 2. 2.

5. In the definition of birepresentation, we took apparently un-
natural condition ( i ) ,  i.e., we assumed
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a) T (R )  is bounded,
b) T ( R ) 0 .

But the following examples show ti- at these conditiors are - ecessary
to prove the duality o f this type. (cf. §0).

E x a m p le  1. (Necessity of condition  a ) I). Let G  be R = {x}
(additive group o f real numbers), then 6= {a) ( p ) }  can be identified
to R  { p }  too. A n y  e lem en t x  of in itia l group G corresponds in

one-to-one way to a unitary character on GN . For given represen-
tation cp of R  with an irreducible decomposition

[ n (P ) ( P )  C  ( P )

where n (p )  gives the multiplicity o f  w ( p )  in (0, U,(0)) corresponds
to the map multiplying e '"  on co(p)-components of vectors.

Now consider a non-unitary character e '"  ( z  C, and 3',,,,z+0)
and the map on multiplying e '"  on pi(p)-components of vectors,
then  easily to  see, th is m ap defines a non-zero non-bounded (in
general) closed operator T (w ) with dense domain in , )((p ), and the
operator fie ld  T  {T (0 ) ) )  satisfies the conditions of definition of
birepresentation with only exception a).

E x a m p le  2. (Necessity of condition a) II). In the case of that
G  i s  a compact Lie group, C. Chevalley's result [2 ] shows that if
we don't assume unitarity nor reality of T, then operator fields given
by such a  method, corresponds in one-to-one way to the complexi-
fication of G .  The remark cited after lemma 2. 10 means that this
is the case in which T (R ) is not bounded. This results the necessity
o f condition a ) also.

R e m a r k .  The above two examples tempt us to  m ake a  con-
jecture that i f  w e tak e  the set of all operator fields, components
T (w ) of which are bounded on each .)(0)) (0) G ) ,  but not necessarily
(uniformly) bounded on the regular representation R  and satisfy (ii)
and (iii), it will become a group corresponding to a complexification
o f G .  However we shall show later (§5 ), for some semi-simple Lie
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groups, i f  T  satisfies ( i i ) and (iii), the boundedness of T (R ) follows
from the boundedness of T(0)) on , (0)) (0)E 6). Therefore, in such
a casc, the above mentioned set of operator fields does not be extended
from the initial group.

Example 3 .  (Necessity of condition b) I ) .  Let G be a separable
locally compact group having no finite dimensional irreducible repre-
sentation except trivial representation 1 , (for instance, SL (n ,C ),
SL(n, R ) etc.). T h e n  a n y  Kronecker product 0)100)2 o f  irreducible
representations 0), and 002 excep t 1 0 1  has not subrepresentation 1.
This assures th a t i f  we define an operator field T= {T(0))} , such

that, ( i )  T o ) = 1 ,  ( i i )  T (0 )) = 0, for any 0 4 1  in ( i i i )  T (0 ))—U

T (o)(a))(11)(a) for general 0) in 2  which has the irreducible decom-
position 0)4 o (a )d p (6 ) ,  then T  g ives an operator field satisfying
(i) ( i i i )  except b ) on Q .  E v id e n t ly  T O , but T ( 0 ) )  (04 1 ) a r e

non-unitary. Therefore such a T  does not correspond to any element
in G by ço.

Example 4. (Necessity of condition b) II). Example 3 deals
very simple operator field, so there arises a question, that omitting
such operator fields, can we find a group with operator field satisfying
(i) ( i i i )  except b ) ?  To answer this question, consider a  locally
compact semi-direct product G  o f a  separable non-compact closed
abelian normal subgroup N  an d  a  closed subgroup K , which is
mentioned in the examples in §4 and §7.

I t  is  e a sy  to  se e  th a t th e  se t o f all representations of type
Z(0, r), which are considerable as representations of the factor group

(cf. §7 ), generates a "subring" of S2, and the regular re-
presentation has no non-trivial component consisted o f these represen-
tations. (Call such a component as Z(é, r)-component). Moreover,
an y  Kronecker product o f  two representations without non-trivial
Z(0, r)-components has no non-trivial Z(0, r)-component. While any
representation in  S 2  can be decomposed into th e form , co- - --ohED

r)dp (r), where wi  h as  no non-trivial Z(e, r)-component.
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Now fix an element k  in  K  and le t  W k (r) b e  the operator of
representation r  o f  K .  Define a n  operator field T =  { T  (w )}  by
T(w) 0 (0)1)1E) W k  (7 ) d  (v )  , where 0(o 1)  is  zero operator o n  ((.01.)•
Short arguments shows th a t  T  satisfies i) i i i )  except b )  and
T (R )= 0 .

Example 5 .  (Necessity of condition b) III). Analogous example
is given for non-compact locally compact abelian groups too. Let Q0

be the set of discrete direct sum o f elements of GN  i n  D. A n y  re -
presentation to is decomposable to the form (thew, where oh is in  2 0

and co, has no dirscrete irreducible component. Let oh be represented
a s  a  sum E a o r  by irreducible components tor.

F ix  an element g  in  G, and denote by g (w ), the character on
6\  corresponding to g .  And define for above mentioned co,

T (w )= T (a h ) e o ( c , , ,)---- (1)g - (wnED0(w2).

Then T = { T(t0)} gives an example required.

Example 6. (Loosening of condition b )  I ) .  For a compact
group G, since, a s  well-known, any representation of G  is imbedded
as a non-trivial subrepresentation in  a m ultip le of regular represen-
tations, if T =  { T  (w )}  satisfies i) — iii) except b )  a n d  T (R )= 0 ,
then T

So that, fo r such a group , the only assumption T 0 results
automatically, T (R )*O.

Example 7 .  (Loosening of condition b) II). When G =S L (2, C),
the situation is analogous to example 6. To explain this we quote
the results of M. A. Naimark [161.

In th is case, G  is separated into three parts as follows [7].

a )  GN
o =  {trivial representation, 1} ,

G\ p= {principal series,
r )  Ô .  = {supplementary series, Z„, (0<p<2)}  .

The extended Plancherel theorem [7] shows that the regular re-
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presentation o f G  is decomposed as a continuous direct sum over

And the results of M. A. N aim ark [16] asserts the following.

Lemma 2 .1 7 .  1) Kronecker product (0,00)2 of elements of -6 is
equivalent to a subrepresentation of R  with the exceptional case of,

(i) at least, one of oh and oh is 1,
(ii) oh= Zvi, and (02=Z  '2 1)2).
2) In the case of (ii) (0341144 OA% )11

V2, 7 i f  we remove the
component of 0.),®(.02 which is equivalent to 1 + 7 , 2 - . 2

 then the remain-
ing subrepresentation is equivalent to a subrepresentation o f R.
(Proof is omitted).

We can obtain some results about exceptional case (ii).

Lemma 2 .  1 8 .  Let 2<v i+ v 2 ,  and the projection onto 210
component in  Zo i 0  Z „ be Po. Then fo r  vectors u  in  <ÎD(Z , ) ,  and
v  in k) ( Z 2 )  if
(2. 46) (I— P o)  ( u® v ) =0,

then
u 0v= 0.

P r o o f .  A s shown in  [16] , ( Z , 1 ) ( S 4 ? ( Z , 2 )  is considered as  a
space of the completion o f C0 ( C  C ) with respect to the norm

(2. 47)I f  II .= zi- z;I . I z 2 -  z'2

x f ( z 1 ,  z o)f (z , z )dz 1dz 2d4d4}  1 /2 .

Consider a  sequence {k„(z,, z2)=k(z1)11(z1— z2)} in  C,(C x C),
in which k  is a fixed element in  C0 (C )  and {h„} is a sequence which
tends to the Dirac's measure on the origin 0  o f  C .  It is easy to
see that if 2 > 0 , then {k,,} constructs a Cauchy sequence in
, (Z„

1
) 0 ( Z , 2) .  Denote the limit point of this sequence by k°, then

its norm is given by

(2. 48) I z —  z' 1 -
4+' i+" 2k (z)k(Z) dzdz1 111

and immediate calculation shows



228 Nobuhiko Tatsuuma

(2. 49) Ug(Z ,105.)2)k = (ligz+81 - ' , - '2k( c t z - H r ))°
fz -1--(3 •

Thus, the map k -4 °  gives a  unitary equivalence between

and a subrepresentation of ,Z,„®Z„, on the G-invariant space {le;k

EC e,(C)}.

Now we consider the Fourier transform o f f  with respect to

(z1, z2)1

(2 .5 0 ) 7(w1, w2 ) f (z,, z2)eime(z17722+22vv2)az dz2,
C 2

(2.51) II f 112 =117112 —=ci w, w21- "I7 (w 1, w2)1 2 elw1dw2,

with normalizing constant c1 (* 0 ) .

Since Co (C X C ) is dense in ,Î",). (Z ,,)® (Z i,2 )  the latter space is
mapped into P(0, lw1 w 2 1 2 dw2d w 2 ) .  Especially the image of

a vector u ® v  is  a  product o f  functions fi(w i), f2 (w 2) which cor-

respond to u, y  respectively, so f i is  in L 2 (C , w
While the image of k° in the subspace g.:).- is the limit of

(2. 52) (ii„) (w1, w2) = k(z3h„(z i —z 2 )e i 9 l e( 2 1 1 ' z 2 w2 ) dz,dz2

k(z,)h„(z 2 )e  j M e ( z i r v i  H  (z i -z2 )2 -4 -)2 ) dZi CLZ2
c2

= /7 ( 1,01+ TV2)/7 " (  w 2 ) .

Because the limit of .  in  (n—, .. )  is  1 , the image of vector in the

space is a function of type of f  (wi+ w2).-
(2. 46) shows that u(E'v is in ( ', so that the correspond-

ing function in L 2 (C• W1 1 W2 I - ' 2 6 1 W1 dW2) is the form of f(w1+w2)
and f 1 ( w 1 ) f 2 ( w 2 )

 at same tim e . Therefore

(2. 53) f (w i+ w2) = fi(wi)f2(w2).

Substitute wi+ w2+ w in wi + w2 and consider integrals, for any ço in
Co (C),

(2. 54) w)§,(w2)dw1.f2(w2) f2(w2 + w).
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This shows that f ,  is continuous. Analogously f ,  is continuous too.
Moreover if one of f (0 ) = 0, then f (w) = f,(0) f, (w) = f, (w) f„(0)  = 0,
th is  is  the resu lt o f  lem m a. S o  w e  assume that WS v + 0 , then
f 1 (0 )f2 (0) + 0 , and

(2. 55) f2 (w ) =  c f,(w ), (c=  (f2 (0) / f,(0)) *0) .

That is,

(2. 56) 7(w1 + w2 ) —fi(wi) • cii(wz) —fi ( 4 4 + 1 1 , 2 )  • cf,(0).

Th is resu lts th at (f , (w )/ f , (0 ) )  must b e  a  character of additive

group C.

But any character on  C  does not belong to L 2 (C,
T hat is contradiction.

Let (0 b e  a representation o f  S L (2 ,C ) without 1-components.
Simple argument shows that (000 ) does not contain 1-components, so
the irreducible decomposition of (00(0 is separated into two parts,

z,.
Xp X s

The first term  is a subrepresentation of ZEN? by lemma 2. 17.
We put the projection onto this subrepresentation as P i .

C oro lla ry . Fo r any  u, v in  , (0)), w here w i s  as  above, if

(2. 57) P i(u g v )  =0,

then
uOv = O.

P r o o f .  Let the irreducible decomposition of (0 be

(2. 58) (r)dpo (r)
A

And let u =  {u (r )}  be the correspondence o f vectors in  this decom-
position, then

(2. 59) (r,)
A  A

( T O  c/ 0  (ri)dvo (VD
K
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The G-invariant projection P ,  is induced by a field of G-invariant
projections {P 1r 2 )  }  on A x  A , such that the range of [I— P (ri , z- 2 )]
is Z-component ( fo r  some v) in (0 ( T O  (0 (z-0  for almost all (r1, r2) .

So that, (2. 57) is equivalent to

(2. 60) (ri, r2) (u  (r i ) 0 v  ( r 2 )  =0,f o r  almost all (71, r2) .

Using lemma 2. 18, such a u (z-,)®v (r 2) must be zero for (ri, r2) , on
which (2. 60) is va lid . Th is leads us to the result.

Now we consider an operator field T= { T(0))}  over S2 satisfying
(i) ( i i i )  o f definition 2. 1 except b) (T (R )* 0 ) .

Lemma 2. 19. U nder th e  sam e assum ption o f  w  a s  above,
"T (w )=0" f ollow s f rom  "T (R )=0".

P ro o f.  I f  T (0))*0 , there exists a vector u  in ST2(0)) such that
T ( w ) u 0 .  I.e.,

(2. 61) T(w) u® T(w) u  O.

While by (iii),

(2. 62) P,(T ((o)uOT (co)u)= T ,„)13,(UOU).
X p

This vector must be zero by the assumption " T ( R )  0", and (ii).
This contradicts to the above corollary.

This lemma 2. 19 shows that the operator field given in example 3,

is the only example of non-zero T  satisfying "T (R ) =0" and (i) —

(i i i )  o f  definition 2. 1 except b).

§ 3 . Duality theorem on homogeneous spaces.

1. In [12] N. and N. Iwahori gave a formulation of an extension

of Tannaka duality theorem for homogeneous spaces of compact groups.

Here we shall prove similar results for a homogeneous space X —=
H \G , in which H is a compact subgroup of a locally compact group G.

L e t TC be the canonical map o f  G  onto X  by which g  in  G
corresponds to  the coset H g .  Because o f  compactness o f  H , there
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is an invariant measure pa on  X  which is unique besides equivalence
(cf. A. W eil [23] ). For simplicity we take a measure v= 4u0 on X,
in which J ( g )  is considered as a continuous function on X, because
the modulus J o f  two Haar measures satisfies J(h) 1 for any h
in H.

Now we define a representation 0) o f G over X  by

f. (co) =L 2 (1); X ),
(3. 1)

U g(w )f)(x ) = (J(g ) ) 1 1 2 f ( x  g ) , for f  in , -.?(a)).

Denote by N  the normalizer o f H in  G, then we can construct
a unitary representation o f N  on this space (co).

(3. 2) ( W n f ) (x ) = f  (n . x ), for f  in ( ( o ) ,

where ;I• x  shows the H-coset H n g , i f  x = H g.
On the other hand, another formulation of these representations

are given as in the following. Consider the left regular represen-

tation L = { L g , L 2 ( 11,; G )}  o f  G .  Put be the space o f  a ll H-
invariant vectors, i.e. o f all functions f  in L 2 (,21 ; G ) such that

(3. 3) f ( h g )— f (g ) , for any h in  H.

Consider the right regular representation

(3. 4) Rgf(g1)— (z1(g))112 f  ( g i g ) ,  for f  in  L 2 021 ; G),

a t  th e  same t im e . Then  {Ln ; n E N }  a n d  {k g ; g E G }  make

invariant.

I f  we consider a  function in as a  function over H \ G  in

natural way, the restrictions of {L n } and {k g,}  to give equivalent

representations to { Wn }  and { Ug (w )} respectively. We shall identify

these representations.

Now consider LOL. As in the case of right regular represen-
tation, this representation is decomposed into discrete direct sum of

L  for any complete orthonormal system 0 = {çoa} in  1,2 (,21, G ), (see,

corollary to lemma 1. 25)

(3.5)L ® L — E e L ,
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And the equivalence relation A (0 ) is given by

(3.6){ < 1 4 1 ço«>.f2(g)} « •

Since a product of H-invariant vectors is also H-invariant, the
image of by A (0 ) is  a subspace o f  E ,ED G,  in  ZER)(L a ),
where g,..)c,  is the subspace of all H-invariant vectors in (La).

Let P a  be the projection in EeL2(p1, G ) onto ,t ,„.

Lemma 3. 1. I f  Ç5,„  is  re al non negativ e, then

(3.7)P  «  A ( 0 ) (. g",.')

Proof. Because of arbitrariness of f 2 ,  it is enough to show that
for any g o in  G , there exists a  neighborhood U  o f g o , and f ,  in

such that

(3. 8) <Lg-i f,, ço„>*0, for any g  in  U.

Indeed for any k  in  Co ( H \ G ) such that [k ] c  H U , then k0 ( g ) ----

(k (g )/<Lg -i ç90,.>) is also in Co ( H \ G )  so in and

(3. 9)P a  A(0) (f1® k0) (g) = <Lg - 1 g9OE>k0(g)= k(g)

is in a .  B u t  when g ,  runs over G, such functions k  spans k),,, •

Now we shall assume that there exists go such that for any f1
in

(3. 10) 0= <Lg oifi, ça«>= Gf .,.(gog)q,c,(g)dp,(g)

f l (g )go„(gV g )dg i (g ) .
G

Replacing f ,  by

(3. 11) 7 (g ) ( h g ) d p „ ( h ) ,  ( f  Co (G)),

we get the equation

(3. 12) 0 =  7(g)çp c , (g -V g )d p ,(g )
G

-=-- G clk e,(g){ ,if (hg)d,u,,(h)goa(gV g)}
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=  i f c/1111 (h){ G f(g)(1, « (z -

1 h 1g)dgi(g)}

= G if (g),,Œ (g'0 - 1 11- 1g)ditn(h)} dii,(g).

And this results

(3. 13) ço„ (gVhg)d,e2n (h)= 0, for almost all g.
H

But th is is impossible.

For any n  in N , the followings are evident,

(3. 14) Wn Ug  (0)) = Ug  ((o) Wn  ,

(3. 15) P « A(0) ( W Ø W  n ) A (0) - ' = W n  .

Conversely we shall take as the definition of admissible operator
over .Î.) by these relations.

Definition 3. 1. A n operator T  is called  admissible operator
when

i) T  is  a non-z ero bounded operator over
ii) T Ug (0)) =U g (w)T, f o r any  g in  G ,
iii) i f  P a A ( 0 ) ( f i ® f 2 ) = h « ,  th e n  P « A (0 )(T f ,O T L )=T ha,

f o r any  f ,, j ;  in S  and  any  com plete orthonorm al sy stem  0 in
L 2 (,11, G).

As stated in §2, the set g  of a ll admissible operators constructs
a group, and the map ça: n--->Ln  i s  an algebraic hom om orphism  of
N  in to  IV . Under this situation extended T annaka 's duality on the
homogeneous space X  is stated as follows.

Proposition 3.1.  ç a  is  an  (algebraic) hom om orphism  of  N  onto
IV , w ith  k e rn e l H . T h at is  the  sam e, f or any  giv en admissible
operator T  there  ex ists n  in  N  such that

(3. 16) W n= T.

S uch a  n  is determ ined H - cosetw ise, that is,

( 3.17 ) W  n i

=  W 2.22
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i f  and only  i f  711 , n , belong to sam e H-coset i n  N .  So go induces
an (algebraic) isom orphism  g79' o f H \ N  onto TV.

Moreover let r  be the weakest topology on TV which makes all
m atrix elem ents {< T u , y >, (v u , v c )}  continuous, then,

Proposition 3. 2. "g; is  a bicontinuous map.

Combining these propositions, we get the following.

Theorem 2. H \ N  is isom orphic to  -g  by -g -9.

Rem ark. Obviously this theorem contains the results o f §2 as

a special case. B u t  b y  the reason o f  sim p lic ity  of situations, we
adopted this procedure.

2 .  Proofs o f these propositions are completely analogous to the

case in §2 . T h e  se r ie s  c f  fo llow ing lem m ata is valid , for given
admissible operator T  too.

Lemma 3.2.

(3. 18) T11=1.

Proof. T 11< 1  follows from the condition iii) o f definition 3. 1,
and

(3. 19) A (0)(D ® ,.)) c .

But the results o f lemma 3. 1 and the condition iii) o f definition 3. 1
g ive  the contrary inequality.

Lemma 3. 3. T ,  i s  an admissible o p e rato r, if  and only  if
it satisf ies i )  and i i )  o f def inition 3 .1 ,  and

( i i i ) '  f o r  any  h  in  Co ( X )  and f  in

(3.20)T i ( h . f ) ( x ) = ( T , h ) ( x ) • ( T , f ) ( x ) ,

f o r  alm ost all x  w ith  respect to  y.

P ro o f. Analogous to the proof o f lemma 2. 7.

Lemma 3. 4. F or an y  Ga-com pact set E  in  X ,  there ex ists
a m easurable set T ( E )  such that
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(3. 21) T(xE) x r ( E )  , in

P ro o f .  Analogous to the proof o f lemma 2. 8.

Lemma 3.5.

(3. 22) p(T (E ))<I)(E ),

(3. 23) T (E n F)L j T (E )n T (F) ,

(3. 24) T(Eg)L-', T (E)g, f o r  any g in  G ,

f o r any G8-compact se ts  E  an d  F in  X.

P ro o f .  Analogous to the proof o f lemma 2. 9.

Lemma 3. 6. T  gives an  isometry on L '(v , X ).

P ro o f .  U sing the uniqueness of G-invariant m easure over X,
the proof is given analogously as the proof o f lemma 2. 10.

Corollary.

(3. 25) 1)( T (E )) = ( E ) .

P ro o f .  Analogous to the proof o f corollary to lemma 2. 10.

Lemma 3. 7. Fo r any h  in  C o (X ),

(3.26)I ! h I J = I ! ThJI .

P ro o f .  Analogous to the proof o f lemma 2. 11.

Since in th is case, the related functions are a l l  H-cosetwise, so
w e have to prove some additive lemma.

Lemma 3. 8. F o r arbitrary given neighborhood W  of  e  in
G, there exists a  neighborhood V  o f  e  such that

(3. 27) HV V -UIEHW

P ro o f .  For any neighborhood Vo o f  e, a neighborhood V o f e
such that

(3. 28) c Vo

ex is ts . T h ere fo re , it  is  en o u gh  to  show th a t  the existence of
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which satisfies

(3.29)H 1 7 0 1 1 c H W .

Because o f continuity of the map

(3.30)g 7 ) — > g 1 g 2 g 1

a t (g, e ) , there is a neighborhood V (g )  o f e  such that

(3.31)V ( g )  •  g  •  V ( g )  •  ( V ( g ) g ) ' c  W.

While H  is compact, thus finite covering U V (h ,)h , o f H  can be

selected. Put

(3.32)=  n wh,),
then for any h in  H, there is a  V (h ,)h , containing h and

(3. 33) V (111)111V (k)1171V (h,)1cW ,

that is,

(3. 34) hV o l f 1 c  W, for any h in  H.

Multiplying H  from left, we get (3. 29) immediately.

Lemma 3. 9. F or any  G s-compact set E  in  X , there ex ists
an elem ent g ( E )  in  G  such that

(3. 35) 7r"(T (E ))— g(E )7r'(E ),

(3. 36) g ( E ) 'H g ( E ) c ir'( E ) •  ( 7 ( -1 (E )) 1 .

M oreover fo r  any  h in H, g ( E ) h  h as the sam e properties.

P ro o f.  Instead o f ço in lemma 2. 12 (2. 31), we put

(3. 37) (p (7r (g ) )=x „_ , ( E) (g i ) x i ( , ) (ggi)d,u,(g1)

= p,(7c - 1  ( E ) ("1 7r-  ( E ) )

Using the results o f lemmata 3. 4 and 3. 5, we get,

(3. 38) ( T g o )  ( n ( g ) ) (7r-0 (E ) 7r-' (7  (E )))

The same arguments as in lemma 2. 12 can be adopted, so it is

obtained the existence of g ( E )  in G such that
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(3. 39) 7r-'( T (E ))— g(E )7 r - 1 (E ).

But 7r- 1 ( T ( E ) )  is a  H-cosetwise set in G, so

(3. 40) hg(E)7r - 1 (E ) — h7c- 1 ( T (E ) ) - 7r- ' ( T (E ) ) — g(E)7r - '(E ),

for any h in  H.

This results (3. 36) immediately.

Because 7-c- ' ( E )  is  H-cosetwise set, so g (E )h  satisfies the same

properties.

Lemma 3. 10. For a fundamental system {W} of Gs-compact
neighborhoods of e in G, the family = {F,s,= {7r(g fV ) :  Wa g W a )l a ,
where g„--- g(7-r( W OE)) satisfies (3.35) fo r each 7r( W )  respectively,
constructs a base of Cauchy filter in the complete space X= H \G .
Consequently, there exists unique limit point

(3.41)l i m n ( g V )  = n (g r ), in X,

(3.42)g r E N .

P r o o f .  As the proof o f lemma 2. 13, it is obtained that,

(3.43)T ( n ( W Œ ) ) n  T(n(w,3))*0.
From (3. 35),

(3. 44) gaHWang0HW0+0, for any a and ,R.

On the other hand, from the result o f lemma 3. 8, for any neighbor-

hood W  o f e in G, there exists a  W a  such that

(3. 45) HWŒ WVHcHW,

so for any W 0 ,  W y which are contained in  W a ,

(3. 46) g i3-
1 c H W 13 W y - iH g c H W a W „ - - 1 H v 'c H W g , - 1.

This shows that constructs a base of Cauchy filtre. Let the limit
o f  this filtre b e  n(g T ) ,  we can select {(g;,) - 1 = (11,„g“)', h OE E H}
which converges to g r  in  G.

While from (3. 36) being applied to g-:,,

(3. 47) ( e , ) 'H (g L ) c HWa WVHc HW.
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Taking the limit, we get

(3.48)g r l i g T 7 1 c H .

So (3. 42) follows from (3. 48) soon.

Hereafter we shall denote g T b y  n r  for the reason o f  (3. 42).

L em m a 3 . 11 . Fo r any k  in  Co (G),

(3. 49) kc,(g) ik ( g ,g ) ( x , , , , ( g , ) / p , ( H W ) ) d i t i ( g , ) ,

converges uniformly as W — {e}, to

(3. 50) ii(n (g ))=-H k (h g )d p i,(g ) .

P r o o f .  The integral with Haar measure is represented as

multiple integral as follows. (cf. A. W eil [231).

(3.51)f  (g )d # ,(g) --- clG f ( g ) 4 ( g ) A t (g )
G 

x d v e (n (g )) f ( h g ) J ( h g ) d ( h ) 1

= , , , d(g)dli o (n (g ))1 , f (hg)clie,f (h)}

= x clv(Tc(g)){ , i f (h g )d p .,(h )} .

(3. 52) p i(H W O =x ,,,,,,„(g )d ,a,(g )
G

X 7 r ( W , ) ( 7 t ( g ) )  d 1 ) ( 7 r  ( g )  —  v ( i r (
W  a ) )

X

So that,

(3.53)
k OE( g ) = x clv (n(g i )){ , k (h g ig ) (x .,(h g ,) /p ,(H W a))c lt tr,(h )}

(x (g 1))11)(7r( W Œ)))1i(g(g1g))dv (n(g1)).

But r? is  in Co (X ) ,  so the integral converges to  re(n(g)) uniformly
in g , as W a--.{e} .

Especially,
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Lemma 3. 12. For any f  in

(3. 54) T f — W nrf .

P ro o f . For any k  in Co (X ), put

(3. 55) ko,(7c(g))= (1/ p,(HW a ) )  k (n ( g ; ' ) ) x , , , ( g g i )dtt i (g i ).
G

Analogous arguments to the proof o f lemma 2. 14 leads us to,

(3. 56)

(T k a ) (7r (  g ))  =1 z (7 1 .(g l(4 ) - 1g))(x nw ,(gi) I ii,( HW  a)) d  Cgri).

From the result o f lemma 3. 11, the lim it o f right side is

(3.57)( z r  (h - 1 n rg ) ) 4 , ( h ) = k ( n ( n rg ) ) = ( W n T k )(z z (g)).

W hile { k a(z r(g))}  converges to  k  (7r(g)) uniformly having carriers

in some fixed compact set. Therefore { Th} converges to  T k  in

L 2 (p; X ) .  Consequently,

(3. 58) T k — W ,,,k, in L 2 ( ;  X ).

This relation is easily extendable to (3 . 54 ) on

The above lemma 3. 12 shows that ço is onto map, so we must

show the kernel o f ço is  H.

Lemma 3. 13. W n ,  is equal to W n „  if  and only if n ,  and n,

belong to same H -coset in N.

P ro o f . The "if" part is evident, so we consider the converse.

Taking i t  i s  e n o u g h  t o  show that i f  W n = I, then

n  is  in  H.

But the condition

(3. 59) k (nx ) — ( W nk )(x ) — k (x ), for any k  in  Co (X),

results

(3. 60) n x =x ,

that is,
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(3. 61) n H g = H g , for any g  in  G.

Especially,

(3. 62) nH= H.

This asserts that n  is  in  H.

Thus we have proved proposition 3. 1 , so next we shall prove
the topological assertion proFositicn 3. 2. Because o f  continuity of

L , th e  weak topology z- on .f\T-  is  w eaker th an  initial topology of
H \ N ,  that is , çp and so (0 are continuous. So it is sufficient to
show the followings.

Lemma 3 . 1 4 . (0- i  is continuous.

P ro o f. As in  the proof o f lemma 2. 16, it is sufficient to see
th a t fo r  any neighborhood W  o f e  in N , there ex ists a non-zero
vector u in H  such that <  u ,  u> i s  zero for n not contained in
HW .

Since the natural topology o f N  is induced topology by G , a
neighborhood Wo o f  e  in G  such that

(3.63)H W o r I N c H W

exists, therefore by lemma 3. 8, we can select a neighborhood V  of
e  in  G  such that

(3. 64) HV V - '11cHW 0.

Take u, carrier of which is in n (  V), then

(3. 65) < Wn u,u>ju(n(ng))u(n(g))c lv (7-c(g))

= Gu ( n  g )  ( g ) d  / 2 ,  ( g )  ,

is  zero for n  which does not belong to

(3. 66) N r1HV V - '11cN nH W 0cH W .

This completes the proof.
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§ 4 .  Duality theorem  in  a  strong form.

1. In  §2, we have proved, a duality theorem, which holds bet-
ween any locally compact group G, and a set 2  of equivalence classes
o f  (sufficiently many) representations of G . However, comparison
with Pontrjagin's or Tannaka's duality theorem shows that the proved
duality theorem is somewhat different from them. The m ain dif-
ference is that in the latter two dualities, an element in G is charac-
terized as a  vector field over the dual G  (s e t  o f all equivalence
classes of irreducible representations) o f G , instead of 2  in  § 2 .  In
th is  point of view , w e shall reform ulate a  duality theorem, and
clarify the relation of these two types of duality.

[A ssu m p tion ] In  w hat follow s, w e deal only  separable and
ty P e  I  g ro u p s  G . N am e ly , irre d u c ib le  d e c o m p o sab ility  and
uniqueness of the decom position w ithin unitary  equiv alence of
any  representation of G are Provided.

Let be the set of all equivalence classes of irreducible repre-
sentations of G. A n d  w e attach a  representative co to each class
in as in  the case of D  in  §2. A n d  if a n  operator field T =
{ T (0 ) )}  over in  w hich each T (w ) is  an operator on  , (e.0), is
given, then for any irreducible representation wo ,  we can define un-
ique operator as extension of T  by
(4. 1) T ( coo) = U T (w) ,

where oh) is the representative o f  equivalence class containing
(00. Hereafter, i f  it is necessary, we consider this unique extension

o f  T , under the same symbol {T(w)}

Definition 4 .  1 .  An operator f ield T = {T  (w)}  over is called
strong  b ire  presentation when,

T(w) i s  an bounded operator on (w),
T  is  integrable*) on the regular representation R,
T  is  bounded*) on R,
T  is  n o n z e r o * )  on R,

*) See §1.
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( i i )  For the irreducible decomposition

(4. 2) w (x)dp,,,(x),0(c.1..2)

of Kronecker product o f two elements oh and oh in  6N ,  T  is inte-
grable on 0)1 0 0 ) 2 and the equation

(4.3)U ( T  (0)00 T (a0) = T (co (x ))d p ,,,(x ),
a (u n .. , 2)

is  valid.
A

As in §2, the set of all strong birepresentations G  (bidual) be-
comes a group by the product operation

(4.4)I ' , {Ti ( 6 ) )  T 2  ( 6 ) )  ,  f o r  T f = { T.,(0))}, ( j= 1, 2),

and the identity 1= {/(w)}

And for given g  in G, Ug = { Ug (w )}  gives a strong birepresenta-
tion and the map ço; g , Ug  is  an algebraic hom om orphism  o f G

A
in to  G . The main proposition is as follows,

Proposition 4.1. y9 i s  an  (algebraic) isomorphism o f G  onto
A
G . T h at  is  the same, for any  giv en strong birepresentation T,
there ex ists unique g in G such that

(4.5)U g =  T.

About the topological part, we shall consider later.

2 .  For any given strong birepresentation T { T ((0)} , i f  we
can define an admissible operator T  over D  (G ) (see §2) such that

A
(4.6) Uo( T (0))0T )U, 0

- 1 = Ee) T ,  for any (0 in  G,

where U. gives the equivalence relation of

(L,
(4.7) e0S R — E G R ,

then by the reason of the results of §2, there exists an element

in  G  and

(4.8)T =  R  g

Thus, lemma 2. 4 asserts that
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(4.9)T  = U g .

So to prove the proposition 4 . 1 , it is sufficient to show the ex-

istence of admissible operator T  satisfying (4. 6). W hile (4. 9)

results that such an admissible operator must be the form of

(4. 10) T =-R g=tIR A  U g(0)(x ))dv ,(x ))U R
OR

T (0)(x ))dv ,(x ))U R ,PR

for the irreducible decomposition of the regular representation

(4 .11)
U R

w(x)di, R (x ).
OR

That is , if we show that the operator T  defined by

(4. 12) T=UR-'60RT(co(x))d,),(x))UR

on L 2 (G ) , exists and is admissible satisfying (4 . 6 ), then the propo-
sition 4. 1  is proved.

The conditions ( i )  a) ---- d) o f definition 4. 1  assure that (4. 12)
gives a non-zero bounded operator on  D ( G ) ,  that is ,  T  satisfies
the condition ( i )  (of lemma 2 . 5 ) o f admissibility.

Next, from the assumption G  is type I, in the central decom-
position

(4. 13) R 4 z (p )d ï;(p ) ,

almost all components Co(p) are type I  factor, namely, its operators
o f representation are forms of

(4. 14) U g(65(p))=1„(,)® U g(w (p)),

where w (p) is an irreducible representation and L ( , )  i s  the identity
operator in  a n(p)-dim ensional Hilbert space (see lemma 1. 7).

Because of the decomposition

n (p)
(4. 15) R ,0(p)d(p)
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gives the irreducible decomposition of R , almost all components of
in the decomposition (4. 13) are forms of

(4. 16) "7"(P)---L(p)0 T(0)(0)•

While for any g  in G, L g  belongs to {R g } '  then almost all com-
ponents of L g  in  (4. 13) take forms of

(4.17) 2:g (p )  L g  (p) I p ,

where L g  (p) is  a unitary operator in and I„ is  the identity oper-
ator in .7.)(60(p)) .

From (4. 16) and (4. 17), easily to see that two operators

(4. 18) T (p) di; (p) ,

(4. 19) Lg----Vg(p)c1P(p),

mutually commute. This is  the condition ( i i )  of admissibility.
The condition ( i i i )  o f  admissibility and the equation (4. 6)

are proved in the same way. Let the irreducible decomposition of
given representation w o be

(4.20)
Uo

Wo — S  co(x)dva(x).
D,

Then from the corollary to lemma 1. 10 the irreducible decom-
position of co0O R  is given by

(4. 21) woOR IL (1--U1  0)(x)dgo (x)(S) (Y)di)R (Y)
DO DR

dvo(x) alvR(Y) {(0(x)Ow(Y)}
00x012

Ux ,,,clva(x)d,),,(y)Ç
dvo(x)dvD ( y)3oa xD R

X CO(w : X ,  y ) c lp x , y  (W )}
p ( r o l )

While the irreducible decomposition of EGR OE which is equivalent
to coo ® R  is given by
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(4. 22) (0(x)ch(x)} w(x)(114(x).
a 14 U

From the uniqueness o f  irreducible decomposition o f  a  representa-
tion of type I group G, there exists a  bimeasurable correspondence
between the sp ace  (w, x, y) :  w  S2(x, y), x 20, yE,QR I  and US2 e x -.
cept null set, which maps vo xv R ( x v„y) to ZIA ,  so induces a unitary

equivalence relation r/ between two representations in  integral form_
But obviously T  is  non-zero bounded, and integrable on E G R a, so

that the both sides o f  following equation exist and define a  non-
zero bounded operator, and the equation is valid.

(4. 23) dpo(x)ch.R(y) T(0)(w: x, y))dv.,,,,(w)}
DOX OR

=  UT ( c o ( x ) ) c M ( x ) }
n

The left side o f  (4 . 23) is connected to

(4. 24) T(a)(x))c/v0(x)ØS T(0)(x))dp,(x),
80 g„

by 
(S u), w hen  T  is integrable on con. A n d  th e  right side is con-

nected to

(4. 25) T(Ra)

This shows (4 . 6 ) when COo is co, and shows the condition  (iii>
o f admissibility when wo i s  R.

Rem ark. The conditions (i) b ) — d) depend closely to the ir-
reducible decomposition o f R .  It seems that i f  we don't know the
exact form o f decomposition o f R , then we can not check whether
T  is  a  strong birepresentation o r  n o t. In  th is  point of view, we
shall consider to replace these conditions to sufficient ones which
don't need the knowledge o f decomposition o f R.

For instance, conditions (j) c ) and d) are trivially replaceable to

(i) c ' )  11 T(co) 11 is uniformly bounded over GN ,
d') I I  T(w) II* 0 ,  for any w in  a
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And these conditions are evidently satisfactory when
(i) c - d " )  T(00)  is un itary for any 0) in  GN.
The condition substituted fo r (i) b ) is somewhat complicated.

In  [14] , G. W. Mackey constructed a Borel structure on a  as follows.
Let H„(n =1, 2, •••, co ) be a  n-dimensional Hilbert space, and con-

, sider the set I„ o f all irreducible representations o f G  over H „ . Put

the smallest Borel structure g  in I= U I„  such that a) I.  i s  a Borel
subset o f I for a ll n, b) for each n, each un and 1)„ in  H„ and each
g  in  G, <Ug (0))u„,v„> i s  a Borel function on  I„. Mackey's Borel

structure is  the quotient Borel structure of G  as a quotient Borel
space o f  {I, 0} w ith  respect to equivalence relation. Under this
circumstance, we consider the function çoi „ c „) .(0))---- {< T(0))u„, v„>;

on I, for an  extended operator field Y corresponding to T.

Definition 4 .2 .  A n operator f ield T = {T(0))} ov er G is called
integrable o n  G  when i s  T3-measurable ( f o r any  n, and any
u„, v„ in  H..)

It is easy to see, when T  is integrable on then integrable on
any representation 0), especially on R . This leads us to a sufficient
condition for (i) b),

(i) b') T =  { T (c0 )}  is integrable on a
We can define a topology r„ o f I which is generated by uniform

convergence on compact sets, of matrix elements {< Ug (0))u„, v„>} „.
That is, a fundamental system o f neighborhood o f 0)0 is given by

(4.26)U ( o h ,  e ,  C ,  u ,  y )  =  {0): dim H (0 )) dim H(w0) and

< Ug (w) — Ug (e00))u, v> <e, for any g  in  C},

for any e >0, and compact subset C in  G, and vectors u, v in H, (n
dim H(0)0 ) ) .  Since this set is representable as

(4. 27) U (coo , e, C, u, y) = f l  {co: I < ( Ug , (co) —  Ug  ,(wo))u, y> --<E}

for countable dense set {g ,} in C , the Borel structure generated by
r .  is equal to . Therefore, ( i )  b ) is replaceable by a  sufficient
condition
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(i) b " )  <  T(w )u, y> is v a -continuous for any u  and V.

Combining proposition 4. 1 with ( i)  c -d " )  and ( i )  b " ) ,  we get
the algebraic part of Pontrjagin duality theorem'''.

A
3. The adequate topology o f  G  is not so simple. From the

results o f §2, it is sufficient to give the weakest topology which
makes any matrix element in R ,

(4. 28) < Ug (co)f i ((o), f,(w)>dvR(w)—= <R g  1 .
2 >

D R

continuous, where f1 ,
 f ,  are any elements (or it is sufficient, to run

over a dense set) of D ( G )  which correspond to vectors {fi(o))}
{f2(0))} in the decomposition (4 . 11) of R , respectively.

When G is an abelian group, for any f, f ;  in L 2 (G )  and e> 0,
there exists a compact set C ( s )  in G=S2R such that

f (w) 11 2 dvR(w)<e, ( j = 1, 2).
G - C (E )

Therefore uniform convergence of { Ug (w )f i }  over compact subset of
G  induces the adequate topology, this results the topological part of
Pontrjagin duality.

While for a compact group G, /6  has discrete Borel structure, sa
it is easy to see the adequate topology coincides to the weak topology.

4. In this section, we shall introduce some well properties which
are not true in general, but are satisfied, for instance, for some semi-
simple Lie group, or some semi-direct products o f groups.

Definition 4 . 3 .  For any finite set F= {(0 5 :1 < j< n }  in GN , and
Positive integer N , let the subset s2(F, N )  of D  be the set of al[
equivalence classes of representations which are, (1 )  direct sum
o f  {0),( ,) ®•••®(0, 0 n ) , (m N )}  and ( 2 )  its subrepresentations.

An element o f s2(F, N )  is called to be finitely generated.

Definition 4 . 4 .  For any countable family S= {w,} let the
subset s2(S ) of D be the set of all equivalence classes of represen-

*) T h e  id ea  to  use the results o f  §2, for proving the Pontrjagin duality is
suggested by Prof. J. Ernest to the author.
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tations which are, (1 ) direct sum of {(0, ( j)0•••0(0 i ( „), (m=1,2,3, •••)}

an d  (2 )  its subre presentations.
A n element of ..2(S) is called to be countably generated

Lemma 4 . 1 .  For representations oh, oh in D with the irreduci-
ble decompositions

U,
(4. 29)w w ( x ) d p , ( x ) ,  (  j = 1 ,  2),

respectively, let an operator f ield T=  {T (w )} over 6 be integrable
on  (01 , wz at the sam e tim e and m oreov er satisf y  the condition
(i) — a) and ( i i )  of  definition 4 .1 , then T is integrable on

P r o o f .  As in the la s t part of the proof of proposition 4. 1,

(4. 30) (02—
u

dvi(x)dv,(y) w (w ; x, y)dv.,y(to)},

g ives an irreducible decomposition of w (02 and b y  the equivalence
relation U which gives (4. 30), T(w1)u0T(w2)v (uEk)(ah), vE , :)(0)2))
corresponds to

(4. 31) (1 , , ,,,2cli.,, (x)dv2(3)6
( . , , , ) T(0)(w; x, y))dvx, y (w )D U (uS v ).

This shows that

(4 .3 2 )  <[6L dlii(x )d»2(Y ) i ( „ ) T(co(w; x, y))cl (w)} )

x U(u gv)li (w; x, y), U(u`®e)(w ; X , .Y) x ,  y ) )

= < T((0(w; x , y ))[U (uev )(w ; x , y )],
U (u 'ev ')(w ; x , y )4 ( . ( w ;  x, y ) )

is measurable on S2i X -(22 (X y ) )  .  But the vectors { U (u g v )} span
The space o f representation o f right hand side of (4. 30), thus integra-
b ility  o f  T  on (010(0 2 is deduced.

Lemma 4 .  2 .  I f  wo i s  countably generated, then any operator
f ile ld  T = {T (w )}  over 6 w hich satisf ies the conditions (i) —a)
and  ( i i )  o f  definition 4 .1  is integrable on (00.
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P ro o f. Repeated applications of lemma 4. 1 re su lt th a t T  is
integrable on ia coKo® • • (3 c o i ( . ) ,  (a), E G).

Now let wo b e  a direct sum o f ar's o f above fo rm . Then for
any vectors u, y  in (0)0) ,  there exist countable members { )  such
that

(4. 33) u , v  Z E N )(& -" ,).

This means that the corresponding vector valued functions {u(0))},
-

{ v (c0 )}  have carriers in US2(0)" ,). So

(4. 34) <T(w) u (w) , V (0)) 4 ( . ) = < T  ((o )u  (w ),  y (w )4 ,)

is measurable with respect to the measure of irreducible decomposition
o f wo , as a countable sum of measurable functions.

Lastly if coo is general elem ent in a (S )  that is, a subrepresen-

tation of ZED -03", from lemma 1. 13, T  is integrable on coo.

Lemma 4. 3. I f  to , is f initely  generated then any  operator
f ield T =  {T (e0 )} over w h ic h  s at is f ie s  the conditions ( i ) — a) and
( i i )  of def inition 4 .1  is bounded on wo .

P ro o f. From the relation (lemma 1. 3)

( 4 . 35 )I I  T (a ),())0 . • • T(coic.))11= f;I: FT(0),(k))1!

gives that

(4.36) v.eess-sup II T(w) l k,( ( » ) S  (max (1, j  T (w )  ID) N

Lemma 4. 4. If wo is  countably generated and T  is an opera-
tor f ield over G  w hich satisf ies the conditions ( i ) — a) and ( i i )  of
def inition 4 . 1 .  M oreover i f  { T(Q))} satisf ies one of the following
conditions for generator {0)3 }  o f  wo,

a) ( T(a),)) - '(0) = {0 },

b) T(c0j )k)((o1)  is dense in k)(0),),

then T  is  non-zero on (00.
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P ro o f. By the definition, co, is a subrepresentation o f Z e j e ,

therefore i f  T  is zero on coo , there exists an a and non-zero subre-

presentation 65, o f (7ia such that T  is zero on

So it is enough to show that i f  T(0),) satisfies one of the con-
ditions a ), b ),  then T(a), ( ,) ) 0 --•0  T ( w )  has no non-trivial G .
invariant zero-space, that is the same, since this operator reduces
G-invariant space, the minimal G-invariant closed subspace which
contains the range of this operator is the whole space. We shall
show this property by induction with respect to m.

At first, for m =1, since co; is irreducible so non-trivial G-invariant
space must be whole (0),), but the both of conditions a) and b)
assure T (0 ),)*0 , this shows, the above is true in this case.

Next, we assume that B —__-- T(wi ( ,) ) 0 . T(0) - 0 )  has the above
property on (0)1(,)) ® • • • E , and consider BO T(a), ( . ) )  on
, ® (0 ) , ( „,) ). Take a complete orthonormal system {v , } in a n d
{w,} in  . (0),( ,„) ) ,  then any vector in (BO T(co, ( „) ) ) ' ( 0 )  is written
as  E a, tt,(3w, uniquely, in  which u , are vectors in  k) and {a,}
satisfies

(4.37)a  112 • II 1112* < +

While

(4. 38) 0  (B® T(0), ( „,) ) ) a,u,0w,)= a ,(B u ,)0 (T (w i ( ,„) )w,)

--- Ea,<Bui,74>t40(T(0).K.))wi).
1, k

(4. 37) shows the convergence of vectors E 14>w, for any k,
so that from the boundedness o f T(a), ( „,) ),

(4. 39) w 0 = T(wi(.)) a,<Bu,, v,,>wil = a,<Bu 1, vk>T(0),00)(w 1),

exists for any k. So from (4. 38)

(4. 40) FA% = 0, for any k.

Now, if T(u), ( ) )  satisfies the condition a) then

(4. 41) a,<Bu,, v0>wi=0, for any k,
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(4. 42) a,<Bui, y„>= 0, for any 1 and k.

This shows that, i f  a,40 then Bu,-0.

To belong the vector E  u ie  w i  in G-invariant zero-space of

BO T(0), ( ) ) ,  ( Ug  (0),( 0 ) 0 . Ug  (0)5 0 ,0 ) ) (  a,u,gw,)

= ( a ,((U g  (w ) ® • • • U  g  (0) ;(-1)))1 10 U g (a ) )w ,) m u st b e  in

(B®  T(0) J 0 „) ) ) - 1 (0). Thus from  the re su lts  o f  above arguments,
and arbitrariness o f complete orthonormal system {w,} , u ,  must be
in G-invariant zero-space of B .  Therefore a, u, 0  for all /, and the
assertion is proved in th is case.

On the other hand, let T(0), ( „,) ). (c0J ( , ) )  be dense in . (coJ ( ,,,) ) ,  of
course, Ug (co jo,o) T (o ),(”,)) (co , t ) )  is  dense for any g  in G .  From the
assumption, for any u  in a n d  E>O , there exist a  {g,,} in G and
{v ,} in such that I! u — Ug ,(o), ( i ) ) ® • • • ug h  (0), ( „ ) ))/31411 < e .  And

k
for any w  in .;), (co ) )  and g,, as above we can select tk in (0).K.))
such that 11w Ug, (eoi(.))

(4. 43) w—E(Ug h (co i a))® • • . 0  U g  (co g„,)))(B® T (ee) ; („ ,))) l k Ot k )![

llulIs+ l(W IJC + 6 2  •

This shows that BO T(co, ( ,„) )  has the above property.

Lemma 4 .  5 .  If  wo is f initely  generated, then the weakest topolo-
gy  of  G which makes <Ug (wo )y, u> continuous f o r any  u, y  i n  (coo )
is w eak er than the  weakest topology  which m akes {<Ug (w; )v ; , u; >1
continuous f o r any  w, and  any  u„ y ;  in  .:),(w,).

P roo f. A ll the operator Ug  (coo), Ug  (0)5)  are unitary. So these
topology are equ ivalen t to  the topology w hich m ake Ug (coo)V ,
{Ug(co,)7)5} continuous in  strong topology o f vectors, respectively.
But coo i s  a subrepresentation o f  55— ZeD (wi(i)0* • • Ocoi(.)) , so, it is
sufficient to show that Ug(i-o )v  is continuous in the topology induced_
b y  { Ug  (coy) v,} J . For the vector of type v== vJ ( l ) 0 . • .0 v J ( ,k ) , the in-
equality

T(0) ; ( , ) )t k Il< s .  So
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(4. 44) I I vim® • • O v io . )  (  Ug (0).10)) 0 • • • 0  Ug(wKno)v i(j)0 - • •S v KnolI

IIV :1(1)® • • • (3 V i(k -1)2 ) (
I  U g  (w 3(k ))) 1) j(k) '3  g(0) i(k+i))v ick+1)0

• "e  Ug (0)i(„,))11 jo,,) I
Ug ( 0 ) A O ) V i(k)lj a l l  V  I  )1!

shows that Ug (if3)v is continuous. And for general vector v

we can take N  such that,

(4.45) IIV —

Take g  sufficiently near to e, then

(4. 46) !Iv— EED( U g(04 (l))0 •• • Ug(Q4(„.)))vsll

+

— ( Ug (.;(1 )) 0  •  •  . 0  Ug (0., ,)) (v ;(l)0 . •  •  g v ;(..)) II
±  czeug (0); ( ,) ) 0.•.® ug ( ,) ) ) ( v - v )

S2e + E EllvsK k) — U g  (a); ( k ) )vs, ( , ) )  II 1- 111v;(0s k IAK4

becomes very small.

Combining these results, we can loosen the conditions of defini-
tion 4. 1 in special cases.

Proposition 4. 2 . If R is count ably generated, then for opetator

f ields T =  {T (w )}  over 6, which satisfies only the conditions ( i )  a),
c) and (ii) of definition 4. 1, and the condition of lemma 4.4 for the
generators {wi }  o f R , the sam e result as proposition 4. 1 is valid.

Proposition 4. 3. If R  is finitely generated, then for operator
fields T =  {T (w )}  over 6 , which satisfies only the conditions ( i )  a),
and ( i i )  of definition 4. 1, and the condition of lemma 4. 4 for the
generators {wi } o f R, the sam e result as proposition  4 . 1  is  valid.

Moreover, in this case, the topology of G coincides the weakest
topology o f G  w hich m akes the m atrix  elem ents {<Ug (wj )v, u>:
ze,v )(w i ) }  continuous for the generator {w,} o f R.
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We shall show later, the situation of proposition 4. 2 is the case
of some semi-direct product of groups (see §7), and that of proposi-
tion 4. 3 is the case of connected non-compact simple Lie group with
finite centre, but in the latter case, the condition of lemma 4. 4 can
be loosen again.

We shall call the duality theorem under the special situation as
above by,

Definition 4 . 5 . If for any operator field T over 6, the condition
(i) — b) of definition 4. 1  follows from the other conditions, then we
call that G satisfies the duality theorem of the first kind.

Definition 4. 6. Analogously, if the conditions (j) —b) and c)
follows from the others, then we call that G satisfies the duality
theorem of the second kind.

5. E xam ple. (Th e  group o f  linear transformations on the
straight line.)

As shown by I. M. Gel'fand and M. A. N aim ark [6] this group

is representable as a matrix group

(4. 47)G =  {(0
a : i

b)  :  a>0, — c>o<b<co} ,

•which is the semi-direct product of normal subgroup

(4. 48)

and closed subgroup

(4. 49)

A  =

,(4.

And irreducible representations o f G  are given by,

50)

i) ix(g) ( g ( oa c

for a unitary character x of K,

ii) w Ind e",
N->G

iii) Ind e ',
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which correspond respectively to the G-orbits in »(---R), such that
i) {0} ,

(4. 51) ii) l+ ={x; x>0} ,
iii) {x; x<0}.

For a  function O\\
 

in L2 (G), the Fourier

transform with respect to b is given by

((1, b (a , 0)) e _(4. 52) 7(a, x) , -----c0 S- c l b ,0,1  0 ,1
(co ;  normalizing constant).

And it g ives a decomposition of the regular representation R o f G,

(4.53) Ind e'dx,

where the component Ind e ''' is equivalent to (0, when x>0 , and is
equivalent to (0_ when x<0.

Consequently the regular representation R  o f G  is decomposed
to a direct sum of multiples of (0, and (0_,

-
(4. 54 ) R—Zew',EBEENT 7-, (4— (0+, w-).

j = 1 i=1

That is, R  is finitely generated with the generators {(0+, (0_}. And
G satisfies the duality theorem of second kind.

§ 5 . Connected semi-simple Lie groups.

1. Let G be a connected semi-simple Lie group with finite centre.
This § is devoted to show the followings.

Lemma 5. 1. For such a G, the regular representation R  is
countably generated.

Moreover, i f  G  h as no compact factors*) th e n  the regular
representation is f initely  generated.

*) Let the decomposition of G as a direct product of sim ple Lie groups G I  b e
G= G,<  x G . .  We call each G i  as a factor of G. and G  has no compact factors.
when all G i s  are non-compact.
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Lemma 5. 2. For such a G, the condition ( i )  d )  of definition
4 . 1  (non-zero property of T  on R )  follows from

( i )  d" )  T (0 ) )+ 0 ,  for some irreducible representation w which
is induced by a representation of the subgroup r  (see ( 5 . 3 ) ) ,  as
in the paper o f F . B ru h at [1 ],

and the other conditions of definition 4. 1.

And from the results of §4, we get,

Proposition 5. 1. A  connected semi-simple Lie group with
finite centre satisfies the duality theorem of the first kind.

Proposition 5 .  2 .  A  connected semi-simple L ie  group with
finite centre without compact factors satisfies the duality theorem
of the second kind.

A
And in this case, the weak topology o f G  coincides with the

initial topology o f G.

2 .  A t first we shall quote some results about connected semi-

simple Lie groups without proofs or with simple proofs.

Lemma 5. 3. (H arish -C h an d ra [9 ]) . A connected semi-simple
Lie group is a type I group.

C oro lla ry . To prove the lemmata 5 . 1  and 5 . 2  for G , it is
sufficient to show the same assertions for each factor G, of G.

P ro o f. It is easy to see that the regular representation R  of G
is equivalent to the outer Kronecker product of regular representations
R ,  ( 1 < j < n )  of each factor G 1 o f  G.

While from lemma 1. 2, for any irreducible representation w, of
each G , (01 (02(Z)• • .(X )( „ is irreducible. So i f  each R. a re  countably

(resp. finitely) generated and its generators are  {0);} k , then {co;1)co 2

• • • § ( 0 " : " }  ( k l .  . k . )  are all irreducible and construct a  countable (resp.
finite) family of generators of R.

Moreover, since T 1 (R 1 )( T 2 (R 2 )67 • • •(>Z) T„(R„) = 0, if and only if
there exists j  such that T ,(R ,)= 0, so the non-zero property of T i(R ,)
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results that o f  T( R).

Lemma 5.4. F o r  any compact Lie group, the regular represen-
tation R  is  countably generated.

P ro o f .  Since a compact Lie group is separable, so P (G )
separable, that is, R  is decomposed to a discrete direct sum o f count-

able irreducible representations.

For any connected simple Lie group G  with finite centre Z(G),
and with Lie algebra q, let its Iwasawa decomposition be

(5.1)G =  K H N ,

where H  is  a  closed simply connected abelian subgroup, N  is  a

closed nilpotent subgroup and K  is  a compact subgroup, and any

element g  o f G is represented uniquely by elements k in K, h in  H
and n in N  as

(5.2)g = k h n .

Put M  the centralizer o f H  in K , then M  contains the centre
Z (G ) o f G, and

(5.3)M H N

becomes a closed subgroup o f G, containing Z(G ).

Lemma 5. 5. I f  G  is  non- compact, then

(5.4)r * G .
P ro o f .  For non-compact G, the subgroup H, therefore, H N  is

a non-trivial closed subgroup of G . But it is easy to see that M  is
contained in the normalizer of H N  (see, F. Bruhat [ 1] p. 186). So if
r  G, that is, if K = M , H N  must be a normal subgroup o f G . This
contradicts to the simplicity o f G.

Take a unitary character of abelian group H , such that, for
any Weyl transformation s  on H,

(5. 5) so'tç9,
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where V  is the unitary character defined by

(5. 6) (h)= ço(s(h)), for any h in H.

Now take any irreducible unitary representation 6== { V ,„(a), H(a)} of
compact group M , and consider the unitary representation of o n
H (6 ) defined by

iz-  { W y , H (a)}  ,
(5. 7)

Wy= W„,„----==ç9(h) V,„(a), for 1-7---mhn in P.

Obviously r give an irreducible representation o f r.
Lemma 5. 6. (F. B ru h a t  [1 ]) .  The representation

(5.8)0 ) = . - Ind

of G is irreducible.

R em ark. F. Bruhat's original form o f  this lemma is based on

the property

(5. 9) rs+ r ,  for any Weyl transformation s,

instead o f (5 . 5 ). That is, (5. 5) gives only a  sufficient condition of
(5. 9). But for our aim, it is enough to consider only representations

o f such a  kind.

Lemma 5 .7 .  We can select f inite representations {r i } ( 1 <j<n )
of the type (5. 7), fo r which the restriction of

(5. 10)

to  Z (G ) contains a subrepresentation w hich is equivalent to the
regular representation of Z(G).

P ro o f. From the assumption, Z (G ) is a finite group. Then its

regular representation is finite dimensional, and is a  discrete direct
sum o f  finite irreducible components. The Frobenius reciprocity

theorem on induced representations, being applied to M  and Z (G),
assures that fo r  each irreducible representation pi  o f  Z (G ), there

exists an irreducible representation a;  o f  M  such that the restriction
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o f a i  to  Z (G ) contains a component which is equivalent to p , .  Thus
construct r;  from some fixed yo as (5. 5) and a , b y  (5. 7), then the

assertion of this lemma is immediately.

Let the projection onto the subrepresentation, which is equivalent
to the regular representation o f Z (G ), in H ( r o) ( H (d , ) )  be Po.

1

And for ro .ZEI)r .f , put

(5.11)
r • G

Then from lemma 1. 16,

<5. 12) wo===-ZE1)(03—/nd(EEDri) =Ind r .

r • G  j

Lemma 5. 8. T here ex ists a function  P 1 ( g )  on G , v alues of
which are projections on H (r 0 ), and the restric tion of  ro t o  Z (G)
operates as  th e  regular representation on  the  range  o f  this pro-
jections. M oreover,

(5. 13) (P,f )  (g) -= P,(g)f  (g)

giv es a projection on gX(00).

P ro o f. T ake a complete orthonormal system  {v ,} in Po H(ro),
then from strong continuity o f  Wy (ro)  and finiteness of the dimension

of P o H(r o) ,  there exists a neighborhood V o f e  in T ' such that

(5. 14) Wiy(ro)v; — v i ll < (1/2) (< (1/V2 )),

for any j  and any r  in V.

One can select an open relative compact neighborhood U  o f e  in G
such that

(5.15)U U - l n r c  V.

Let C be a compact neighborhood contained in  U , then there exists
a continuous function f  satisfying

(5 16)
i) 0 <  f ( g ) <1 , for any g  in G,

. 
iii) f ( g )  = 1, on C ; and= 0, on the outside o f  U.

Define vector valued functions
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(5 . 17 ) f  ( g ) {
-1

=(  f ( rg ) d f i r( r) ) f ( rg ) W ,i( r o )v i d i tr( r) , on rC,
i  

= 0, on the outside of rC,

then obviously
 < f ( g ) ,

 y> are  measurable on G  for any vector y in
H(r o )  and j.  Moreover,

(5. 18) f i(rg)= W 7(70)f3(g),
for any r in  r  and any g  in  G,

and if g  is  in  C  then

(5. 19) !If 3 (g) — v JII=( , f (r g)dur(r)) 1 li r f ( rg )  W 7 - 1  (ro)v i clpr(r)

(r  g) v J cl tir (r)

r f (rg )d p r (r ) )  1 S r f (r g) I! W y -i(ro )v i —v i lidp ,(y )< (1/2).

The last inequality follows from  that for any g  in  C  the integral
domain is

(5. 20) {r : rg  U , r E  r}  c  U C - i n r c U U - ln r c V .

L et {g,,}  b e  a  countable se t  such that both o f  {n (C•gr,)} and
{n( U. g , ) }  give locally finite coverings o f  G / r ,  where n  i s  the
canonical map from G  onto G lr .  Such a  se t is given, for instance,
by considering finite coverings by {n (C • g ,)}  of the compact sets

(5. 21) 7 r (U ) — (U ') .

Next, denote the functions

(5. 22)

and lastly construct a  family of functions on G  by
k-i

(5. 23)7 , ( g ) = -  f  j ,k (g), for g  in  (rC g -
k —U FC• g,),

then r ' s  a re  measurable functions on G , and from (5. 18), (5. 22)

and (5. 23), satisfy the relation

(5. 24) 71(rg) W y (r0)7 j (g), for any r in and g  in  G.
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W e shall s h o w  {  (g ) } 1 a r e  mutually linearly independent for
- 1

any g  in G . In fact, if g  is  in  (r. Cg,,— Ur • C g i) .  g  is represented
1 1

as

(5.25)g = r • c •  g„ , for r  in  r , c in  C.

And for any j,

(5. 26) j r.,(g) = f = W y ( r,) f i ,k (cg,,) = W ,(r o )f  i (c).

But using (5 19) ,

(5. 2 7) !I Wy(ro)f J(c) — (r 0 ) V II =  f  (c ) 'II< (1/2),
for any j.

Since {v ,} is  a complete orthonormal system in P o H (r o ) ,  so { f ,(c))„
therefore {.7,(g)}  , are mutually linearly independent.

Th is resu lts that {I i (g)}  , spans a  vector subspace o f H (r o)
which has same dimension with P o H(r0 ). While since Z (G ) is  the
centre of G , the W (v o ) (z  E  Z (G )) operates on { 7,(g)} 5 as follows,

(5. 28) W ( ro ) j ( g )  W (r o )  W (r 0 ) f ( c )

(const.) x T47 (70) W 7(r0),.f  (rc) W y -i(ro)v  diir(r)

= (cost.) x W-y(ro) r f  (rc) i(r9) ( W.(r 0) v d Pr(r) •

This shows that { f—,(g)}  , transfer under the operation o f W (r o ) as

same manner as {v,} j , from the definition of {v,} „ { I47. (r 0) } ,  is equi-
valen t to  the regular representation o f  Z (G ) on 13

0 11(r0 ) ,  that is,
on the space H ( g )  spanned by {3 g)} . Put the projection from
H(r o )  onto H ( g )  as P i ( g ) .  Then P i ( g )  is given as

(5. 29) P1(g)f  (g )  = E c ,(g )<  f(g ),:f,(g)> -1,(g),

where c j ( g )  are measurable and not all zero at same time, satisfying,

(5. 30) c i (rg) = c ,(g), for y  in r ,  g  in  G.

Thus P 1 ( g ) f ( g )  belongs in .:)(c00), a n d  it is  easy  to  see  th a t
given in (5. 13) is  a projection over
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Lemma 5 . 9 .  The restriction of ro®•••®ro to Z (G ) contains a
subrePrentation w hich is equiv alent to a multiple of the regular
representation o f Z ( G ) .  And P 1 (g 1 ) O P 1 (g 2 ) 0 .• •® P 1 (g„) g iv e  a
projection of H (r 0) 0 .- • C )H ( r o)  onto the subrepresentation f or any

g„), w here P i (g ) is  g iv en  in  lem m a 5 .8 .

P ro o f. From lemma 5. 7, r 0, z (G ) contains a  component being
equivalent to the regular representation, and lemma 5 . 8  claims that
P i (g )  g ives a projection to this component fo r  any g  in G .  By
lemma 1 . 2 5 , the Kronecker product o f this components is equivalent
to a multiple of the regular representation. Therefore,

(5 . 31) r 0lz(G)0 • • • Oro I z(G) - - - - (r00 • • • O r0) I zgo

contains a component which is equivalent to a multiple of the regular
representations, and P 1 ( g 1 ) 0 P 1 ( g 2 ) 0 • • • C ) P 1 ( g )  g ives the projection
onto this component.

Let M  be a locally compact space, and G be a Lie group which
operates as a transformation group over M , such that (m,g)-->mg
gives a continuous map o f M x G  to  M , and m e =m  for any m  in

M  and the unit element e  in G.
Now we call the closed subgroup

(5.32) r ( m ) = { g: mg — m}

o f G, defined for any given in  in M , the isotropy subgroup on

Lemma 5 .  1 0 .  (J. G lim m  [8 ]) . The dim ension of the closed
su b g ro u p  r(m ) is  a upper sem i-continuous function on M.

3. Now we shall entre to the proof o f lemmata 5 . 1  and 5. 2.

From corollary to lemma 5 . 3 , for proving lemmata 5 . 1  and 5. 2,

it is sufficient to show that these lemmata are true for any simple
factor of G.

I f  G i s  compact then lemma 5 . 1  is same to lemma 5. 4. And
non-zero property of T =  { T ( 0 ) ) }  on R  follows from existence of co
in for which T (0 ))  t  0 ,  because any irreducible representation of
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compact group is contained in R  as a discrete component. This is
namely lemma 5. 2.

Thus in what follows, we restrict us to  the case that G  is  a
non-compact connected simple group with finite centre.

For such a G, from lemma 5. 5, r * G .  Put

(5. 33) dim r d .

Lemma 5.11. For t 2d-F 2, too® • (too is the representation
giv en in  (5 . 1 2 ))  contains a subrepresentation which is equivalent
to  R.

T h at is , f or such  a G  L em m a 5 . 1  is  true.

P ro o f . I n  § 6 , it is  sh o w n  th at tw o  c lo sed  sub gro up s r

x ••• xr) and  '6,(--=-:{ (g, •••, g): g E G } )  in  G '( -- -_G x•••xG )
are regularly related. S o  w e  c a n  a p p ly  G . W . Mackey's results
(lemma 1. 23) to  th is case.

(5. 34) (000  •  .0 to o  (Ind 700 .• .0(Ind ro)

_w (gi(ro)O — O g e(ro ): r ' (h ))d p 4 ),ri\Gtz-G,

where g =  (g 1, .•-, g 1)  runs over the set of representatives o f  ( r ,  G ,)-
double cosets in G ', and y  i s  a measure over r \ G '  /  t such that
a double cosetwise set E  in G ' is  a null set with respect to a Haar

measure it ' ( = it X  •-• X  g) over G', if and only i f  its canonical image

TÉ in r t \ G l a ,  is  a 1-null s e t .  r  (k )  i s  a closed subgroup of G

such that

(5. 35) r ' ( ) g n . . . n g T i r g i ,

then r' ( ) contains Z (G )  always.
W rite by g, (ro)  the representation o f g,- T g ,, space o f represen-

tation o f w hich  is the space H (r o)  as same as ro ,  and operators of
which is given by

(5. 36) W g i r g ; 1 ( 7 0 ) ) for r '  in g î lrg i .
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Then the outer Kronecker product gi (ro) 6iN ) • -•(2)gt(ro) is defined
as a representation of the subgroup g i irg i x  v irg2x •••x  V ir g ,  in

G . So we can consider its restriction to  the subgroup rt (g) , _ {( r ,
• • •, r )  :  r  Er (k -' ) }  which is isom orphic to rt (k). Regarding this
restriction as a representation

(5. 37) gi(ro) I rt(i)0.• •Ogi(r0) p ( , ri (k )))

o f T t ( ) ,  put

(5. 38) (0(g1(r0)0.••Ogi(ro) :r ( k ) ) -- In d  p(k , rt (k )),

a representation o f G  induced by the representation p(k, ( k ) )  of
r t

In the other hand, because of invariancy of elements in Z(G)
by inner automorphisms,

(5.39) g(r0) I z(G) — r o  z(G ) •

So

(5.40) ( r o )  z(00 ' ' • Øg 1 ( r o )  Z(G) — ro z ( 0 0  • • OroI z(G)

c r o g  •  •  • ® , - 0 )  Z(G) •

From lemma 5. 9, the last representation contains a subrepresentation
which is equivalent to a multiple of the regular representation of
Z ( G ) ,  s o  b y  t h e  step  th eo rem  of induced representations
(corollary to lemma 1. 18)

(5. 41) Ind  (g, ( r o )  z ( c ) 0 •• • Ogt ( r o )  Z (G ))
Z(G)--.G

contains a subrepresentation which is equivalent to a multiple of R.

Lemma 5 . 1 2 . F o r t2 d +2 , th e  s e t

(5.42)r i ( k ) * Z ( G ) }  ,

is /it-measure zero in G t. That is, the set of  double cosets, for any

element of  which the isotropic subgroup in  a, differs from Z(G),
is m easure z ero in rt\Gf /Gt.
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The proof o f this lemma is given in the next section.
When we assume the above lemma is true, then for a double

cosets in  C ( E )  (complement o f E ) ,  which contains the represen-
tative g",

(5. 43) w (g i (I%) (r o ) :  r ( k ) ) — w ( g i ( ro ) ® • • • O g i  (ro) : Z (G ))

--Ind  g 1 (r0) z(G)0 .• .0 g ,( 1 -01z(G)
Z (G ).4 G

—Ind ( to ®  • • • O r o )  Z (G )
Z(G )-4•G

contains a subrepresentation which is equivalent to a multiple of R.

By lemma 1. 23, the correspondence of vectors in the decomposi-
tion (5. 34) is generated by

(5.44)( f i ® • • • O f i ) - - f 1 ( g 1 g ) 0 - • • O f i ( g i g ) ,

as a function o f g.

S o  it is  e a sy  to  see , u s in g  the notation r3 i  given  in  (5. 13), the

projection P 1 generated by

(5.45)f i ( g i • ) ® • • • a f ( g , • ) ) ( g )

=(15if 1 )(g1g )Ø (13-i f 2 ) ( g 2 g ) 0 .- - 0 ( 751f 0)(g0g),

on the space of the right hand side o f  (5. 34) h as the range, on
which the restriction of w(g, (z-o) 0 • • • ®g (z-)  r d ( i ) )  is equivalent
to  a multiple of R .  This shows, the right hand side o f  (5. 34)
contains a direct integral, almost all components of which are equiva-
len t to  a multiple of R .  But from the construction of A ,  th is
direct integral is equivalent to a direct integral of a multiple of R
with same multiplicity over C ( E ) ,  that is, the result o f lemma 1. 8
asserts that this direct integral is equivalent to a multiple of R.

Thus it is remained to prove lemma 5. 12.

4. Proof o f lemma 5. 12. By lemma 5. 5, G r ,  so we consider
G as a transformation group over the homogeneous space M = ri\G i
which maps a  coset m  containing (h-') = ( g 1 ,  • • • , g ,)  to  the cosets
m g containing (4,  ̀•g ) =( g - l g, •-•, g ,g ). It is easy to  show that the
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isotropy group of this coset m  is r (h - )̀ . By lemma 5. 10, dim r  ( e )
is a upper semi-continuous function on G '.  So the set

(5.46) E, { ': ( k )  ;,i2+ 1} = {k J :  dimr (k i) m}

is a closed set in G'.

Lemma 5.13. F o r  n/t (dimr) — l+ 1,

(5. 47) (.E) =O.

Before stating the proof o f  lemma 5. 13, we have to set some

lemmata about simple Lie algebra g o f G.

Lemma 5 . 1 4 . For any  elem ent X  in a n d  any  proper sub-
space V  in  g,

(5. 48) i t (  { g: (adg)X E V}) =0.
P ro o f .  Since {g : ( a d g ) X E  g { g: (adg)X E V o }  for any Vo

containing V, without loss o f generality, we can assume V  is  a
hyperplane in g. By the reason of simplicity of g , its Killing form

B (X , Y )  is non-degenerated, so there exists an element X 0 in  g
such that X i  is  in V if and only if

(5.49)B ( X 0 ,  X i )  = O.

For given X, put X 1 ---- (adg)X , then B(X 0, (ad g )X )  is  a non-zero
analytic function of g .  Therefore, this asserts that

(5. 50) it( {g : (adg) X i E V }) = p ( { g :  B(X „ (adg) X ) — 01) = 0.

Lemma 5. 15. For any  Proper subspace V , and V , in g,

(5. 51) p({ g: (adg)V i c V ,} )= 0.

P ro o f .  Let a basis in  V, be {X ,} „ then

(5. 52) {g : (adg)V i E V ,} = C-1 {g : (adg)X i c  V } .

So (5. 48) results (5. 51).

Proof o f Lemma 5 . 1 3 . For any given two proper closed sub-

groups K i , K , in G, with Lie algebras f,, t 2 respectively. Consider

the set
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(5. 53) N = { g : dim K i = dim (K 1ng - 1 K2g)}.

Since K i, K 2  and K 1 n g -
1K 2g are Lie groups too, so the equation

(5. 54) dim K i=  dim (K in g -
1K2g)

means that the connected components IC of e in K , and (K1F1g - '1C2g) °

o f e  in K i r ig - 1 K 2 g  coincide, that is, (5 . 54) is equivalent to

(5. 55) I C c g - IC2)g.

But the relation (5 . 55) is  transfe red  to  the relation between Lie
abgebras, as

(5. 56) ft c (adg)f .2 .

Therefore,

(5.57)N ( K „  K 2 ) —  {g : fi c  (adg)f2} .

So lemma 5. 15 results

(5. 58) tt( N(K2, K2)) =0.

We apply (5 . 58 ) to the case of that

(5. 59) K V ) = K V > = r; K r= rn g i - irg „ •••

•.•; K = r ;

inductively, and we get

(5.60)1 t i ( { ( g 1 , • • • , g 1 ) :  d i m ( T r i g , - 1 T

••• n g î l r  g i )" (d im r)—  j} )=0 .

This implies immediately

(5.61) -0 - 1 (  (g 1 , • • • ,g , 1 ) :  dim (g i ' r g i n • • •

• • n rgi+i) (dim P) —j} ) =0.

Put j + 1 = /, w e get (5. 47).

Lemma 5 .  1 6 .  Fo r tw o  d iscr e te  su b grou p s D „ 1)2 in G,

(5.62)p ( { g :  D in g - i pzgcr Z (G )} ) =OE

Proof. Because o f  a-compactness o f  G , D ,  and D 2 a r e  both
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countable sets. And the set

{g : D1 n g - 1 D 2 g O E Z ( G ) } —  U  { g : g - idgED,}dED2nc(z(G))
is  F o-, therefore measurable.

Now consider for any elements d i in D I ,  d2 in  D 2 1

(5. 63) N(d,, (12 ) { g :  d , —  g '  d ,  .

Obviously this set is shown as

(5. 64) N (d„ d 2 ) c (d i)n o = floc (d2)

where c(d i ) ,  c (d 2)  are the centralizer o f di, d2, respectively, and no
is any e lem ent o f  N (d 1 ,d 2 ) . O f cou rse  c (d i) , c (d 2 )  are closed
subgroups o f G. So from connectedness and simplicity o f G, i f  d i

or d, is not in Z (G ), N (d i , d ,)  is lower dimensional than G, and

(5.65) tt(N(cli, d2)) =0.

I f  D 1 n g - 1 D 2 g  Z ( G ) , then there exists a couple of d i  in  D , and d2

in  D 2 ,  such that both o f them are not in Z (G )  and

(5. 66) di= g - ld2 g.

So such a g  is contained in N (d i , d2). That is

(5. 67) { g : D in g 'D ,g  Z ( G ) }  c U N(d„ d2).
(ch, d2) , “ Z (G ),  Z (G ) )

Since D i ,  D , are countable sets,

(5. 68) ( N (di, c4)) = 0 .
d 2 )  ( Z (G ),  Z (G ))

Therefore (5. 67) results (5. 62).

Lemma 5 .1 7 .  rd(k-') contains Z (G ) fo r  any  1 , and

(5. 69) P' ( i ' ) { e :  r(A-9crZ(G)}

i s  a  (rt, - ', )  -double cosetw ise m e asu rab le  set in G'.

P ro o f.  Since r  contains Z (G ) , and since Z (G )  is  invariant
with respect to any automorphism o f G, so any g - 1 1 g and r
contain Z (G).

Obviously, from the definition o f r (k.')
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(5. 70) r W -9=1' (e), for == ( r , ,  • • • ,  r i )  in r ,
and

(5. 71) rt(gag)= ( ') g , for g= (g , • •-, g )  in 5 ,
This shows that the set given in (5. 69) i s  (r, a)-double cosetw ise
set in G'.

L astly  w e consider 6,—G as a transformation group over
M = r \ G ' .  For proving the set given in  (5. 69) is measurable, it
is equivalent to show the set in M,

(5. 72) Mo= {m :  m * m g ,  for any gE Z(G )}

is measurable. Because for any ,g't belonging to a r -c o se t m  in Mo,
the isotropy group r ( e )  o f m  is equal to Z(G).

The set given  in  (5 . 69) i s  the inverse image b y  77, of the

complement o f Mo.
Now, for any m  and g  such that m g * m ,  there exist a neigh-

borhood V o f m  and a neighborhood U o f g  such that

(5.73) vun
In fact, since m g + m , there exist a neighborhood V, o f m  such

that

(5. 74) v,n Vig=0.
But the m ap (m, g)—>mg is continuous, so we can take a neighbor-
hood V o f m  and a neighborhood Uo o f  e  and

(5.75)V U 0  c

then, the pair of neighborhoods V  o f m  and U= Uo g  o f g  satisfies
(5. 73).

Next we shall show the set

(5. 76) M (K )=  { m : m g tm , for any g  in K}

is  open, for any compact set K  in G.
In fact, for any m  and g  such that m g t m ,  there exist neigh-

borhoods V (m ), U (g )  such that
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(5. 77) V (m) U(g) n v(n)= 0.

For any fixed m  in M (K ), and for any g  in K  we take V(g, m),
U(g) as (5. 77). Since K  is compact so there exists a finite covering

K  c  U U (g ,) . L e t  V= n V(gi, m ), then for any m1 in  V  and any

g  in K , there exists a U ( g )  which contains g , so

(5.78) V rIV U(g,) g V (g m ) n v(g ,: m )U(g,)=

that is,

(5. 79) V rIV K -

This shows M (K )D  V, that is, M (K ) is open.

Finally G — Z (G ) is 6-compact, so we can take a  countable
-

compact cover G— Z ( G ) =U K ,. Under these notations. M o is re-

presented as

(5. 80) M . =  (1 M(K,),
therefore M 0 is  a  G0 -set and measurable.

Now we are on the step to prove lemma 5. 12. A s  shown in

lemma 5. 17, the set E .  {e : f '(e )*Z (G )}  is measurable.

While from (5. 60) and (5. 61), putting l =d +1 , we get,

(5. 81) p'( {(g„ --,g,): dim ( g T 'r  n... n g -Tirg ,) o} ) =0,
(5.82){ ( g ; ,  , gU,): dim ( rn g ; - irg ;n  •••

ng;ilrg;_i) ?o}) =0.
That is, r 4 .9 = v irg ,n  ••• n g ï 'r g ,  and r n r - - 1 (k " - 1 ) - r n g ; - i r , e ,

n •••n g ;ilrg ;_ , are discrete subgroups for almost all "g! and

But from lemma 5. 16, for such É. ` and k" - ',
(5. 83) /2( {g: n  n v 1rg ing - 1 (e - Tg;n...

•-• n g ;:lp g n r) g +z ( G ) ) )  =0.

From the measurability o f mapping

(5. 84) g,, g,+1, g a )—
- - ( g i ,  • g,, gi+1g21, .•., g 2 1 g 2 1, g21),
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and the measurability of E , the measurability of the set

( 5 .  8 5 )
g  , n g ïlr g i  

I

fo llow s. So  the above arguments result.

(5.86) ( E )  /.22d+2(E )  0 .

B y the mapping (5. 84), (5. 86) is equivalent to

(5. 87) 11'd+2(E) 0.

For t 2d-1- 2, (5. 87) assures that for alm ost all g'

(5. 88) r t  ( i t )  =r" (k.

21 ) n r 1- 2 1  4'9= Z (G ) fl p t - 21( .-2 l) - z (G ) ,

where k t - c e i ,  e - 21). This is  the required result.

5. Now we shall prove lemma 5. 2 fo r  non-compact simple Lie
group G  with finite centre.

A t first, le t a , b e  the regular representation of M  and r, be the
representation of P  d e f in e d  a s  in  (5. 7) from  any fixed  ça and a,
instead of a.

Lemma 5.18. T he restric tion  o f  r , to Z (G )  is equivalent to
a  m ultiple o f  th e  regular representation of  Z (G ).

p ro o f. For characters { x ,} of Z (G ),  by joining the functions

(5. 89) 2c,(2)f(z. m ) d z ,  ( fE  C 0 ( M ) ) 1
Z(G)

one can  get a  fam ily of functions {f , }  such that

lf ,(m ) = 1,
(5. 90) for an y  m  in  M.

f ,(zm ) =x 1 (z )f (m ),

Take a  complete orthonormal system  {h,( )}  of 1,2 ( M/ Z(G)),
th en  th e  system  { h ,,(m )f ,(m )}  constructs a  complete orthonormal
system  o f  1,2 (M ) .  M oreover th e  c lo sed  sp ace  I l k sp an n ed  b y
{h1 (m )f (m )}  , fo r fixed k , i s  a  subspace on w hich  th e  operators
{ W1.1  operate as the regular representation of Z (G ), and evidently,
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(5. 91) H ( rr) = ZED

This shows the assertion.

Completely analogous arguments as in the proof o f lemma 5. 11,

shows,

Lemma 5 .1 9 .  Put

(5. 92) w, = Ind r,

then, fo r  t 2d+2 (d—dim r),

(5. 93) ( ( o r )  =  (0 ,0  •  •  ' O w >

is equivalent to a m ultiple of the regular representation R of G.

P ro o f .  A s  in  lemma 5. 11, one gets an analogous formula to

(5. 34),

(5. 94) (w„)t —  \ G v a _w(g, ( r , )  •  •  •  Og, ( r r )  : (k))Cit) ( g ) .

where almost all w(g i (r„) ® . (r.„) : T t ( ) )  are the representation
,

of G induced by r, Ø . ••0 7 ,-  Z (C ) o f  Z (G ) .  But the last representations

o f Z (G ) are multiples of the regular representation o f  Z (G )  with

same multiplicities for any such a k . so 0 , ( g , ( r r ) ® • • • ® g t ( r „ )  : rt(Ê))
are multiples of R  with same multiplicities fo r almost all 4.. The

results is easily deduced by applying o f lemma 1. 8.

Lemma 5 .2 0 .  A ny  irreducible representation (0 induced by  a
irreducible representation z- of P  as (5 .7 ) is  a subrepresentaiton
of (0,.

P ro o f .  Because of compactness of M, 0-, contains any irreducible

representation 6. Therefore, r„ contains z ço . This asserts that
In d r, contains (0=-Indr.
r

P roof o f Lemma 5 . 2 .  Let T =  { T (co)}  be zero on R, then from
the equivalence relation given in  lemma 5. 18, T  is  zero on (00',
but this is true only when T  is zero on w r . Because o f lemma 5. 20,
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to, cpntains the irreducible representation oy as a component, so T (0 ))

must be zero. This completes the proof.

§6 . O rb its space on semi-simple L ie groups.

1. For proving lemma 5. 11 in § 5 , w e  have used the property
that in any connected simple Lie group G  w ith  fin ite centre, two
closed subgroups rd and a, in G ' are regu larly re lated . In this §, we
shall g ive the proof of this.

Lem m a 6.1. Two closed subgroups r  and -6 , in  G' are regu-
larly  related in the sense of  G. W . M ack ey . T hat is, there ex ists a
countable fam ily  {E ,}  o f  r — a, double cosetwise m easurable sets
w here E, is I2-null set and other T" — double coset is represented
as  an  intersection of  E,'s. (countably separated ex cept E”).

2. Before to prove this lemma, we quote useful results.

Lem m a 6 .2 . ( J .  G lim m  [8 ] T h . 1 ) .  L et G  be a  separable
locally  compact* )  topological transf orm ation g ro up  ac ting  on a
separable locally  compact* )  space  M  as giv en in  §5 .4 . T hen the
follow ings are  equivalent:

(1) T he space M /G o f  G-orbits o n  M  i s  a  7'0 -space by
induced topology  f rom  M,

(2) M/G is  countably separated,
(3) f o r  each m in  M, the m ap r(m )g--.mg f ro m  r(m)\G

onto mG is  a  homeomorphism, where r (m ) is the isotropy  group
o f  m and  mG h as  the relativ e topology  as  a  subset of  M.

Lem m a 6 .3 . (F. Bruhat 11] T h. 7 .1 ).  W hen G and P are  as
in  §5.2, then the space o f  r — T' double cosets in G , is  a f inite set.

Lem m a 6 .4 . (F . Bruhat [1], C hap. III §7.3). Fo r any g in
G , there ex ists a  s (g ) in  r g r  such that

* ) W e assume T2-property in the word "locally compact".
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f rn s (g )irs (g )= M H N , ( , ) ,
(6.1)

N n s (g ) -W s (g ) .

C oro lla ry . I f

(6. 2) dim (rg -T )  dim G,

then there exists a s (g ) in rg r, such that

(6.3)r n s ( g ) ' r s ( g ) =  M H .

Proof. It is  easy to  see, for L ie  algebras g, c, ni, l, n o f G, r,
NI, H, N  respectively,

(6. 4) dim G = dim g = dim it + dim
2dim n + dim h + dim m.

(see F. Bruhat [1 ] proof o f lemma 7. 1, p 188). From the assum-

ption, using s ( g )  in the result o f lemma 6. 4,

(6.5) dim G= dim Pg P= 2d im  — dim (I' ng -T g )
= 2 (dim 11 + dim t) + dim in) —  dim (P n s ( g )-irs( g ))
= 2dim u + 2dimb+2dim In— (dim M+ dim H+ dim N s ( g ) )

2dim u+ dim h + dim rn— dim Ns ( g ) .

Equate the right hand sides o f (6 -4 ) and (6 -5 ), we get

(6. 6) dim N, ( , ) — O.

But as shown in F. Bruhat's paper [1] p 189, N s ( g )  is connected, so
that N s ( g )  must be {e} and we get (6 - 3 ) from (6-1) immediately.

3. Proo f o f  lemma 6.1 . Consider a map on Gt to G' - ' defined

by

(6. 7) ço g i ), (g ig ï l gt ig  T1 ).

It is easy to see that (2 maps any r double coset in G' to  a
double coset in G' 1, ore-to-one way. Therefore, an one-to-

one correspondence( -2 between rt \Gt /-6 ,  and r ' - ' is es-
tablished by (2. Since (0 is continuous and open, (3 gives a homeomor-
phism of these spaces with canonically induced topologies from the
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topologies of G', respectively. And the inverse image of l i t i'null
set in b y  çp, i s  g'-null se t in  G '.  That i s ,  i f  w e show r" - '\
G' - '1147_, is  countably separated except null set, then lemma 6. 1 is
proved.

W hile from lemmata 6. 2 an d  6. 3, r\G 1r i s  a  To -space and
the union of all lower dimensional P —  T ' double cosets in G becomes
a  ke-null set F in  G . Put

(6.8)G ' = G — F,

then G ' is  open as a union of open cosets which has same dimension
w ith  G . And r - - MG')' - '— (r\G')i - 1 i s  r - 1 -orbitwise open set in
r - - 1 \G'- ', especially 7, 1 - orbitw ise o p en  se t in  T ' \G ' 1 , and locally—
com pact. T herefore, to  prove that r - '\(GT - 1/r t _., is  countably
separated, it is sufficient to show this space is a  To -space, by lemma
6. 2, this results lemma 6. 1 soon.

For showing this, we shall prove the following.

Lemma 6 .5 . For f ix ed 1 and closed subgroups ADB i n  ,  if
T''\(GT / A  and  ,fi- - - irgTIA\AIB a re  a  To -space f o r  an y  g'.=(g i ,

in  (G T , then r\ (G T /B  is  a  To-space.

P ro o f . Let be representatives of two different r  — B double
cosets in  (GT.

If 4-, 4' belong to mutually different r  — A  double cosets, then
from To-property of r\ (G T/A  there ex ists a  r  — A  double cose-
twise open set which contains one of if  and j - and does not contain
the other. Since AD B, a r  — A double cosetwise set is r  — B double
cosetwise set too. This shows the separating property o f r\ (G T
/B about ( i f ,

Next if  4,4' belong to a same r  — A  double coset rk'A — r jiA .
From lemma 6. 2 and To-property o f r` \(G')//A, th is double coset
is homeomorphic to the homogeneous space g - - irknA \A , especially
locally compact. The group B  operates on this homogeneous space
k - i r i kn A\ A  which is homeomorphic to TVA, a s  a  locally compact
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topological transformation group. B y the homeomorphism between
FikA and g 'rk r1  A \A, a  r —  B double coset is mapped to some

(k - i r in  A) —  B double coset in  A .  So the existence of r —  B double
cosetwise open set separating the cosets which contain k, respec-

tively, follows from  T o-property of A\A/ B.

W e put A and B in  lemma 6. 5 as
1-1

(6.9) IA r  {  (r, r, r') E  } ,
=

Then from

(6. 10) r \(G')' / A  r \(G')' / ( ,xr)
( r -- '\(G9' - ' /74 x  (r\Gyr),

and
/-1

(6.11) { (r, r ,  r ' ) :

: r E r n v 'r g in  •  •  •  n g T 2 1 r g i_ 1 ,  r 'E r r I g T ir g i}
1-1

{ (r , • •-, r )  : r E r n g ' r g i n  • • • n v_ iir g i_ i}  x

We shall use the notation

(6. 12) ( e ,  g - 1, • • •

then (6. 11) is shown by the notation in §5, as

(6. 11') J-1 A =  {r ,x r 2 (4- ).
And

(6. 13) (k -rik nA )\A /B = {»/(e0
-- ')} ,x r /7,

1( I1) x r2(É ) \r2/,

because o f 7',_1 —r and  {F1 (k 1
0

- 1)} 1 — rd

Using analogous mapping a s  (6-7) , th e  last space is home-
omorphic to

(6. 14) r (k V ') x  ( ) \ r 2/ r (k/o -
1)\r /r2 ( ) .

By lemmata 6. 2 and 6. 3, r\G' /r is  T,, therefore if  th e  space
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given in  (6. 14) i s  71, then using lemma 6.5 for (6. 10) and (6. 13)

we can prove th e  To-property o f  ril\(G')//r7 b y  induction with
respect to 1.

Cor sequently th e  problem is reduced to show th a t th e  space
given in (6. 14) is

By the corollary to lemma 6. 4, for any g  in G', r 2 ( ) is conjugate
to MH in P .  So the space r/ r 2 (g31) — r/MH is homeomorphic to N,
and from the simply connectedness of N , this space is homeomorphic

to  its L ie algebra n. Thus the space r` W ) \ r / r 2 4 10 — r , (k 1
0 - ')

\r/MH is  homeomorphic to the orbits space by the operations {adr}

on adjoint representation restricted to n, fo r r  in which
is conjugate to a  subgroup r '  of MH in P .

While the general theory of Lie algebras asserts that n is span-
ned by the root vectors E a  o f ad  h  such that

(6. 15) (ad h).Ea = ea(Y)E a , for h=exp Y  in  H.

We denote by nA  th e  subspace of n which is spanned by E G,'s  such
that a 's  give a  same linear form A on H, then n is represented as a
direct sum of rtA 's. For any X  in  ri, le t _KA  b e  the component of X
in  nA . And for some set J  of indices, put

(6. 16) 521.=.-  {X: jE  f }

then this space is a  closed subspace o f n. It is sufficient to show
that each orbit {(adr) X : y E r }  is closed in 12j —  U  DI ,  which con-
tains X.

While since any m  in  M  commutes w ith  all h in H, so {ad m}
makes invariant each subspaces rtA 's. A s shown in  Harish-Chandra's

paper [10] , for adequate inner product ad  m  becomes an orthogonal
transformation and ad h  is given as in  (6. 15).

For g iven  k. =  (e, g1, • • •, w e take  { s(g ,)(= s 5)} as in
lemma 6.4 corresponding to each g 5 ( 1 5 j<1 - 1.). Put

(6.17) (n, T i', E  r) ,

and
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(6. 18) n iE N ,h iE H ,m iE M .

This shows that

(6. 19) r  ( t o - ') — r n v ' r g i n • - n g i 2 i r g i ,

Ti is i irsini1•••
= n 7 i( rn s ir so r in  • • • n  ri ( r  n s;2irs1_07-1-1

-7-i- '11/Hrin • • • n rv ,m -Hri-,
=7-72i { (ri-irrr i ) MH(ri_47- 1 ) - i n  •

• • • n  (ri_i7-722) MH(ri_17-722) - ' n

=7-Ti{ni.MHnT i n  • • • n  ni_2M 1InT2n M H}

Thus r '(É -- i)  is conjugate in r  to

(6. 20) r'= n,M H n1 n  •  •  •  n n 1 2 MH)W 2 n M H

While for any r  in  r  the decomposition

(6.21)r = m h n ,  m E M , h E H , n E N ,

is  unique. So an element r  in  r  belongs to r ',  if and only i f  it is
the form for some sets {mi }  in M  and {hi }  in H,

(6. 22) r=  ni mi kni - 1 — • • • — n1_2m1- 2h1_2ni.22 — mh,

but since M H  is  in the normalizer o f N

(6. 23) m h=m ;11,((m ih,) - 'n i(m ih i) )n 7 1 , (1 <j<l —  2).

This results

(6. 24) m =  m  h =  h  ( m  i ) 'n i (m i h i ) = n i .

That is, (m h ) commutes with each n i .
Conversely any element (m h) in the commutator o f {Ili }  belongs

to r'.  Therefore r '  is equal to the commutator o f  { n ,}  in MH.

Let

(6. 25) h i =  expX J , .X 1 f E n (l< j</ — 2),

and

(6.26)E ( X ; ) , „ ( X;),,ErtA,
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then is characterized a s  a  subgroup of M H  as

(6. 27) r' { r =m h:ad(m h)X ,= X , (1 < j< / -2 ) } .

But since ad(mh) makes invariant each subspaces nA 's. So the above
conditions in (6. 27) are  equal to

(6. 28) ad (mh) = ( X j )A.

W hile ad  m  is  an orthogonal transformation and e x (Y ) is real, so
(6. 28) means

(6.29)
(ex( = (X J) A,
1(ad m) (.7( ; )A = ( X j ) A ,

for any j  and A.

This shows that for each r= mh in  r ',  its components m and h are
in  the commutator of {n ,} separately. Conversely, i f  m  and h  com-
mute with {n,}, then r  = mh is  in  the commutator o f  {n,}. Conse-
quently i s  a d irect product of the commutators M o and  Ho of {n,}
in M  and H respectively, which are both closed. Obviously Ho must
be a  vector subgroup in  H.

Now le t  a  sequence

(6 .30) {ad (m k hk ) X :  M k  E  M o, h k  HO} k

in  a  T"-orbit converge to  Xo, in  w hich {ad(mkhk)X}, an d  X o a re
contained in  some 52,— U g h . This is equivalent to the convergence
of each components {ad(mkhk)(X)A,} to  ( X o),„. From the definition
of .S2j , these components are  not zero only for jEr .j.

This means that the sequence of their norms

(6. 31) Ilad(nikhk)(X)A,11— lad(h 0 ) ( X)AIl

—eNi(Yk)11(X)A,11

converge to  the non-zero value lj (X 0 ) , 3 11 fo r jE r T. S in c e  Ho i s  a
vector subgroup o f H , so there exists a  ho in  Ho such that

(6. 32)I I  (ad h0)(X )A 311-11(X0)A,11, for any

The compactness of M o assures the existence of subsequence of

{ (ad m 0 ) X } converging to some {(ad mo) X} . That is , there is a
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subsequence of { (adr,) X }  converging to ad (maho) X  in  this ["-orbit.
Obviously the limit must coincide to Xo . That is ,  each ["-orbit is
closed in 12j — U12, which contains this orbit.

This completes the proof.

§ 7 .  Semi-direct product groups.

1. Let G be the semi-direct product o f a  separable closed abel-
ian normal subgroup N  an d  a  closed subgroup K .  In  this § , we
shall show that i f  G  satisfies the assumptions 1 - 3 ,  which are given

later, the duality of the first kind is valid for such a  G.
As examples of groups of this type, one can quote the m-dimen-

sional proper inhomogeneous Lorentz group, the motion group over
m-dimensional Euclidean space.

Put the dual group N of abelian group /V, and consider an ele-
ment g  in  G  as a transformation on N such as

(7.1)

where g(h) is given by

(7. 2) < g(h ), n>-=- <fi,

using the notation < , > of ordinary dual relation between N and A?.

We choose a  representative n for each G-orbit in ÎV, and denote

the isotropy subgroup of n  in  G  by G (it). Since N  is  an abelian
normal subgroup, so any element n fixes a ll n . T h en  th e  isotropy
group of n  in  K is given by

(7.3)K ( n ) - --G(fi)nK,

and G (ii) is the semi-direct product of N and K(h).
Now we presuppose the assumptions.

[Assumption 1 ]  G  is  a  re g u lar semi-direct produc t in the
sense of G . W . M ack ey  [13] .

[Assumption 2 ]  T here ex ists an element n o in  »  such that
K(ñ 0)  is separable compact.
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For any finite set F= (1 < j< t )  in we consider the con-
tinuous map O F  O f  (K(h1)\ K) x ••• x (K(h t )\ K ) into N, defined by

(7.4)ç o F : (kil (hi)),
=1

where k;  shows a representative of a  coset 17, in  K (fi .,)\ K.

[A ssu m p tio n  3 ]  There exists a  finite set F= {fi,}1,,,, in  N
and a relative compact open neighborhood W  of (é, •••,é) in
(K (C \K )x•••x (K (ñ 1)\ K ) such that,

i) W )  is a open neighborhood o f E
J

ii) the restriction on V of the Haar measure is absolutely
continuous to the measure introduced by

(7.5)v o ( E ) x ••• xv,( wn,ii (En v)),
fo r  measurable E  in  IV,

where v, is a non-trivial quasi-invariant measure on K(n 5 ) \K.

Under these assumptions, we get the following.

L em m a 7 .1 . For such a G, the regular representation R  is
countably generated.

Therefore from the results of §4, the main proposition is deduced.

Proposition 7.1. For a semi-direct product group G, satis-
fy in g  the assumptions 1-3 , the duality theorem o f th e  first
kind is valid.

2. For such a group G, all irreducible representations are ex-
hausted by the theory o f  induced representations given by G. W.
M ackey [13] .

A t first, fix a f i  in and take  an irreducible representation r
{ W k ( r) ,  H ( r) }  o f  K (n ) .  Then { <fi, n> W k (r), H (r)}  (g= nk)

gives an irreducible representation o f G ( i i ) .  Put

(7.6)v ) -=Ind{ <f i, n> W k (r), H(r)}

Then using the assumption 1, the following is valid.
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Lemma 7.2. (G .  W. M ackey [1 3 ]) .  Z ( f i ,  r )  is irreducible
and determined by the orbit containing f i and the representation
r  o f K (f i) besides unitary equivalence.

And arbitrary irreducible representation o f  G  is equivalent
to one of the representations o f  such a form.

3 .  To prove the lemma 7. 1, we consider a  decomposition of

the regular representation R  of G.

For any f  in D (G ), define a  function 7 on N x G  by

(7.7)7 ( f i ,  g) f (ng)<fi, n> d,t2N(n),

where /2,,, is  a Haar measure on N .  Then by Plancherel's theorem
on N , the integral converges for almost all fi and g , and

(7. 8) 7(f i, ng)= <fi, n>7 (fi, g),

(7. 9)
IC

k) 1 2 c112K (k)} c tti = IIf 112< +
N  

where ,uk-  i s  a  Haar measure on  KT (adequately normalized). And

the operator R g o  in  the representation R  corresponds to the map,

(7. 10) ( Ug o  (it )7) (h ,  g ) f— (fi, ggo ).

That is, for fixed h, U g  (it ) operates as in the representation Ind<fi,n>.
N . G

Consequently, we get the following.

Lemma 7.3. R  is decomposed as,

(7. 11)R I n d < f i ,  n > d ( f i ) .

T o use the results o f  G. W . Mackey, the followings must be
shown.

Lemma 7.4. Let G ,( 0 <j<s )  be subgroups of the fo rm  NK,
in G, where K. closed subgroups o f  K .  Then G o x G, x  • • •  x

\Gs +1 / , is homeomorphic to the space K 0 x K 1 x•—x KAK'+' I k ,
and to  the space K 1 x K 2 x - • • x K ,\K Y  ( k o ) s .

P r o o f .  Since
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(7. 12)G o x  G , x  •  • •  x  Gs = K o Nx K,Nx ••• x K s N

=  (K 0 x K 1 x ••• x K s ) Ns -",

and Ns+1 i s  a normal subgroup of so

(7. 13)G 0 > <  G 1 >< ••• xG s\G" - ' =  (K o x K 1 x  • • •  x  K O N '\ K " 'N '

— If0 x K 1 x •-• x K s \Ifs+'.

For Al makes invariant an y point of the last space, Krs+1 k s + i

operates as same manner as TR- o n  this space, so

(7 - 14) G oxG ,x  •  x  GAG' ie;s+ ,— G ox • xG s \G"-1 /17i+ ,

—K o x • • • x Ks\K'/k,+,,

as a set. But the one-to-one correspondence of double cosetwise open
sets is immediately.

N ext, take the map

(7.15) (ko, I?, • •-, (kikV, • •• , ks k,71 ),

which is analogous to the m a p  (6 .7 )  g iv e n  in  §6 , then this m ap
gives the homeomorphism of

( 7 .1 6 )  K a x K ,x x  K s / K " -1 /Ffs + ,—K i x  x / (K o ) s .

Corollary. I f  K0 is compact, and G,= G (h i ) f o r some { }  in
N (1 < j< s ) ,  then two subgroups GG xG i x  •  x G , and —G.,+ 1 are  reg-
ularly related in  G'+', in  th e  sense o f  G . W . Mackey.

Especially, N xG (h i ) x •• • x G (it) and G + 1 are regularly related
in  Gs-".

P ro o f. It is easy to  see, a orbits space by a compact subgroup
over any separable homogeneous space is countably separated. While
the separability of factor spaces K (i i , )\ K  follows from the separa-
b ility  o f  i■Ni  and from  the equivalence between the topologies of
K (ii, )\ K  and of the orbit containing h , based on the assumption 1.
This shows, K , x  x  K s \ I(s  /  (g ) ,  which is homeomorphic to G ,x
G,x • • • xG.\G' is countably separated.

The case of Go = N  is  the special case when K o = {e}.
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N ow we can apply th e  decomposition theorem (lemma 1. 23)

given by G. W . Mackey, on the Kronecker product,

(7. 17) Z ( ) (IndO io, n >)Ø ( î1 ,  1 )0  •

•- 0 Z (n o  1) 0Z(lit+1, 1 ).

Such a  representation is decomposed as an  integral on the space

(7. 18) S=-NxGix • •• xG t+i\G" / ()t+2—
— K 1 x •• • x Ift+1\IC +1 / {e} —1C1x •-• x F i \Kt+'

— (K i \ K )x  •  • •  x  (K „ ,\ K ).

And for representatives (1?1, • •• , kt+ i )  of each cosets, the component
on this coset of the integral is given by

1+1

(7. 19) Z( { -
1}, {k:7 1} + h o , n>,

j= 1

because

(7.20)N = N F I G ( i i i ) n . - n G  ( f i t + i ) ,
t+1

(7. 21) <Ek;1(ii3) + no , n) =  0 710 , n><kri (n 1), n> •

•• • <k7. 1 ( i i i , ) ,

(7.22)1  — 1 0 k r i  ( 1 ) 0 . •

The m easu re  of decomposition over S  is given by

(7. 23) Vi • • • V t + i ,

the product of quasi-invariant measures v, on K ( i i , ) \ K  a s  a  measure
which has the same null sets as g "

Lemma 7.5.
t+1

(7.24) Z ( {hi} ) _ Z ({ fii}  , { k 7 1 )n d v i(k i)•
( I (  (P '1 )\ I ) ( K 1 ,1 ,1 )\ ,K )

Now we shall show the followings.

Lemma 7.6. I f  th e  assum ption 3 holds for som e {F =
W } then fo r  an y  fi t + ,  in  7\7 , there ex ists a re lat iv e  com pact open

t+1
neighborhood W ' o f  (0, •••, é )  i n  ( K ( f i , )\ K )x  • • •  x (K ( f i t+ i )\ K )

and i ) ,  ii) o f  th e  assum ption 3  are  valid for such a {F'-= {11,+1}UF,
W'} .
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P ro o f.  Take any relative compact open neighborhood W G,  of
in K ( i i , ) \ K ,  and put

Wo.

- --ço, , ( W ') {it = E k il 0 '71.0+ k;-,!-, ( l i t + , ) :(k  g ) W'}
j==1

U [g9F(W) +kT_1(iit+1)]
ke +1EW 0

t+1
is a open set as a join of open sets, and contains E  f i , ,  that is, the
property D.

Next, to prove the property i i ) ,  it is enough to show that for
any measurable set E  in  N  satisfying

(7 . 2 7 ) KN'(En V 9 # 0 ,

the following in e q u a t io n  holds.

(7 . 2 8 ) x v ,+ i)(  W 'n ç o i% (E n  V ')) *0 .

But the value L , is representable as a double integral.

(7 . 2 9 ) /0= w0wx;(Envt)(k1, • • • kt+i)dvi.(/71) • • • chit_Fi(k- t+i)

dvt_ti ait+ i) x kt): k-,1(770)-F ( i i , +  E  E } d p i• • • d v t}
wo

d v t+ , ( 1Z+i) x9 , Ftc[E-k ,- ,( ,+ 1 )];- , v )d v i. •  4 1 }
wo

=, ,a ([E -1 ? ;1 (f i,+ 1 )])d v ,+ 1 (k t+ 1 ).
w 0

While from the separability o f  N  and ( 7 .  2 6 ) ,  one can choose
a  countable family {E ,= v , (  W ) +  (le+ 1) - 1 ( i i ,+ i ) }  such that V '  is
covered by U E , .  This shows the existence of ki + i  in  W0, from (7 . 2 7 ) ,

such that

(7 . 3 0 ) 1.6'( [ E — k T i ( h t + i ) ]  nvF( W )) *0.

Since ,tc v i s  a  regular measure and kt- -,11 (fit+ i) is continuous on
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K(fit+ i)\K , so there exists an open set -0 in W o for any in 0,
(7. 30) holds. But the assumption 3 asserts for such a kt+1,

(7. 31) 1,0( [E — kTL (fit+i) ] ) *0.

But with respect to  v,„ any open set has positive measure, so that

from (7. 29) and (7. 31), (7. 28) is deduced. This is  the proof of
property ii).

Combining lemmata 7. 5 and 7. 6, a useful result is obtained.

Lemma 7.7. For given in the assumption 3 , there
exists a neighborhood V o f Ei n3 in  .1■1N., such that fo r  any it, and

J-1
rit+i in  R, Z({11./}0 which is given in  lemma 7.5, contains
a subrepresentation which is equivalent to

(7. 32) Ind<i + n>dAtRy(h).
V  +n N -4G

Proof. Put V=§9,( W ) as in the assumption 3. From lemma

7. 5, obviously Z( {fi,} ) contains
t+1

(7. 33) Z ( {n,} , {k» }  ) ch,; (k,)
w, , = 1

0 4 '0 (3),
N -.G

where W ', V ' are given in lemma 7. 6, and the measure v o'  on :AI is
constructed fo r  {F ',  W' } as (7 . 5 ) o f the assumption 3.

But the absolute continuity of /2; to 2/0 asserts that (7. 33) con-
tains a subrepresentation which is equivalent to

(7. 34) Ind<h+ h0, n> (171).

Again, restrict the integral domain V ' to the open domain V7- h i + ,

which is contained in V ', the result is deduced.

4. Proof o f lemma 7 .1 .  A t first, take a )24 as in the assump-
tion 2. Since K(fi o )  is separable compact, there exists an at most
countable family {r i

o} o f irreducible representations, such that, Zero'
is equivalent to the regular representation R o o f  th e  group K (ii,).
That is,
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(7. 35) EGZ(iio, zi o) = ze Ind <f i o ,n>r̀o -1 1_1 NK(i2 0 )  , G

—  I n d  <it, O ( EEDr 10) —  Ind <no, n>R0—NK(110) >G 1=1 NK(ii0)—>G

—  Ind <n 0, n> {  Ind 1}  —
NK(ho) — .G {e} }K(ho)

—  I n d  {  I n d  <n o , n>} —Ind<h o , n>.
NK(n o ) N  , NK(ilo) N—>G

Next, we consider the Kronecker product o f  representations de-
fined for the set F= ( 1 < j < t )  given in the assumption 3 and

arbitrary given i t  in

(7. 35) Z (h )= Z(fio, r io)® Z(n1, 1 ) 0 " .

1 ) Ø ( n ,  1 )] —

[ O Z( 710, rf))] 0 Z 0 ii, 1)0Z (n , 1) —

—  (Ind<fia, n>)0 ( Ind 0'41, 0 1) ®
N NK(i11)—.G

••• ® (  In d  01„ 0 1 ) 0 (  Ind <fi, n> • 1).
NK(ti,)—.G NK(n)—.G

Now we apply lemma 7. 7 to (7. 35) and get the following.

L em m a 7 .8 . Z (h )  c o n tain s  a  subrepresentation w hich  is
equivalent to

(7. 36) Ind<fi,+ fi o , n>e (fi,)
V+n N—>G V-1, -I n,

While the separability o f N  results the a-compactness of N , and

there exists an at most countable set {it'} such that U [ V+ + ho]
J

covers w hole g. And Z O Z (iii)  contains a subrepresentation

(7.37) Ind<fi,

which is equivalent to R , by the reason o f lemma 7. 3. This shows
th a t, {Z(ho, rio), Z01  1 ), Z(ii °, 1 ) } ( r . , , k )  gives a  countable family of

generators o f R.
This completes the proof.

5. Examples.
a) The m otion  group over m-dimensional Euclidean space.



G = j  g = (
\0,•••,0

is  the semi - direct product o f closed normal subgroup

(' l

N =  n = •
1

\ 0, •••, 01

(7. 38)

That is, G

(7. 39)

1m +11  } •

1! J
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which is isomorphic to the additive group R" w ith vectors n , and
closed subgroup

This group is isomorphic to the group of orthogonal matrices of

degree m  which is consisted of { k } .
The dual group IV o f  N  is isomorphic to the additive group

,  and an element g  in  G operates on /V as

(7.41)

as an orthogonal matrix on the vector space R'". T h e n  the G-orbits

in  IV are (m — 1)-dimensional spheres S ( r )  with the radius r(O r

< 0 .0 ) and with the centre on origin. One can select a representative

o f orbit S ( r )  as

(7. 42)( r , 0 , • • • ,  0),

then the isotropy group K ( r )  o f it,. in K  is given by

i) K (0 )= - K,
1, 0, •••, 0, 0

(7.43)
ii) K ( r ) = K o =-

0, 0

0, 0

0, 0, •••, 0, 1 '

(7. 40) K =  k = k m 01.
( 0'

0, • 011 /

K o is isomorphic to the group of orthogonal matrices of degree m - 1
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which is consisted o f  {k,-1} .
From the compactness o f K , the assumptions 1  and 2 are easily

verified, therefore, if we show that the assumption 3  is fulfilled, then
the duality theorem o f G  is obtained.

To show the assumption 3 , put a pair F = {h i , = 0, • ,  0 ) ,

(— 1/2,1/3/2, 0, •, 0)} as the set { n,}  (t = 2 ) .  We shall show the

existence of a neighborhood W, x W 2  o f  (ill fi z )  in  S(1) x  S(1)
which is homeomorphic to an open set of (K ( i i i )\ K) X  (K (ñ2)\K ),
and on which the measure I), are given as ordinary Lebesgue measure.
That is ,  W , x W , satisfies the conditions of the assumption 3.

F o r  this, let the coordinates of and it', on S (1 )  be

(7.44)

then

(7.45)

n i= (x i+1 , x 2 ,••  x .) ,
ir2= (311—  ( 1 / 2), Y 2+ / 3 /2), y3, • • 

(  (x i + 1) 2 + x+  ••• +4=1,
( y i _(1/2))2+( y z + (V / 2 ))2 + y + + y = 1.

A  neighborhood W1 (e) x  W 2(e) o f  (fi,, fi 2)  is given by

(7. 46) I x , < e ,  and y, (1 <  j< m ) .

By the map ÇOF; 0711 the correspondence o f coordinates are

given by

(7. 47) z i=  +  y, + (1/2), z, = x2+ y 2+ (V 3 /2),

z i= ( 3 < i5 m ) .

For fixed x '= (x3, x„,), take the parametres (x2, Y2, • • Y.) then
for sufficiently near ( f ir ,  i i )  o f  ( f i l  ) 212)

(7.48)z ,  -1/1 — (.4+ • • • +

- 4 1  —  { (y2+ (V  3 /2)) 2 + )4+ ---+y1} .

Therefore,

a(z„ • • •, z„,) 
a (X2, Y21 y . )

(7.49)
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X2 Y2+ ( -1/3 /2) 
x 1 +1 y ,—  (1/2)

1, 1,
0, 1,

o

— y .  
y —  (1/2)

o

y 3

y1 —  (1/2)

0,

= ( - x 2 ) (x+ 1)'+  (y2+ (V3 /2)) (yi- (1/2)) 1 .

This value is non-zero for instance for (ii1, ri2) such that

(7.50)l x 2 1 , 1 . Y 1 1 ,  1Y21)<1/3,

therefore o n  W1 (1/3) .>< W2 (1/3) too. Take this neighborhood of
as the W of the assumption 3. Such a  W  satisfies the

properties i ) ,  i i )  of the assumption 3. In fact, let

(7. 51) W1= { x '= (x 3 , • • • ,  x . ) :  ( x 1 , • • • , x . ) E  W1 (1/3)}

(7.52) W(x')=-- {x2: (x1, ••., x.)E W2(1/3)}, f o r  x' E W .

Then the map

(7. 53) ( X 2 ,  y 2 ,  • • • , z 2 ,  • • • ,  z , n ) ,

is  a  regular map o f  W (x') x W 2 (1/ 3 ) into »  for any x '  in  In
because (7. 49) does not take zero. But obviously this map ç9 ,  gives

the restriction of q )F . o f  W3(1/3) X W2(1/3) onto a  closed subspace

( W(x'), x ')  X  W 2  ( 1 / 3 ) in S (1 ) x  S (1 ). So that the image ip,( W1 (1/3)
x W 2 (1/3)) is open as a join of open sets {(. ,( W (x') x W2(1/3))}x ,

which are images of regular maps. This is the property 0 .
Moreover the regularity of s h o w s  that the ordinary Lebesgue

measure on  W (x') x W 2 (1/3) has same null set b y  the correspon-

dence as the measure dzi  d.Z2. • •dz. on » .  The ordinary Lebesgue
measure over W2 (1/3) x W 2 (1/3) as an open subspace in  S(1) x
S (1 ), is decomposed to an integral over the space K ,  components
of which are the Lebesgue measure on ( W (x'),x ') x W 2 (1/3).

By the same reason as to prove the existence of k , , ,  satisfying
(7. 30), for any given measurable E  in which satisfies trA',(En
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çoF( W1(1/3) x W2 (1 /3 ) )  * 0 , one can find x ' su ch  th at (ço:,)- (En
ço;, w (x9 x  W 2(1 /3 ))) has positive measure, and its  value becomes
a  continuous function o f  x'. Consequently, fo r  such a  s e t  E,
( ç o , ) - ( E n g , , (  W 1(1/3) x  W 2(1/3))) has positive measure on S(1) x
S (1 ) , value of w h ich  is  the integral o f  continuous non-zero non-
negative function o f  measure o f  (çc. , ) - ( E n ç 9 : , ( w(x9 X  W2( 1 / 3 ))
over W . T h is  proves the property ii).

b )  m -d im e n s io n a l proper inhomogeneous Lorentz group.

F o r th is  group, the circumstance is analogous to the case of a),

except the group  K  is isom orphic to  the m -dim ensional proper
Lorentz group L„, instead of the orthogonal group.

(7.54) G =  g =
n \

m +  11 1,, 0, • • •, 0,1,

/  1,

(7. 55) N =
1,

0,• • •, 0,11

0
(7. 56) fK = 1— 1' 0 ) '

0,•••, 0, 1 /

where 1„, is  a real matrix o f  degree m  which makes invariant the

quadratic form on R"‘,

(7.57)q ( n )  = (x;:+ x+ • • • + ,

w h ere  n  ( x o , x 1 , • • •, x„,,), and in the connected component o f e  in
th is matrices group.

Thus G  operates on .kN —R -  a s  hyperbolic rotations, and f\N/  is
separated to disjoint sum o f th e  following G -orbitw ise measurable
sets.
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' i) The origin {0} ,

ii) the light cone {fi: q(ii)=0,11#0}  ,
iii) the set of time like vectors {II: q ( ) <0 } ,
iv) a) the set of positive space like vectors

x 0>0,q(h)>0} ,
b) the set of negative space like vectors

From the locally compactness o f  each orbits, using the results

o f J. G lim m  8] , the assumption 1 is verified. A s  th e  vector ito
given in the assumption 2, one can select any space like vector.
As wellknown, for such a  G-orbit one can choose the representative

of the form =

tative in K  is
(r, 0, • , 0), and the isotropy group of this represen-

1, 0, • • •, 0, 0

0, 0
(7. 59) K ( = k = :

0, 0

0, 0, •••, 0, 1

where k . ,  is any orthogonal matrix o f  degree m -1, so K (h a)  is

compact. This shows the assumption 2.

To prove the assumption 3, let for instance {ii1, = { (1, 0,
0 ), (V3- , , 0, • • •, 0)) as the set {h 1} ( t= 2 ) .  On the G-orbit H(1)

passi7g through the both o f hi, i'12, we introduce coordinates,

f
(7.60)

where

(7.61)

ñ = (x0+1, x1, •..,

(Yo+ -1/3 y,+-1/2 ,

s (x 0 +1) 2 — ( 4+ ••• + x!—i)

I (Yo+-1/3 ) 2 — {Ch.+1/2

A  neighborhood W(e) x W2(e) o f  (ni, n2) is given by

(7. 62) x i  < e ,  a n d  I y i  <e (1Si<m)•

x0<0,q(h)>01 .

Put the coordinate o f hri  +  2 , as (zo, z 1 , , and for fixed x'=-
(x 2 , x3, • •, x„,_1), using the parameters (x1, y, • • we get,
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a(xi , y i , •••, y , )

y,
x 3 +1 Y0+ -1/3 Yo+1/3

1, 1,
0,

0
= x i( x 0 + 1 ) - - ( y i+ 1 /2 )  (Y0+1/3

because of

(7.64)z 0 = x 0 + y 2 + 1 + - / ,

z i = x j -Fy i , ( 2 < j < m - 1 ) .

And the Jacobian (7. 63) does not take zero for instance on W1 (1/4)
x W 2 (1/4).

The same arguments as in a) show that W '= W 1 (1/4) x W 2 (1/4)
is the neighborhood required in the assumption 3.

R em ark . In the previous paper [21 ] IV , the author used the

different method to prove the duality theorem fo r some semi-direct
product groups, for which the author did not set the measure theo-
retical assumption as stated in the assumption 3  o f this paper. But

the proof mentioned in the previous paper is not complete, and it

seems us the measure theoretical assumption is necessary. There-
fore the results o f the previous paper are completely contained in
the results o f this paper.

The author does not know whether this assumption is necessary

or r ot.
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