On the jacobian varieties of the fields of elliptic modular functions II.

By
Koji Dor* and Hidehisa Naganuma

(Roceived November 29, 1966)

The purpose of this note is to observe the Galois groups of normal extensions obtained by the coordinates of the ideal section points of the jacobian variety J_{q} of an algebraic curve uniformized by elliptic modular functions, which was investigated in a previous work [2] with the same title. Our result can be obtained by slight modification of the consideration due to G. Shimura [6]. In fact, in his. [6, footnote 9), p. 281], our problem was suggested.

In §4 of the present paper, we treated a simple jacobian variety J_{q} of dimension 2, having a real quadratic number field $\boldsymbol{Q}(\sqrt{d})$ as its endomorphism algebra. By a numerical example, we shall show that there occur two types of Galois group $G(K(\mathfrak{l}) / \boldsymbol{Q})$, according as $\left(\frac{d}{l}\right)=+1$ or -1 , which is isomorphic to $G L(2, G F(l))$ or $G F(l)^{*} \cdot S L\left(2, G F\left(l^{2}\right)\right)$ respectively, where $\mathfrak{l}(\mid l)$ denotes a prime ideal in $\boldsymbol{Q}(\sqrt{d})$ and $K(\mathfrak{l}) / \boldsymbol{Q}$ a normal extension generated by the coordinates of the l-section points of J_{q}.

Notations. Let F be an algebraic number field of finite degree over \boldsymbol{Q} and o be the ring of integers in F. Let $\left(A^{n}, \theta\right)$ be an abelian variety of type (F) in the sense of [4] i. e. a couple (A, θ) formed by an abelian variety A of the dimension n and an isomorphism θ of F into End $\boldsymbol{Q} A=$ End $A \otimes_{\boldsymbol{Z}} \boldsymbol{Q}$ such that $\theta(1)=1_{\boldsymbol{A}} \quad(=$ the identy element of $\operatorname{End} \boldsymbol{Q} A$). In the following treatment, $\left(A^{n}, \theta\right)$ will denote

[^0]an abelian variety of type (F) which are assumed to be principal, namely, we assume that $\theta(\mathfrak{n})=\operatorname{End} \boldsymbol{Q} A \cap \theta(F)$. Putting $m=2 n /[F: \boldsymbol{Q}]$ for $\left(A^{n}, \theta\right), m$ is called the index of $\left(A^{n}, \theta\right)$. For a prime ideal \mathfrak{l} of \mathfrak{v} and a natural number ν, put
$$
\mathfrak{g}\left(l^{\nu}, A\right)=\left\{t \in A \mid \theta(a) t=0 \text { for all } a \in \mathfrak{l}^{\nu}\right\}, \quad \mathfrak{g}\left(\mathfrak{l}^{\infty}, A\right)=\bigcup_{\nu=1}^{\infty} \mathfrak{g}\left(\nu^{\nu}, A\right) .
$$

§1. l-adic representation M_{I}.

Let $\left(A^{n}, \theta\right)$ be an abelian variety type (F) with the index m. For a prime ideal \mathfrak{l} of \mathfrak{o} which is prime to the characteristic of the field of definition for A, we have

$$
\begin{align*}
& \mathfrak{g}\left(\mathfrak{l}^{\nu}, A\right) \cong \mathfrak{o} / \mathfrak{i}^{\nu} \oplus \cdots \oplus \mathfrak{o} / \mathfrak{i}^{\nu} \quad(m \text {-copies }) \\
& \mathfrak{g}\left(\mathfrak{l}^{\infty}, A\right) \cong F_{\mathfrak{l}} / \mathfrak{o}_{\mathfrak{l}} \oplus \cdots \oplus F_{\mathfrak{l}} / \mathfrak{v}_{\mathfrak{l}} \quad(m \text {-copies }),
\end{align*}
$$

where $F_{\mathfrak{l}}$ and $\mathfrak{o}_{\mathfrak{1}}$ denotes the \mathfrak{l}-completion of F and the valuation ring in F_{r}, respectively. We call any one of the isomorphisms of $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A\right)$ onto ${ }_{\oplus}^{m} F_{\mathfrak{l}} / \mathfrak{o}_{\mathfrak{l}}$ an !-adic coordinate-system of $\mathfrak{g}\left(\mathfrak{1}^{\infty}, A\right)$ and choose a fixed one, say, \therefore Let $Z(A, F)$ and $Z_{0}(A, F)$ denotes the commutator of $\theta(\mathfrak{v})$ in End A and of $\theta(F)$ in End $\boldsymbol{Q}(A)$, respectively. Then for an element $\lambda \in Z(A, F)$, there exists a square matrix M of size m, with coefficients in $\mathfrak{o}_{\mathfrak{l}}$, such that, for every $t \in \mathfrak{g}\left(l^{\infty}, A\right)$, we have $\mathfrak{b}(\lambda t)=M \bigcirc(t)$. The mapping $\lambda \rightarrow M$ is uniquely extended to a representation of $Z_{0}(A, F)$ by matrices with coefficients in $F_{\mathfrak{Y}}$, which we call the l-adic representation of $Z_{0}(A, F)$ with respect to \mathfrak{b}. For an element $\xi \in Z_{0}(A, F)$ and an !-adic representation $M_{\mathfrak{I}}$ of $Z_{0}(A, F)$, we denote by $P_{\mathrm{I}}(\xi, X)$ the characteristic polynomial of $M_{\mathrm{I}}(\xi)$ i.e.,

$$
\operatorname{det}\left(X \cdot 1_{m}-M_{\mathrm{l}}(\xi)\right)=P_{\mathrm{I}}(\xi, X)
$$

where X is an indetermicate and 1_{m} denotes the unit matrix of size m.

Let (A, θ) be an abelian variety of type (F), defined over k, which is principal. Namely, k is a field of definition for A and every element of $\theta(0)$. We denote by $\operatorname{End}(A, k)$ the set of all elements
in $\operatorname{End}(A)$ defined over k. In the present treatment we restrict ourselves to the case where k is an algebraic number field and we recall a few facts in [4], which concerns the reduction of abelian variety with respect to a discrete place p of k. We denote by \widetilde{k} the residue field of k with respect to p. (A, θ) being as above, then, if A has no defect for $p,\left(A_{\mathrm{f}}, \widetilde{\theta}\right)$ is principal, where A_{p} is the reduction of A modulo \mathfrak{p} and $\widetilde{\theta}(\mu)=\overline{\theta(\mu)}$ ($=$ the reduction of $\theta(\mu)$ modulo \mathfrak{p}) for every $\mu \in \mathfrak{v}$. For every $\lambda \in \operatorname{End}(A, k)$ and its reduction $\tilde{\lambda}$ of λ modulo \mathfrak{p}, the correspondence $\lambda \rightarrow \tilde{\lambda}$ defines a ring-isomorphism of $\operatorname{End}(A, k)$ into $\operatorname{End}\left(A_{\mathfrak{p}}, \widetilde{k}\right)$. Let \mathfrak{l} be a prime ideal of 0 which is prime to the characteristic of \widetilde{k}. We can choose \mathfrak{l}-adic coordinate systems of $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A\right)$ and $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A_{\mathfrak{p}}\right)$ in such a way that for every $\lambda \in \operatorname{End}(A, k)$, we have $M_{\mathrm{I}}(\lambda)=M_{\mathrm{I}} \widetilde{(\lambda)}$. For every integral ideal \mathfrak{a} of F, the reduction modulo \mathfrak{p} defines a homomorphism of $\mathfrak{g}(\mathfrak{a}, A)$ onto $\mathfrak{g}\left(\mathfrak{a}, A_{\mathfrak{F}}\right)$, provided that every point of $\mathfrak{g}(\mathfrak{a}, A)$ is rational over k. Moreover, if \mathfrak{a} is prime to the characteristic of \widetilde{k}, this homomorphism is an isomorphism. We remark that the $N(\mathfrak{p})$-th power endomorphism πp is contained in $Z\left(A_{\mathfrak{p}}, F\right)$ since (A, θ) is assumed to be defined over k.

§2. Galois group $G(K(\mathfrak{l}) / k)$.

Let (A, θ) be an abelian variety of type (F), defined over an algebraic number field k of finite degree, which is principal. For a prime ideal \mathfrak{l} of v and a natural number n, let $K\left(\mathfrak{l}^{n}\right)$ resp. $K\left(\mathfrak{l}^{\infty}\right)$ be the field generated over k by the coordinates of the points in $\mathfrak{g}\left(\mathfrak{l}^{n}, A\right)$ resp. in $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A\right)$. The field $K\left(\mathfrak{l}^{n}\right)$ resp. $K\left(\mathfrak{l}^{\infty}\right)$ is a finite resp. an infinite normal extension of k. Taking a basis of $\mathfrak{g}\left(\mathfrak{l}^{n}, A\right)$ resp. $\mathrm{g}\left(\mathfrak{l}^{\infty}, A\right)$, we get a representation $R^{\mathrm{l}}{ }_{n}$ resp. $R^{\mathfrak{l}}$ of the Galois group $G\left(K\left(l^{n}\right) / k\right)$ resp. $G\left(K\left(l^{\infty}\right) / k\right)$ by matrices in $G L\left(m, o / l^{n}\right)$ resp. $G L\left(m, \mathrm{o}_{\mathrm{l}}\right)$ by means of (1.1), where m is the index of (A, θ). We may assume that

$$
R_{n}^{\mathrm{l}_{n}}\left(\sigma^{\prime}\right) \equiv R_{\infty}^{\mathrm{l}_{\infty}}(\sigma) \bmod \left(\mathfrak{l}^{n}\right)
$$

if σ^{\prime} is the restriction of an element σ of $G\left(K\left(\mathfrak{l}^{\infty}\right) / k\right)$ to $K\left(\mathfrak{l}^{n}\right)$.

Let \mathfrak{p} be a prime ideal of k, for which we assume that A has no defect a.ed let \mathfrak{F} be a prime divisor of \mathfrak{p} in $K\left(\mathfrak{l}^{\infty}\right)$, and \mathfrak{Y}^{\prime} the restriction of \mathscr{F} to $K\left(\mathfrak{l}^{n}\right)$. Let $\sigma_{\mathfrak{F}}$ be a Froberius automorphism for \mathfrak{Y}. The restriction σ^{\prime} of $\sigma_{\mathfrak{F}}$ to $K\left(l^{n}\right)$ is a Frobenius automorphism for \mathfrak{S}^{\prime}. As was remarked in $\S 1$, the reduction modulo \mathfrak{F} defines an isomorphism of $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A\right)$ onto $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A_{\mathfrak{p}}\right)$, provided that \mathfrak{l} is prime to the characteristic of \widetilde{k}. From the definition of Frobenius automorphism, we see that

$$
t^{\sigma} \bmod \mathfrak{Y}=\pi_{\mathfrak{p}}(t \bmod \mathfrak{P})\left(t \in \mathfrak{g}\left(\mathfrak{L}^{\infty}, A\right)\right) .
$$

Therefore, choosing suitable basis of $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A\right)$ and $\mathfrak{g}\left(\mathfrak{l}^{\infty}, A_{\mathfrak{p}}\right)$, we get $R_{\infty}\left(\sigma_{\mathfrak{F}}\right)=M_{\mathrm{I}}\left(\pi_{\mathrm{f}}\right)$, so that

$$
\begin{aligned}
& \operatorname{det}\left[X \cdot 1_{m}-R \mathfrak{I}_{\infty}\left(\sigma_{\mathfrak{F}}\right)\right]=P_{\mathfrak{I}}\left(\pi_{\mathfrak{F}}, X\right) \\
& \operatorname{det}\left[X \cdot 1_{m}-R_{n}^{\left.\mathfrak{r}_{n}\left(\sigma^{\prime}\right)\right] \equiv P_{\mathfrak{Y}}\left(\pi_{\mathfrak{p}}, X\right) \bmod \mathfrak{l}^{n} .}\right.
\end{aligned}
$$

For the determination of $G(K(l) / k)$ in the special case of (A, θ) as in $\S 4$, we shall need the following statement concerning the representation $R_{1}: G(K(1) / k) \rightarrow G L(m, 0 / \mathfrak{l})$. This is a special case of a more presise result due to S:imura [5].

Proposition 1. Let F be a totally real aigebraic number field of finite degree and (A, θ) an abelian variety of type (F), defined over \boldsymbol{Q}, which is principal and of index m. Suppose that $\theta(F)=\operatorname{Ed} \boldsymbol{Q}(A)$. Then we have

$$
\left.R_{\mathfrak{r}_{1}}^{\mathrm{r}^{[}}(K(\mathfrak{l}) / \boldsymbol{Q})\right] \subset(\boldsymbol{Z} / c)^{*} \cdot S L(m, \mathrm{o} / \mathfrak{l}),
$$

where c is the smallest positive integer divisible by \mathfrak{l}, and $(\boldsymbol{Z} / c)^{*}$ denotes the multiplicative group in \boldsymbol{Z} / c.

Proof. Let \mathcal{C} be a polarization of A. We remark that the automorphism group of the polarized abelian variety (A, \mathcal{C}, θ) is $\{ \pm 1\}$. Then the proof is included in [5, Th. 7.2, p. 150].

§3. Jacobian variety J_{q}.

For every positive integer q, put

$$
\Gamma_{0}(q)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \boldsymbol{Z}) \right\rvert\, c \equiv 0(q)\right\} .
$$

Then $\Gamma_{0}(q)$ is a properly discontinuous group operating on the upper half plane

$$
H=\left\{z \in \boldsymbol{C} \mid I_{m}(z)>0\right\} .
$$

Let C_{n} be a non-singular curve of the field of modular functions belonging to the group $\Gamma_{0}(q)$, and J_{q} the jacobian variety of C_{q}. Let T_{p} be the element of $\operatorname{End} \boldsymbol{Q}\left(J_{q}\right)$, corresponding to the so called Hecke operator acting on the space $S_{2}\left(\Gamma_{0}(q)\right)$ of clusp forms of weight 2 with respect to $\Gamma_{0}(q)$. We can take \boldsymbol{Q} as the field of definition for C_{q}, J_{q} and T_{p}. For every prime number p, other than $p \mid q$, we have "good" reduction modulo p for C_{q}, J_{q} and the so called congruence relation

$$
\begin{equation*}
\widetilde{T}_{p}=\pi_{p}+\pi_{p}^{\prime} \tag{3.1}
\end{equation*}
$$

where π_{p} is the p-th power endomorphism of $\left(J_{q}\right)_{p}$ (= reduction of J_{q} modulo p), $\pi_{p}^{\prime}=p \cdot \pi_{p}^{-1}$ and $\overline{T_{p}}$ is the reduction of T_{p} modulo p. Let M^{d} be a representation of $\operatorname{End} \boldsymbol{Q}\left(J_{q}\right)$ by the differential forms of the first kind, then $M^{d}\left(T_{p}\right)$ can be considered as a representation of T_{p} for the space $S_{2}\left(\Gamma_{0}(q)\right)$. It is well-known that the eigenvalues of $M^{d}\left(T_{b}\right)$ are real algebraic integers of finite degree $\leqslant g(=$ the genus of $\left.C_{q}\right)$. Taking an eigenvalue c_{p} of $M^{d}\left(T_{p}\right)$ and putting $\theta\left(c_{p}\right)=T_{p}$, we get an abelian variety ($\left.J_{q}^{g}, \theta\right)$ of type $\left(\boldsymbol{Q}\left(c_{p}\right)\right.$).

In certain cases, the jacobian variety J_{q}^{g} turns out to be simple and $\operatorname{End} \boldsymbol{Q}\left(J_{q}\right)$ is generated by T_{n} over \boldsymbol{Q}, which is isomorphic to a totally real algebraic number field of degree $g(c f .[2]$, [3]). We shall determine the galois Groups $G(K(\mathfrak{l}) / \boldsymbol{Q})$ for some \mathfrak{l}, in $§ 4$, in a special case of these. For these reasons, we restrict ourselves to the following situations.

Now let us consider the jacobian variety (J_{q}, θ) under the conditions such that $\left(J_{g}, \theta\right)$ is principal and of index 2 , which is defined over \boldsymbol{Q} and $T_{n} \in \theta(F)$ for every natural number n, where F is a totally real algebraic number field. Let \mathfrak{o} be the ring of integers in F and \mathfrak{l} a prime ideal of \mathfrak{o}. As we defined in $\S 1, P_{\mathfrak{l}}\left(\pi_{p}, X\right)$ denotes the characteristic polynomial of $M_{\mathrm{I}}\left(\pi_{p}\right)$, where π_{p} in the p-th power
endomorphism of $\left(J_{q}\right)_{p}$.
Proposition 2. Let $\left(J_{q}, \theta\right)$ be the jacobian variety satisfying the above conditions. Let p be a prime number such that $p \nmid q$, and \mathfrak{l} a prime ideal in F which is prime to p. Then the characteristic polynomial $P_{1}\left(\pi_{p}, X\right)$ is given by

$$
\operatorname{Pr}\left(\pi_{p}, X\right)=X^{2}-c_{\rho} X+p
$$

either the condition (A) or (B) is satisfied:
(A) $c_{p}^{2}-4 p=\mathfrak{l} \cdot \mathfrak{m}($ in $\mathfrak{o})$ where $(\mathfrak{l}, \mathfrak{m})=1$.
(B) $X^{2} \equiv c_{p}^{2}-4 p$ (1) has no solutions in o i.e $c_{p}^{2}-4 p$ is not a quadratic residue mod. 1.

In particular, if (A) is satisfied, $R_{1}\left(\sigma^{\prime}\right)$ is conjugate to $\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$.

Proof. The first part of our assertion is an easy consequence of (3.1) i. e., $\pi_{t}^{2}-\pi_{p} T_{p}+p \cdot \delta_{(J q)_{p}}=0$, where $\delta_{(J q)_{p}}$ is the identity automorphism of $\left(J_{q}\right)_{p}$. This means that

$$
\left(M_{\mathrm{I}}(\pi)\right)^{2}-M_{\mathrm{I}}(\pi) \cdot\left(\begin{array}{cc}
c_{p} & 0 \\
0 & c_{p}
\end{array}\right)+\left(\begin{array}{cc}
p & 0 \\
0 & p
\end{array}\right)=0
$$

If we put $M_{\mathfrak{l}}\left(\pi_{\rho}\right)=\left(\begin{array}{ll}a & \beta \\ \gamma & \delta\end{array}\right), \alpha, \beta, \gamma, \delta \in \mathfrak{o}_{\mathfrak{l}}$, it follows

$$
\begin{aligned}
& a^{2}-c_{p} \alpha+p+\beta \gamma=0 \\
& \delta^{2}-c_{p} \alpha+p+\beta \gamma=0 \\
& \beta\left(a+\delta-c_{p}\right)=0 \\
& r\left(\alpha+\delta-c_{p}\right)=0 .
\end{aligned}
$$

This shows that $P_{\mathfrak{l}}\left(\pi_{\rho}, X\right)=X^{2}-c_{p} X+p$, except for the case $M_{\mathfrak{I}}\left(\pi_{p}\right)$ $=\left(\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right)$, where $\omega=c_{p} \pm \sqrt{c_{p}^{2}-4 p} / 2$. However, our assumption (A) or (B) means $c_{p}^{2}-4 p \notin F_{\mathrm{r}}$. Hence, if either (A) or (B) is satisfied the exceptional case does not occur. The sezond part of our assertion follows from the same argument as the proof of [6, Lemma 1, p.213].
§4. The case of $\Gamma_{0}(23)$.
Let us consider the special case $q=23$ ($=$ the smallcst prime
number for which C_{q} is of genus 2). We denote, as usual, by $\Delta(z)$ the cusp-form of degree 12 with respect to $S L(2, \boldsymbol{Z})$ and put

$$
\begin{aligned}
& f(z)=\sqrt[10]{\sqrt[1]{\Delta(z) \cdot \Delta(23 z)}}=\sum_{n=1}^{\infty} a_{n} q^{n} ; q=e^{2 \pi i z} \\
& g(z)=T_{2}(f(z)) .
\end{aligned}
$$

Then $f(z), g(z)$ is one of the basis of $S_{2}\left(\Gamma_{0}(23)\right)$. Furthermore, if we put

$$
\varphi_{i}(z)=g(z)+\alpha_{i} \cdot f(z)=\sum_{n=1}^{\infty} c_{n, i} q^{n} ; i=1,2
$$

so that the corresponding Dirichlet series $\sum_{n} c_{n, i} n^{-s}$ should admit an Euler product, it can be verified that α_{i} satisfies $\alpha_{i}^{2}-\alpha_{i}-1=0$ and the eigenvalues $c_{p, i}$ of Heske operators T_{p} are given by

$$
\begin{aligned}
& c_{p, 1}=a_{2 p}+\frac{1+\sqrt{5}}{2} a_{p} \text { and } c_{p, 2}=a_{2 p}+\frac{1-\sqrt{5}}{2} a_{p,} \text {, especially, } \\
& c_{2,1}=\frac{-1+\sqrt{ } 5}{2} .
\end{aligned}
$$

In this case $\left(J_{23}, \theta\right)$ is a simple abelian variety of dimension 2 (cf. [2]) so that the situations of Proposition 1 and that of §3 are applicable. Namely, $\theta\left(c_{p, 1}\right)=T_{p}$ gives an isomorphism of $\boldsymbol{Q}(\sqrt{5})$ onto $\operatorname{End} \boldsymbol{Q}\left(J_{23}\right)$ and $\left(J_{23}, \theta\right)$ is principal, defined over \boldsymbol{Q}. Proposition 1 shows that, in this case, for a prime number l,
case (i) if $(l)=\mathfrak{l}_{1} \cdot \mathfrak{l}_{2}, \mathfrak{l}_{1} \neq \mathfrak{l}_{2}$ in $\boldsymbol{Q}(\sqrt{5})$,

$$
\begin{equation*}
R_{1}^{\mathfrak{I}_{i}}\left[G\left(K\left(\mathfrak{l}_{i}\right) / \boldsymbol{Q}\right)\right] \subset G L(2, \boldsymbol{Z} /(l)), i=1,2, \tag{4.1}
\end{equation*}
$$

and
case (ii) if $(l)=\mathfrak{l}$ remains prime in $\boldsymbol{Q}(\sqrt{ } \overline{5})$,

$$
\begin{equation*}
R_{1}^{\mathfrak{l}}[G(K(\mathfrak{l}) / \boldsymbol{Q})] \subset(\boldsymbol{Z} /(l))^{*} \cdot S L(2, \mathfrak{o} / \mathfrak{l}), \tag{4.2}
\end{equation*}
$$

where 0 denotes the ring of integers in $\boldsymbol{Q}(\sqrt{5})$.
Now we can check for several primes \mathfrak{l}, the equalities of (4.1) and (4.2) hold. In fact, we can check it by the following steps. Put $S_{\mathfrak{l}}=R_{1}^{\mathfrak{l}}[G(K(\mathfrak{l}) / \boldsymbol{Q})] \cap S L(2, \mathfrak{o} / \mathfrak{l})$. Then, for the equalities of (4.1) and (4.2), it is sufficient to show the followings:
(a) $S_{\mathrm{I}}=S L(2, \mathrm{o} / \mathrm{l})$
and
(b) there exists a prime number p which is a primitive l-th root and satisfies either the property of (A) or (B) in Proposition 2. Moreover, in Dickson [1], all the subgroups of $S L\left(2, G F\left(\mathfrak{l}^{n}\right)\right) /\{ \pm 1\}$ are determined. Hence, by Proposition 2, to check the property (a), we have only to show the next $\left(a^{\prime} 1\right) \sim\left(a^{\prime} 3\right)$:
($\left.a^{\prime} 1\right) \quad S_{\mathrm{r}} \ni\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$,
($a^{\prime} 2$) there exists a prime number p satisfying the propesty (A) and
($\left.a^{\prime} 3\right) \quad S_{\mathfrak{l}}$ contains an element of order $\mathrm{Nl}+1$.
Let us now consider, for example, the case (i) $l=79=\mathfrak{l}_{1} \cdot \mathfrak{l}_{2}$ (in $\boldsymbol{Q}(\sqrt{5})$. For $p=31,47$, we have $c_{31,1}=3 \sqrt{5}, c_{47,1}=\sqrt{ } \overline{5}$. Hence $p=31$ (resp. $p=47$) satisfies ($a^{\prime} 2$) (resp. (b)). For $p=19$, we have $c_{19,1}=$ -2. By a simple computation, we have $R_{1}^{\mathfrak{r}_{i}}\left(\sigma^{\prime}\right)^{39}(=X$; say $) \in S_{r_{i}}$, $i=1,2$ and $X^{40}=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$.Thus we get $G\left(K\left(\mathfrak{l}_{i}\right) / \boldsymbol{Q}\right) \cong G L(2, \boldsymbol{Z} /(79))$ for $i=1,2$.

As an example of the case (ii), we choose $l=7$. For $p=3$, we have $c_{3,1}=\sqrt{5}$, for which $\left(a^{\prime} 2\right)$ and (b) are satisfied. For $p=11$, we have $\quad c_{11,1}=-3-\sqrt{5}$. We have $R_{1}^{(7)}\left(\sigma^{\prime}\right)^{3}(=X) \in S_{(7)}$ and $X^{25}=$ $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$. Thus we get $G(K((7)) / \boldsymbol{Q}) \cong(\boldsymbol{Z} /(7))^{*} \cdot S L\left(2, G F\left(7^{2}\right)\right)$.

Remark 1. In the above example of case (i), we get $G\left(K\left(\mathfrak{l}_{1}\right) / Q\right)$ $\cong G\left(K\left(\mathfrak{l}_{2}\right) / \boldsymbol{Q}\right) \quad(\cong G L(2, \boldsymbol{Z} /(l)))$. However, in general, this isomorphism can not be hold.

Remark 2. In the case of $\Gamma_{9}(11)$, it is known, for the elliptic curve $J_{11}, K((5)) / \boldsymbol{Q}$ is an abelian extension. Putting ${ }_{1}^{12} / \overline{\Delta(z) \cdot \Delta(\overline{11 z})}$ $=\sum c_{n} q^{n}, c_{p} \equiv p+1 \bmod (5)$ for every prime number $p(\neq 11)$. The corresponding fact, in our case, is found in $l=11$. Namely, for 11 $=\mathfrak{l}_{1} \cdot \mathfrak{l}_{2}, \mathfrak{l}_{1}=(4+\sqrt{5}), \mathfrak{l}_{2}=(4-\sqrt{5})$, we have $c_{p, 1} \equiv p+1 \bmod \mathfrak{l}_{1}$ for every
prime number $p(\neq 23)$.
Remark 3. This was remarked by Prof. G. Shimura. In our discussions of $G(K(\mathfrak{l}) / Q)$, we restricted ourselves to the case for the prime ideal \mathfrak{l}. However, for the integral ideal a of F, we have

$$
G(K(\mathfrak{a}) / \boldsymbol{Q}) \subset(\boldsymbol{Z} /(c)) * \prod_{\mathfrak{l} \mid \mathfrak{a}} S L(2, \mathfrak{o} / \mathfrak{l}),
$$

where c is the smallest positive integer contained in a. In particular for a rational prime number l of case (i), we have

$$
\begin{aligned}
G(K(l) / \boldsymbol{Q}) \subset & \{(M, N) \in G L(2, \boldsymbol{Z} /(l)) \\
& \times G L(2, \boldsymbol{Z} /(l)) \mid \operatorname{det} M=\operatorname{det} N\} .
\end{aligned}
$$

Kyoto University

References

[1] L. E. Dickson, Linear groups, Leipzig (1901).
[2] K. Doi, On the jacobian varieties of the fields of elliptic modular functions, Osaka Math. J., 15 (1963), 249-256.
[3] T. Matsui, On the endomorphism algebra of jacobian varieties attached to the field of elliptic modular functions, Osaka J. Math., 1 (1964), 25-31.
[4] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications of number theory, Publ. Math. Soc. Japan, No. 6 (1961).
[5] G. Shimura, On the field of definition for a field of automorphic functions II, Ann. of Math., 81 (1965), 124-165.
[6] G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math.. 221 (1966), 209-220.

[^0]: * This work was partially supported by The Sakkokai Foundation.

