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Introduction.

The purpose of this paper is to compute the p-primary compo-
nents of unstable homotopy groups of classical groups (in this pa-
per p always denotes an odd prime). In [2] B. Harris has shown
the following direct sum decompositions and isomorphism, so we are
enough to compute only for unitary and symplectic groups.

o (SU2n))="r,(Sp(n)) +*m,(SU(2n) /Sp(n)),
rr (SU2n+1))=*7,(S0(2n+1))
+*m(SU(2n+1)/S0(2n+1)),
2,(SO(21))="r,(SO(2n—1)) +*z,(S*™),
', (SO(2n+1))=z,(Sp(n)),

0.1

where ?r; stands for a subgroup of the i-th homotopy group =; with
an index prime to p and having no g-primary part for g+ p.

Before stating our results we define functions N(#, &) and N'(#,
k) of integers n, £, 0<k<<p*—1 for each odd prime p. Let t=|:p—fljl
and n+k=qg—1i, where g=0 (mod p) and 1<i<{p, then we define
N(n, k) and N'(n, k) as follows

(0 i>t,
| min(y,(q),t—i+1) i<t t<<p,
min<VP(q>_1’p) i:l, t:p)

N B) =\ minun(@), p—i+2) i#1,p, t=p,
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| min(v,(g—2%), 2) i=t=p,
J’ v((n+R)D) —t+N(n, k) t<port=pi=1,

NOB = ey —p—14 Now B =, i1,

where y,(x) is defined for any non zero rational number x as the
exponent of p in the factorization of x into prime powers and we
define »,(0)=0.

Theorem 1. For 0<<k<<p'—1,k<<(n+1)(p—1)

Z ik R<<p*—2 or n#0 (mod p)

0.2) *mauua(SU =
( ) Im ( (7)) {Z,~<n,k)+Z, k=p"—2, n=0 (mod p).

For 0<k<<p’—1, k<<(n+1)(p—1)—1

[Z,,N/(mn k<<p(p—1)—1 or k=p*—2

(0.3) *momin(SUN))= or n+k=—2 (mod p)

Zyom+Z,  p(p—1)—1<bk<p*—2,
n+k#=—2 (mod p).

Theorem 2. Let 2k<<p*—1, then

Sfor k<(n+1)(p—1): *miras(Sp(n)) =0,

for k<(n+1)(p—1): *rea(SH(N))
210 2<<p(p—1) or n+k=—1 (mod p)
1 Z, p(p—1)Z2k, n+k*—1 (mod p),

for kR<(n+1)(p—1): *maraeni(SP(R))=Z v2us1,2m,
for R<(n+1)(p—1): "Tansars(SP(M))=Z pyr 141,20 -

The most part of this paper is devoted to prove the formula
(0.2). In case of =1, t<<p, H. Matsunaga [4] proved (0.2) and
the idea of our proof is essentially due to [4]. In §1 we shall
reduce our problem to the computation of homotopy groups of a stun-
ted complex projective space and a simple complex X', using Bott
periodicity theorem and I. Yokota’s cellular decomposition of special
unitary groups. Attaching maps of cells of X’ are considered in
§2, there we shall use the theory of functional Chern character (Toda

[9]1), or Adams’ invariant ec ([1]), in the form of Lemma 2.1 and
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in order to calculate the Chern characters in a complex projective
space we use Proposition 2.2. (This proposition is proved in the
last section.) In §3 we compute the homotopy groups of some ele-
mentary complexes and prove (0.2). Then (0.3) and theorem 2
are proved easily in §4 and in §5 respectively.

I wish to thank Professor H. Toda for many available sugges-
tions.

§1. Reduction to a simple complex.

At first we consider the following exact sequence;

Tomn(SUn+k+ 1))—>n2,,+2k(SU(n+kJ_r 1)/SUR))
01511 (SUM)) 2 A (SUGn+ B +1))

where 7, (SUR+Ek+1))=Z, 70,,(SU+k+1))=0 by Bott
periodicity and m,.(SU(#n)) is a finite group so iy is zero map.

Therefore:

(1.1 Tonrasa (SUM) ) =10, (SUm+k+1) /SU(m)).

By the cellular decomposition of special unitary groups ([10]), the
(4n+3)-skeleton of SUn+k+1)/SU(n) has the cell structure of
S(CP(n+k)/CP(n—1)) where S is the suspension and CP(7) i-di-
mensional complex projective space. So if # is sufficiently large with
respect to &, s (SUMR))=mp0.(CP(n+k)/CP(n—1)). But by
I. M. James’ following generalized Freudenthal-Serre suspension theo-
rem ([3] Th. 3.2):

(1.2) ', (SUn+k+1)/SUn))
=1 o (SUM+k+1+4 Nbyy,) /SU(n+ Nb,,,))

for i<2p(n+1)—3, where b, is the James number and N is an
arbitrary natural number, so we have

(1.3). Under the assumption of (0.2) it is sufficient to prove
(0.2) for sufficiently lavge n.

For, taking N-b,,, a multiple of sufficiently large power of p, the
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value N(n, k) does not change. In the future, we always assume 7
sufficiently large then:

s (SUM) ) =12, 10. . (CP(n+ k) /CP(n—1)).

Now we quote the results on stable homotopy groups of spheres
([7] Th. 4.15)

-1 (SY)=Z,= {ai} 1<i<p?, t#£0 (mod p),

Pnszrr-(SY)=Z 5= {a,} 1I<r<p—1,pran,=a,,
(1.4) ‘’rviesr-no(SY)=Z,= {5}

*nsaprnr-n-3(SV)=Z,= {6} F'=S8"7%3,

’n0:(S¥) =0 1<2(p+1)(p—1) and except above cases,

where «;, aiy, B denotes generators and a; are defined inductively, using
the secondary composition, by «a;= {ay, p, a;}.

Let K=SUe U---Ue, be a CW-complex such that S=S" (N:
large) and e; are N+2i(p—1)-cells. By use of stable homotopy ex-
act sequences it follows easily from (1.4) the following (1.5).

=0 if 0<<j<2(p+1)(p—1)-3, j=—1,0 (mod
(15) pTL'N.;.j(K) 2(17_1)) and .7.9&217(15—1)—2,
=7 if j=2k(p—-1) and 0<k<m=<p.

Lemma 1.1. Let K be a simply connected finite CW-complex
and the order of the attaching map of each cell of K (in this
paper we identify an attaching map and its homotopy class) be
finite then there existe a finite CW-conplex K' and a cellular
map f of K' into K satisfying the following conditions:

(i) f induces the C,isomarphism fi: n(K')—rn(K) (C, is
a class of finite abelian groups whose orders are prime to p.)

(ii) The order of the attaching map of each cell of K' is
a power of p. FEspecially if the dimension of each cell of K is
even that is K=S*"U..-Ue* and n<<k, k—n<p*—2, then by (1.4)
K' is a one point union of complexes K, and the dimension of
each cell of K, equals to 2i modulo 2(p—1), 0<i<p—2.

Proof. The case K=S" is trivial and we construct the com-
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plex K’ and the map f inductively. Suppose K=K,Ye" and the
complex K the map f, of K, into K, satisfying (i), (ii) are already
constructed. If the order of 7 is p’q, q#0 (mod p) then q-r
e’r,.,(K,), so there exists ;' &’r,,(K;) such that fo.(y')=g-7.
We define K'=K,Ye", f|K,=fo, fle':e—e" a map of degree gq.
Here we may assume that K has no 1l-cell, then by our construction,
K, is simply connected, fo4:m.(K')—n(K) is onto and f induces an
isomorphism of the homology mod p. In virtue of Serre’s C-theory
[6], K' and f clearly satisfy (i), (ii). q.e.d.
CP(n+k)/CP(n—1)=8%Ue»**U...Ug*** gatisfies the condition
of Lemma 1.1 so if A<<p*—2, it follows from (1.5) that (CP(n+
k)/CP(n—1))" has the following cell structure up to homotopy type
(CPGr+ky/CP-1))'= | V. x|V xe],

j=l+1

where \/ denotes one point union of complexes, n+k=n+I+t(p—
1) , Oglgp—Z and X?,'lf= S2rt2i Y g2it2i 2D L U g2rt2i 2D, So by
(1.5),

f* . pﬂ2n+21+2r(p—1)_1<X3:1) —)p7l'2n+2k—1(CP(” + k) /CP(% - 1))

is an isomorphism. In the sequel we get the following isomorphisms.
Proposition 1.2. Under the condition of (0.2)
’71'2,;+2k—1(s U(n) )Eﬁﬂ2m+21+2:(p-1)—1 (X»?'-:I)
onsorts(SUM) )= ompns_s (X 02NV X pil52y) Uetmte™ )

for some large m with N(n,k)=N(m, k).
In computing these groups we may assume /=0 and # sufficient-
ly large.

§2. Attaching maps of X%'.

We shall recall the definition and some properties of the func-
tional Chern character CH ([9]§6), or Adams’ invariant e; ([1]), CH
is a homomorphism of 7..2_,(S*) into the rational numbers modulo
1: @Q/Z, defined as follows. Let y be any element of a0 (S*),
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consider its mapping cone Cy=S%Ye*** and if & is an element of

E(Cy) such that ch.6= S*, ch,.£=1-¢*" then we define CH(y)=
{3} €Q/Z. This does not depend on the choice of & By definition
CH is evidently an invariant of double suspension and the following

properties are known.
(i) There exists an element a, Of *monsoss(S™) such that
CH<a1)=%. ([1] Cor. 8. 4)

(1) If a€mu.(S*™"), BEmu.(S*) and (g)-a=0, B-(g:)=0,
qEZ(¢ is the homotopy class of the identity map of S**) then

CH{B, q¢,a} = +qCH(Sa)CH(B) ([1]1Th.11. 1)

Therefore by (1.4) CH(a;,) = i—;-, CH(a;,) = i% (replacing the
generator aj, if it is necessary) and CH: ’myiuc-11(S?)—Q/Z is
injective if k<<p(p—1); in other words, in the complex S*"Ug®V+#¢™,
7 Emansnirn1 (S?) 1<p(p—1), 7 is trivial if and only if CH(y)=0.

Let @, denotes the ring of rational numbers whose denominators
are prime to p, and we define a homomorphism c#, of E(X R,
into H*(X: @) by an evident manner, that is for any 77=2a,.&',-ef{'

(XHRAQ,, a,.€0, E;EKV(X), chp=2Xa,ch,s. Then the next lemma is
a trivial restatement of the above fact.

Lemma 2.1. Let X=S¥Ye"#0D ety i na(S?) E<<p(p
—1), and ¢ is an element of K(X)Q Q, such that chyé=a-S*,
a€Z aZ 0 (mod p), then v is trivial if and only if v,(chysnE)
=0. (Here we identify A N Dg HNHeD(X. Q) with 1€Q;
such an identification will be made frequently.)

Let ¢ be the dual bundle to the canonical line bundle over CP
(n) and x€ H*(CP(#n); Z) be the Chern class of Z then it is well
known that l?(CP(n)) (respectively H*(CP(n); Z )) is a truncated
polynomial ring with the single generator g=£—1 (x) and a single
relation £"=0 (x***=0). The next exact sequence shows that we
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can identify K(CP(n)/CP(m)), m<n, (H*(CP(n)/CP(m))) with
an ideal in K(CP(n))(H*(CP(n))) generated by &' (x"*).
0—>K(CP(n)/CP(m)) —K(CP(n))—K(CP(m))—0
(0—H*(CP(n)/CP(m))—H*(CP(n))—~H*(CP(m))—0)
Obviously ché=e*—1. The following proposition will be proved in
§ 6.

Proposition 2.2. There exists an element 7€ K(CP())®Q,
such that

”=p __i * n(n+kp_1)' ntk(p—1 n+tpl—1
ch —:E( p) k' (n+kp—Fk)! & (mod &,

that is, chy"=x" and

+s(p—1
Ch"u(p—l)??" @

——

(n+s(p—1)) gl(n+t(p—1)+i)
- (—D™ =91 p™~

xn+t(p—1)

for 0<t—s<p.

REMARK. (i) Among the factors of the numerators of the last
formula, at most one factor is a multiple of p, since n+s(p—1)=n
+t(p—1)+(s—t)p+t—s. (ii) In the future we consider »* as an
element of K(CP(m)/CP(n—1))RQ,, m=n.

Now let us consider the attaching maps of cells of X9/, for the
simplicity, we denote e¢; the (2n+2i(p—1))-cell of X' ie. X2'=
S,Ue,U---Ueg, and X}/, 0<i<j<t, is the complex obtained from X%’
smashing the subcomplex X 2'"! to a point. Le 7€ mmmion(Xoi™?
be the attaching map of the cell ¢; of X' and 7i€m100-0-1(Si_1),
S;.i=Xi""7, the attaching map of ¢, of X |, we say 7, is essen-
tial (trivial) to e, if 7i#0 (yi=0). Also we denote P’ the stun-
ted complex projective space CP(n+j(p—1))/CP(n+i(p—1)—1)
then the map f induces naturally a map f of X}’ into P}/, 0<{i<
i<t

Proposition 2.3. Let n+t(p—1)=qg—i, g=0(mod p), 1<i< p,
t<p, then in the complex Xi /=S, e, r;=0 if and only if
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j=t—i+1.
Proof. Let us consider the next commutative diagram and let

e=(f' QU K( X RQ,:

~ 'Rl ~
&P 2 koxrnee,
lch e ’ch

H*(Pii, @ L Hx(x19; @),
then by construction of f and by Proposition 2.2

Chn+(i—1)(ﬁ—1)5 = f*Chn+(i—1)(p—1)“0"+(j_1)(p_1)
= a-S;, a€Z, a#0(mod p),

vo(Chysonye) = VD(f ¥R,y o™ ITETD)
'~‘+(i—1)(P"1)>

= vp(chursom
= w((n+(—1(p—-1))/p)
= »n+(G-D(p-1)-1,
so by Lemma 2.1 y;=0 if and only if n+ (j—1)(p—1)=0(mod p),
and n+ (-1 (p—1)=q—({—j+1)p+t+1—i—j therefore y;=0 if
and only if j=f—i+1. q.e.d
(This proposition is also proved easily by using the reduced
power operation.)

Proposition 2.4. Under the assumption of Proposition 2.3
let p* be the order of v € mszcr-n(Xy'™) then

max(f—y,(q),71—1) 1<<p, i<t,
e i>t,
| max(p+1-w(g),i—1) t=p, i#p,

max(p+1—v,(g—p*, p—1) t=p, i=p.

Pyroof. Let X{(e=0,1) be the complex obtained from X!
attaching a (2n+2{(p—1))-cell by the map p* -y, and we natur-
ally define a map ge of X2 into X' that is g¢/|X>'~* is the iden-
tity map and ge|e* ¢V ¥ Dp, is a map of degree p ¢ Let
Xi(4=0,1,2,---,t—1) be the complex obtained from X% by smash-
ing the subcomplex X/7' to a point and the map g: of X{ into
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X' is also defined naturally. Then

(i) for e=1, p*'-7,#0, so there exists j(0<{j<ft—1) such that
the attaching map of the (2n+2f{(p—1))-cell of X? is reducible to
X%/ but not reducible to X$/~'; that is X{ contains a subcomplex
X, =S¥ Dyt (for the simplicity we denote X;=S;Ue,) and
the attaching map of e, is not trivial:

(ii) for ¢=0, p*-7,=0, so for any j(0<j<f—1) the complex
X} contains a subcomplex X,=S;Ue, a=d the attaching map of e,
is trivial.

We shall restate (i) and (ii) using the next commutative dia-

gram and Lemma 2.1, where ¢ is thc natural inclusion X.C X}

N ) _ ! _ LR1 ~
B Pivee, 2 Bxinee, 22 kxnee, “! Rixoeae,

lch [ch lch lch
o £ g% I
H*(Pi*@Q) — H*(Xi:Q) =5 H*(X::Q) — H*(Xe: Q)
Let &=(Q1D) (iR (f'Q1)™ > then by definitions of f,
ge and i
Chosoafe=18-8 & f*(Chussirrn )
=a-S;, a<Z, a£0(mod p),
Vﬂ(Chn+t(D—l)$5) =,(2¢ 8¢ .f*(Chn+t(l’—l)77"+i(p_l)))»
=% —e+v(CRpicpayy ),
so by Lemma 2. 1.
1) 0535 <t—1, x—1+v,(chopico-on™*)<<0,
(i) 0Vi<t—1, 2+v,(churicoam™ ) 0.

Therefore x= Max (—v,(chopecoyy" 7)),
0sjst-1

By Proposition 2.2

v(q)—p—1 t=p, i#p, j=0,

v(g—p*) —p—1t=i=p, j=0,
vo(CRupicray™ ) = wp(q) —t+J 0<j=<t—i—1land(¢,j)#(p,0),

v(g—1ip) —1i j=t—i,

j—t t—i+1<;<t—1,
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then the proposition is a direct consequence. q.e. d.

§3. Proof of (0.2).

Proposition 3.1. Consider a CW-complex X=SUe,Ue,U-.-Ug,
where S is an N-sphere (N large) and e; (1<i<m) are (N+2i
(p—1))-cells. Let us assume that the attaching map of e. has
an order which is a power of p and is essential to e._, for any
1 (1<i<m), then

(1) ’rviacr1(X)=Zpn 0<m<<t<p,

(1) *7mnseso-na (X )=Z e 0<m=<p-—2,

(i)  *rvieso-na(X)=Zp m=p—1,

(iv) in cases of (i), (ii) a map is a generator if and only
if it is essential to the (N+2m(p—1))-cell of X.

The proof will be given at the end of this section.

Lemma 3.2. Consider the next exact sequence where G is an
abelian grouj;.'

0—2,—~G% 7,—0.

Let v be an element of G such that o(y) is a generator of
Z, and the order of r is p* then G/{y}=Zy -+ where {y} is the
subgroup G gemervated by .

Proof. If G has only one generator the lemma is trivial. If
G has generators « and B then y=xa+y3. But ¢(y) =x¢(a)+ yp(B)
is a generator of Zxz so we can assume x#O0(mod p), X« and B
generate G, and xa= —yB(A denotes the element of G/{y} correspod-
ing to 2€G). Therefore B generates G/{y} so considering orders of
G and G/{y}, we get the lemma. q.e.d.

Proof of (0.2). Clearly ’mp,i20-(X7") is isomorphic with
"Taniaicrn-1 (X0 /[ {red.

(i) If 7>t, by Proposition 2,3, XJ‘* satisfies the condition of
Proposition 3.1 and 7, is a generator of *m,,n;o (X 37Y). There-
fore ’maiaco-1( X)) =0.
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(ii) If =1, X2* ! satisfies the condition of Proposition 3.1 and
"ansesna( X2 ™) =Zy hence ’monizico-na(X0') =Zs for 1< p.

(iii) If 1<<t<t, X»*°" and X' *"'°! satisfy the condition of
Proposition 3.1. Consider the stable homotopy exact sequence of
the pair (X971, X7

Panrarcr-n (X ) = iy (X0
» X0t ]*p X i-it1 11
g 71'2u+2:(p—1)—1( n )_> 71'2~+2:(p—1)—1< " .

By (1.5) the first group of this sequence is 0 and, by Proposi-
tion 2.3 and Proposition 3.1, (iv), j«(y.) is a generator of ma, ais-15-1
(X,"*4=1). Further onseico-ya (X' ") =Z -t for t<<p, ’masiescs-1—
(X327 =Zp-i»2, and *mommcrna( Xy )=Z, for t<p. There-
fore by Lemma 3.2 100015 1( X2 )=Z,-+ for t<<p and *m..oms-p-1
(XS"’)%Z,,m-x.

Let k<<p*—2. By Proposition 1.2,

Zy-+  for t<<p,
Zp-s for t=p,
where n+k=n+1+1t(p—1), 0<I<p—2 and x is given by Proposi-
tion 2.4 for g—i=(n+1)+t(p—1)=n+k. By definition of N(n, k),
we have N(n,k)=t—x or =p+1—x for t<<p or {=p respectively.
Thus (0.2) is proved for k<<p*—2.

When &= p*—2 let us consider the complex (X %V X %2;2,)Y g¥+2'~,

As remarked in §1 we assume # sufficiently large, so ms,.02_s( X %?V

Tonroe1(S U(n) )gpfl’z(n—l)m:(p—l)—x(X?:'J:l) =

X ) =ty op s (X0 + P00 s (X 0252,)  therefore we can consider
that y is a sum of the attaching map r, of (2n+2p*—4)-cell of X??,_,
and an element Of ﬁﬂg,,+2p2_5<Xg'p).

Lemma 3.3.

0 ##0(mod p)

*Mansert-s( X 0?) = { Z, n=0(mod p)
L, n= .

Proof. Consider the exact sequence:
p71'2n+2p2—4(X3' p) - pﬂ2n+2p2—5<X3’1> g ﬁﬂ2n+2p2—5(X2'p) - ﬁ71'2u+2p2—5(X?1'p)

where p”2”+2p2—4(Xﬁ.)) E’Tl’z,,_‘.zpz_s(X,z.") = O by (1- 5) N therefore
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a5 (X 07) =1, 4005 ( X0 ) =00 0025 (S ¥ %J eIy,

As the proof of Proposition 2.3 shows, =0 if and only if #=0
(mod p) and in this case

‘°7r2,,+2p2_5(X°'1) E’nz”v;zﬁ_s(Sz”\/sz"”@”l)) %"Z, .

When ##0(mod p) we can assume y;=a; and we denote X S'IZSL{e’
Let E be a (2n+2p—2)-cell, 8E its boundary and x:(E, 6E)—>(Sge,
S) the characteristic map of (2n-+2p—2)-ceil of X¥'. Let us con-
sider the commutative diagramm:

0
ﬁﬂzu-rzpz—(;(Sol(J‘e, 5) —"pn:n+zp2—5<s ) —>’7-[2"+”2_5(SOH e)—0
2 [zloE).
Msnsarta(E, 0E ) ="y, 02 5(OF)

where the low is exact, (x|0F)x=ai4x and "nz,,+2,,z_4(Sgle, S) =5, 125_
(S 2)=Z7,= {8}, therefore 9(8)=ayf and & is an isomorphism.
This proves the lemma. qg.e.d.

Now let us turn to the proof of (0.2).

(1) If »n#0(modp), by lemma 3.3 ‘*myeps((X2VXL2)Y
et =tn, o (X %,_,) so the problem is reduced to the case k<<
P2

(ii) If n=0(mod p), n+p*—2=—2(mod p), so by Proposition
2.3 X%2;2, satisfies the condition of Proposition 3.1, and the next
exact sequences show that *m,,.p2 (X2 )=Z,+Z, (we denote 7’
=n+p—2 and e; the (2n'+2i(p—1))-cell of X3*7%).

'71'2»:'+2p<p—1)(sp-1) —? 71’2,.'+2p<p—1)-1(X 27’_2) —>’ﬂzn'+2p(p_p_1(X " _1)
"Y_tpnz»:'+2p(ﬁ—l)—1 (St—1> ’
’ﬂzu+':p(p—1)(sp-2\/ Sﬁ—l)—)pﬂ2u/+2p(ﬁ—1)—l(X2'/ﬁ—3)_)ﬂTL'z,,H 2,(,_1)_1(}(?;,1’“1) ,
Pt 1250-1)-1 ( S p—zv Sp—l) .
In fact left hand sides of these sequences are zero, *ms,/ apcr-13-1( X o' ~%)
=Zyp, J4(rs)=7>7F0 s0 j4 is surjective, and *ms,/12.00-0(Sp—2V Sps)=
Zy+2Z,.
Therefore *moners( XN X2 \Y=Z,+Zp+ Z,. Let A, p,v be ge-
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nerators, then y=A+p" “u+v or y=A+p" 1 and in any case:
- d4252-4N ) e
pﬁ2n+2p2—5((X:oz'ﬁ\/Xg'fp—lz) l:/Jez i 4)=pﬂ2-,+2p2—5<X2 vagfp-lﬁ/ {7}
= ppEH1 -+ Zp.

Thus by Proposition 2.4 and the definition of N(», &), (0.2) is
proved for k=p*—2.

Proof of Proposition 3. 1.

Proof of (iv). Let us consider the exact sequence:

Lx
’/‘U/ﬁ:(;—l)(sm)_’pTCNn:(ﬁ—l)q (SUgU---U em—1> e
J
’rensacr-n-1(SUe U Ue, Y5y 0i-15-1(Sh)

where *ryo.0-n(S,) =0, so if (i) and (ii) hold and if y and ;' are
generators of ’myieona(SUeU---Ue, ) and ’ry,eena(SUeU---Ue,)
respectively, then i,(y) =ap- 7', a£0 (mod p), and j,(+')+#0 that is
v’ is essential to the (N+2m(p—1))-cell of SUe,U.--Ue,. And the
converse is trivial.

Proof of (i) (special case). Let N be a suitably large inte-
ger such that N+t(p—1)=qg—p,t<<p, ¢=0(mod p), and consider
the complex X%'. By Proposition 2.3, X% (0<i<t) satisfy the
condition of Proposition 3.1 and an easy exact sequence argument
shows inductively that the order of ‘muyier-n(X¥) equals to pi™
for 0<{i<<¢{. But by Proposition 2.4 the order of y, equals to 2,
hence 7o i0i00-131 (X% =2,

When m<t—1 let us consider the following exact sequence:
m+1,t — 0,m
pT{zN+2t(ﬁ—l)<X}V+]t 1)_’pﬂ:N+2:(p—1)—1(XN )
I %
0,¢t— m4+1,f—
_>p7'(2N+2t(p—l)—l(XN’ 1) ’_)pn'2N+2t(1>—l)—1<XN+lt !

0,6-1\ __ 0,6—1Y ~ ,
where ’7:2,,+2,(p_1)(XN )—0, p77-'2N+2t(ﬁ—1)-1(XN >=Zp’> p7"-'2N+2t(1’—1)—1 (XI”\'/H
f"N=Z,-n-1, and by (iv) j«(y) is a generator, so j. is surjective.
Therefore *momizio-13-1 (X o m) %Zﬁ"‘*“

Proof of (ii) (special case.) Let N be a suitably large in-
teger such that N+p(p—1)=g—1, v,(¢) =1 and consider the com-
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lpex X%?. By Proposition 2.3, ;=0 so we can consider y, as an
element of ’moniop-n1(X%?7%). By the same argument as (i) the
order of ?monioscs (X %7%) is at most p?. But by Proposition 2.4,
the order of 7, is P, SO *mampesrn1(X¥? " )=Zy». When m<<p—2,
(ii) holds by the same argument as the case (i).

Proof of (i), (ii) (general case). Let X=SUe,---Ue, be a
complex satisfying the condition of the proposition. By iterating
suspensions we can assume the dimension of S is egual to 2N where
N is an integer considered above (note that we can take such an
integer N arbitrarily large). The attaching map of e, generates
"onsomr—n (X ™), X" '=8SUegVU...Ue,;, provided ‘*r,(X"")=’r,
(X%™ ). Then it is easy to construct inductively a map f of X}~
into X which induces a C,isomorphism f,:7,(X&")—m(X), i=0.
This shows that the general case is reduced to the special one.

Proof of (iii). Let X=SUeg,---Ue,, be a complex satisfying

the condition of thejproposition. To prove (iii) it is sufficient to

prove that j, is trivial in the exact sequence:

*
0"”75N+2p(p—1)—1 (S Ue, u...u ep—z) —)’TFN+2p(p—1)—1<X ) - "7TN+zp(p—1)—1 (Sp—1> .

If there exists an element y €%y ,005-1y(X ) such that j,(+)#0. Then,
in the cohomology group H*(X %JeN”"(”‘); Z,), P'(e,.,)#+0 but by
the condition of Proposition 3.1 P*7*(S) 0, therefore PP *(S)+0
which contradicts to Adem’s relation.

$4. Proof of (0.3).
Lemma 4.1. For k<<(n+1)(p—1)—1

=’Z+Z, p(p—DHZk<<p®—2
e (SU+E+1) /SUM) )= and n+k# —2 (mod p),
Z

R<p*—2 and except
above cases.

The proof will be given later in this section.
Let us consider the following commutative diagram:
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rrvsten (ST B 1) s (SUCn+ ke +1) /SU(n))
) | 24
7r2n+2k+1(s U(” +k+ 1)) = T2n+2k+1 (Sznﬂkﬂ)
=742 (S U(”))"ﬂzn+2k(s Un+k+1))

| (I
=T (SUM+R) ) =m0 (SUm+ 4+ 1))

where lows are exact and by Bott periodicity theorem .z, (SU(+
R+1)=Z, ma(SUn+k+1))=0, so, when ’ms,,00,(SUR+Ek+1)
/SUn))=Z, to prove (0.3) it is sufficient to know the degree of
pix. But by the theorem of Borel-Hirzebruch mp,.(SUn+k))=
Zm! (e.g. [8]), the degree of p.y is (m+£k)! so it is sufficient to
know the degree of p,. Now consider the following commutative
diagram:

roniann(SUG+ 1) /ST D p (ST e (SUn+)

/SUm))
7Tzn+2k(CP<n + k)/CP(n - 1) ) —>nzn+u(52”+”)—>7r2,,+2,,_1(CP(n +k— 1)
fe [ £,/CP@=1)

T2nt2k (Szn+2k> —_>712n+2k—1(X2,-:——1

where k<p*—2, lows are exact and vertical arrows are C,isomorp-
hisms. Clearly a(¢) =7, so the degree of p, is equal to a product
of the order of y, and an integerj prime to p. (The case k=p*—2
follows similarly.) Therefore

"7:2,,+2,,(SU(1¢))"="Z,N/ N’=u,((1’l+k)!) —X.

When 75,10 .(SUR+k+1)/SUR))=Z+Z,, i.e. when p(p—1)
<k<<p*—2 and n+k= —2(mod p), 12, SUR))=Zp'+ Z, or Zyr=1
corresponding to whether the image of p,, is contained or not con-
tained in a complement of Z, in *my,00(SUm+E+1)/SU(®)). But
as will be shown in the last of the next section, ?m,,(SU(%)) has
a direct summand Z, or Z, hence ’mp,o(SUR))=Z+Z, By
Proposition 2.4 and the definition of N’'(#, k) this proves the for-
mula (0. 3).
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Proof of Lemma 4.1. As in §1, by the theorem of James
([31), if k<<(n+1)(p—1)—1 we can assume » sufficiently large
and by the cellular decomposition of special unitary groups, *ms,,os
(SUn+k+1)/SUn))=’rs,,0(CP(n+ k) /CP(n—1)) so the case k<<
p(p—1)—1 the lemma follows easily from (1.4). When p(p—1)
—1<k<<p*—2 we get, by use of the reduction in §1,

Pﬂ2n+2k(cp(n +k) /CP(% —1))="n,,,,(S*Ue**2U... Ug?2)
=Z+ "o vosp-1y-2 (X071,

where n+k=n'+p(p—1)—1. To compute *m, ,oxpn-(X%™) we
consider the next exact sequence:

I * -
2antsapr-01 (X 0P ™) =t appm1y1 (X 0P 1)"”71'2"’4,2»(»-1)—2(8 )

= opp1)-2 (Xg'rp_l) _)Pn2n'+2Kﬁ-l)-2<X}v”p_l) ’

where by (1.4) and (1.5) *ma. om0 (X0 7) =0 and *me.sepo-13-2(S*")
=7, 0 "t sorr1y2( X0 )=Z, or 0, if j, is surjective or not surjec-
tive respevtively. If ;=0 then by Proposition 3.1 and 2.3, for 7,
E Mt yopis-n (X071, j«(75) is a generator of ’*ma.soppn-2(X3?™")
hence j, is surjective. If y,=0 then the proof of Proposition 3.1
(iii) shows that a generator of, ms,’ op1>-1( X 5*7") is a map which
is essential to the (2n+2(p—2)(p—1))-cell of X5** therefore 7,
is not surjective. When +;=0,1<j<p, let us consider the following
commutative diagram:

213t vepo->2 (X 07 ™) =10, p0p001y-1 (X 27p—1>.7_2;k"ﬂ2n’+2ﬁ(ﬁ—1)—1(X i

| o | g

J°7'-'2n’+21»(2—1)-1(AX»ln'/j—l) =0t sapcr-1y- (X0 7H) —>"n2"1+2p0_1)_1(X{;‘,"’l)
where lows are exact. By Proposition 2.3 and 3.1, (iv) j,« is surjec-
tive and j., is also surjective for j..(y,) is a generator of *ms,’ ops13-2
(X571, therefore j, is surjective. In the sequel *mu,/ app-1-2 (X 0?70
=0 or Z, corresponding to whether T}: is zero or not zero. But by
Proposition 2.3 y,=0 if and only if #'4+p(p—1)=—1 (mod p) that
is if and only if n+k=—2(mod p). This proves the lemma for
E<p*—2.
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In case of k=p°—2, it is easily seen that *mi2_s(CP(n+p*—2)
JCP(n—1))=Z+"’my,.p,(X"?) but the second term vanishes. In
fact the proof of Lemma 3.3 shows that in the exact sequence:

0
0—?7,, 1207 (XS ﬁ) “’Pﬂzn+2p2-4(X}z’p> —>p7'52n+2p2—5(52")

8 is an isomorphism if ##0(mod p) and in this case *ma2s(X07)
=0, if =0 (mod p) then n+p*—2=—2(mod p) SO *meuszp-s(X ")
=0 and ,71'2,,_,,2,)2_4(X2'P)=0. qd. e. d.

§5. Proof of Theorem 2.

As in §1 we shall reduce the problem to the computation of
homotopy groups of Stiefel manifolds. By the theorem of James
([3) Th.3.2):

b, (Sp(n+k)/Sp(n))="rm; ., (Sp(n+k+ Nc,)/Sp(n+ Nc,))
for i<4p(n+1) -3,

we always assume, under the assumption of Theorem 2, # sufficiently
large.

By the cellular decomposition of symplectic groups ([10]), the
(8n+9)-skeleton of Sp(n+k+1)/Sp(n) has the cell structure S***U
UL Ut tO13 and the map ¢*: H**9(SU(2n+2k+2)/SU(2n+1))
— H 3 (Sp(n+k+1)/Sp(n)) induced from the natural injection ¢:
Sp(n+k+1)/Sp(n)—>SU2n+2k+2)/SU(2n+1) has the degree +1.
Let X=S8%*"Ug'*U...Ug!"*"*2 be a complex such that SX=(Sp(n+
k+1)/Sp(n))**°, where S denotes the suspension and (K)' denotes
the i-skeleton of K, and (X', f’) be a complex and a map of X’
into X constructed by Lemma 1.1. Then if 2k<<(p+1)(p—1), X'
has the following cell structure.

, (5
X' | VX e V]V X80 ]

70, _ Qantsi+2| ) pdntdita+a(p—1 Antdit2+2e(p—
X apr = S I L U gl oD,

Let ¢/: X—=CP(2n+2k+1)/CP(2n) be a map such that Si'=
1] SX then clearly v,(x) =v,(f'*-i"*(x)) for x= H*"***(CP (2n+2k+
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1)/CP(2n): @) 0<i<k, thus if we replace, in the arguments of §2,
CP(n+k)/CP(n—1), X% and » by X, X'5%: and (%) respectively
then we can easily see that the attaching maps of X'J;%: are quite
similar to that of X3',. So Theorem 2 is virtually a corollary of
Theorem 1.

Consider the following exact sequence:
4015 (SP(00) ) =>4, (Sp(00) /SH (1) ) >*m4s 1 (SH(0))
B tiia(Sp(0)),
where by Bott periodicity theorem *z,,;(Sp(e0))=0 i#4k+3 and
iy is trivial for i=1. Therefore:

*401i1(SP(1) ) =14, (Sp(0) /SPp(m)) i#4k+3, i=1.

Case 1. i=4k. By(1.5)

an s (SP(50) | SP(0) ) 2= s (STHUEHTU - Ughri®) =,

Case 2. i=4k+2.

742 (SP(00) /SP (1) ) =40 aara (S U MU o0 U gt
e X ) 2k =20+ £(p—1), =] 25|
=7 a2,

Case 3. i=4k+1

"ansari1(SP(00) /SP(1) ) =014, 4z (S U4 HTU -0 U ghCFDTE)
{0 2k<p(p—1),
ﬁﬂz(zu+1+2l)+2p(p—1)—2(X,ghpamu) 2k =21+ P( p— 1),

where pﬂ4n+4k(X/g;x{>l-21+1) =0if n—k=— 1(m0d P) and pﬂ4n+4k(X’g;li21+l)§
Z, if n+k=% —1(mod p) by the same argument as the proof of Lem-

ma 4. 1.

Case 4. i=4k+3 Consider the commutative diagram:

oo (SDO1+ Et 1)L i (SO B 1) /SH(n))—
l D 7f4n+4k+2<Sp(n))_>0

rononss(SDO1+ B+ 1)L (S s (SH(n - £)) 0

where 7,445 (Sp(+E+1))=Z and ma a2 (SP(n+R))=Ze2sop4n3!, B+
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k: even, muiae(SP(n+E))=Zyoi0sy1, n+k: odd (e.g. [5]), so the
degree of poy is (2n+2k+1)! or 2(2n+2k+1)!. Moreover ’mi uss
(Sp(n+k+1)/Sp(n))=Z by (1.5) and the proof of (0.3) shows
that the degree of p, is the product of p*®***® and an integer prime
to p. Therefore

"aare(SP(M))=Zpn N'=y,((2n+2k+1)!) —2(2n+1, 2k).

By Proposition 2.4 and the definition of N'(#, k) this proves Theo-
rem 2.

Now let us show that ’m,.,(SU(n)), p(p—1)<k<p*—2 n+
k% —2 (mod p), has the direct summand Z, or Z,~. By the theo-
rem of Harris (0.1), *z,(Sp(n)) is a direct summand of *z,(SU(2%))
and *z;(SU(2n+1)) so by Case 3, *m4,,s(SU(2%)) and *myemiyracesn
(SU(2n+1)) have the direct summand Z, in case of the question.
By Case 4, *myenin:a(SU(2n+1)) has the direct summand Zvena,en
+1,2k) and the exact sequence

g acesny (S U<2n> )= Taansnyrae (S U(27’l + 1))~y panre (S“ﬂ)

shows that if *mae.n.a(SU(2n+1)) splits then *myioeun(SU2CR))
splits in fact *my,.44.:(S*™) =0 for 2k+1<<p*—2 and the direct sum-
mand comes from *mye,.n::(Sp(n)). This completes the proof of
(0. 3).

§6. Proof of Proposition 2.2.

To prove Proposition 2.2 it is sufficient to show the following
assertions.

Assertion 1. Let a; (1=1,2,--) be rational numbers such
that

Y B U <. |
RACY _Z< p) Fihp— k1"

then the denominators of a, are prime to p for i<<p'

(Remark. ap=1/p*(mod @,), a;€Q,, P<i<p*+p)
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Assertion 2.

SR N @p)! ;p-;+1>"
<zo< p) NGp—i+ti)l ~
S VO S 1€ o, At DR EOSS
2( p> TCEY T I ST
Lemma A, Let y=e*—1 and f(y) be a formal power series
with coefficient Q,:
fn== l;}—)i—y"-
nFEO(P) )
n>0
Then there exists a formal power series a(y) =0,y + by

+-o such that b,,,=Q, for i<p*—p, more precisely a(y)=3
ne=1
(1)n+1

—=2——9" mod Q,(v), and satisfies the relation:

oo

np?
x=ft ([ pa).
Proof.
PR OV T ooy Y
f_<y o p—1 p+1+ >

”p . . .
= > (— 1)""1'3;—9-1-15/2(31) (multinomial expansion)

n£0(p)

>0
2 k
where h(y)=x*y*""+xy***4 ... is a power series of ¥, —}é——, ...,_3];_,
oo _ np+l
--+(k#0(mod p)) with integer coefficients. Let g(¥) :21_(_727_ y

that is x=log(1+y)=f(y)+g(y), then for #»#0 (mod p) there
exists integers ¢, such that #’7'=pc,+1 and:

1y oy -1y Co oy
p np np A—w)= n v
: ot o) — I _ w1 Cn omp e (=1
therefore if we set a(y)= g » 'f»%’“’( D) b +n§_1: 7p

y'?*—h(y) the lemma is proved.

Lemma B. By the substitution x=f+ ~;—(f"+pa) we get

3 _L ‘ (kp)! Ro=kH1 — £ 1 ip—j i—itl
E( p> Fhh—hrDi® T Srer Zafa

ipzjzi
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where a,;€Q, for 1<j—i+1<p, i<p+1.
Proof.

o 5 B () )

”Ekﬂﬁ 1 (kp k+ 1) <Z> flrrarmpriiags,

a=0 B=0 pa 8 o

We put i=k+a—p8, j=k+a—1 then a=j—k+1, =j—i+1 and

—k+1 L kp— —k+1 ip=j pi—itl
e § 8L (R (IR prae

jok—1 i=k p‘_*
Now x=f+%+a,
_—1_ o fp _ fzp—l e, a’
p s p T p
hence %(—%) k!(k(ﬁkf)k!-l—l) ! x”””‘”i=P %"_laijfw_j a’™*! where a,
:do,():]. and for izl,
(=D kp)  (kp—E+1\[j—k+1
“f‘gpk(kp k+1)<] k+l>< —z+1>
_ 1 ‘ (=D*kp—D!(kp—k+1)I1(G—k+1)!
Pt k=1(k DIp—k+1)) G-+ (p—D'G—i+1)!(E—F)!
_ 1 ! (=1 kp—1)!

PG =i+ DT & (Bp—1)! h-D1G—B)]

= S T Ty R D (k=D (k=2 Gkp— i+ D({ 7).

Now let a, be the coefficient of #” in (x—1)(x—2)--+(x—j+1) then:
gl(_l)”(kp—1>(kp—2)-..(kp_]+1> <k?'_i>
_2( Dt Za,kp <k 1) Za,p 2( DA (1;_1>

By considering the #-th derivative of (1—e')"=X(—1)* <Z>e"’ at t=

0, it is easily shown that E (—1)”k'<z>=0 for »<<wm. Therefore
k=0
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2,'.(—1)”/?'(,;:1) vanishes for r<<i—1 and

k=1

__ 1 pi r—i+1 d k bLr 1—1
S GoirDlGo D, T R(CD (k—1>

hence @;;=0 for j—i<<0 and the denominators of «;; are prime to p
for j—i+1<<p,i—1<p.

&;j

Proof of Assertion 1. By Lemma A the coefficient of 3 in
fii @™, ip—37>0, is zero for r<ip—j+ (j—i+1D(p+1)=(—1
+Dp+(E—1)(p—1)+p, so by Lemma B the denominators of the
coefficients of ¥ in a;;f*~/ @’ is prime to p for r<<p*+ p and one
in @ is same for »<<p®. Thus Assertion 1 is proved.

Proof of Assertion 2. Let us define b, ,(n, k=0) as folldws

bo,():l
_ nn+kp—1)!
b= s ko= PR*FO0)
then b,,1,4—0,s=b,1s4-1(k=1), since
bysi—b, = (n+1)(n+kp)! nnt+kp—1)!
n+1,k

" Rl(n+kp—E+1)! kR'(n+kp—Fk)!
_ An+ D (n+kp)—nn+kp—k+1)} (n+kp—1)!
N Rl(n+kp—k+1)!

_k(n+p)(n+kp—1)! _5
El(n+kp—Fk+1)! b

k
Next we will show that b",,,_k:%b",;bl,,,_,-.

We prove the formula by induction on # and k. The cases £=0 or

n=0 are trivial and

bn+l,l¢ = bn,k + bn+p.k—1

k k-1
= %bn—l,ibl,k-i + Z(]bn+l—l,]bl,k—l—l
i= =
k k-1
= bn—l,obl,k + Zlbn—l, ibl,k—l + 20<bn,]+1 - bn—l,f+1>b1,k—(i+1)
i= j=

k=1
= bﬂ,obm + Zﬁbn,lu bl,l:—(1+1)
i=

= ﬁl:’bn,i bl,k—l .
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Therefore > 8,12 = (0 b, x°) (20] b.; x') which implies the for-
k20 i20 iz
mula (3 b,;x)"=>) b,,x* inductively, and Assertion 2 follows im-
120 k20

mediately.
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