Characterization and algebraic deformations of projective space

By

Robert Goren

(Communicated by Professor Nagata, November 21, 1967)

Let V and V' be complete algebraic varieties of dimension ndefined over K and k respectively. Then V' is a specialization of V if there exists a discrete valuation ring v with quotient field K and residue field k and a variety W proper and flat over v such that $V \cong W \times_v K$ over K and $V' \cong W \times_v K$ over k. The above notations will be fixed throughout this paper. U and U* are called deformations of each other if there exist U_1, \dots, U_m with $U \cong U_1, U^* \cong U_m$ and $U_i \cong U_{i+1}$ or U_i a specialization of U_{i+1} or the converse. The question considered here is, what are the possible deformations of Pⁿ? If $V \cong P^n$ over K, then we will show that $V' \cong P^n$ over k. Conversely, if $V' \cong P^n$ over k and if V admits a K-rational divisor with self-intersection number 1, then $V \cong P^n$ over K. I wish here to thank Professor Matsusaka for his advice, suggestions, and encouragement in this work.

1) The proofs of the above results are based on the following characterization of P^{n} :

Let V be a complete variety of dimension n defined over K. Then $V \cong \mathbf{P}^n$ over K if and only if there exists a non-degenerate positive Cartier divisor X on V rational over K such that $X^{(n)}$, the self-intersection number of X on V, equals 1 and $l(X) \ge n+1$.

X non-degenerate means that a high multiple of X is ample,

Robert Goren

i.e., $H^{\circ}(V, \mathcal{L}^{\otimes m})$ defines a projective embedding of V for m sufficiently large where \mathcal{L} is the invertible sheaf associated to X. $X^{(n)} = \chi(\mathcal{L}^n)_V$ is defined ([5], p. 296) to be the coefficient of the leading term in the Hilbert polynomial $\chi(V, \mathcal{L}^{\otimes m}) = \sum_{i=0}^{n} (-1)^i \times \dim H^i(V, \mathcal{L}^{\otimes m})$. The above characterization of projective space is proved using the following sequence of lemmas:

Lemma 1. Suppose X is a positive non-degenerate Cartier divisor on V and $X^{(n)}=1$. Then X is irreducible.

Proof. Let Y_1, \dots, Y_r be the irreducible components of X and let \mathcal{L} be the sheaf associated to X. Then

$$1 = X^{(n)} = \chi(\mathcal{L}^{n})_{\nu} = \chi(\mathcal{L}^{n-1} \cdot \mathcal{O}_{X}) \quad ([5], \text{ prop. 4, p. 297})$$
$$= \sum_{i} \chi(\mathcal{L}^{n-1} \cdot \mathcal{O}_{X} \otimes \mathcal{O}_{Y_{i}}) \quad ([5], \text{ cor. 1 of prop. 5, p. 298})$$
$$\geq r \text{ since } \mathcal{L} \text{ is non-degenerate } ([5], \text{ thm. 1, p. 317}).$$

Lemma 2. Under the hypotheses of lemma 1, (X, \mathcal{O}_x) is a reduced subscheme of (V, \mathcal{O}_v) and $\chi(\mathcal{L}_x^{n-1})_x = 1$ where $\mathcal{L}_x = \mathcal{L} \otimes \mathcal{O}_x$.

Proof. Let x be a generic point of X and let $f: X' \to X$ where $X' = X_{red}$. Then deg(f) = 1/s where $s = \text{length}_{\mathcal{O}_{X,x}}\mathcal{O}_{X,x}$ ([5], p. 299, ex. 1). Let $\mathcal{L}_{X'} = \mathcal{L} \otimes \mathcal{O}_{X'}$. Then $\mathcal{L}_{X'} = \mathcal{L}_X \otimes \mathcal{O}_X \mathcal{O}_{X'} = f^* \mathcal{L}_X$. Therefore, $\chi(\mathcal{L}_{X'}^{n-1})_{X'} = \text{deg}(f) \cdot \chi(\mathcal{L}_X^{n-1})_X$ ([5], prop. 6, p. 299). But $\chi(\mathcal{L}_X^{n-1})_X = \chi(\mathcal{L}^{n-1} \cdot X)_V = \chi(\mathcal{L}^n)_V = 1$ ([5], props. 4 and 5, p. 298). Therefore $\chi(\mathcal{L}_{X'}^{n-1})_{X'} = 1/s$. But $\mathcal{L}_{X'}$ is a non-degenerate invertible sheaf on X' so $\chi(\mathcal{L}_{X'}^{n-1})_{X'}$ is an integer. Therefore s=1 and $\mathcal{O}_{X,x}$ is a field so (X, \mathcal{O}_X) is reduced.

Lemma 3. If 'in lemma 2 we assume $\dim H^0(V, \mathcal{L}) \ge n+1$, then $\dim H^0(X, \mathcal{L}_x) \ge n$.

Proof. $0 \rightarrow \mathcal{O}_{v}(-X) \rightarrow \mathcal{O}_{v} \rightarrow \mathcal{O}_{x} \rightarrow 0$ is exact, so, since $\mathcal{L} = \mathcal{O}_{v}(X)$ is locally free, $0 \rightarrow \mathcal{O}_{v} \rightarrow \mathcal{L} \rightarrow \mathcal{L}_{x} \rightarrow 0$ is exact and hence $0 \rightarrow H^{0}(V, \mathcal{O}_{v})$ $\rightarrow H^{0}(V, \mathcal{L}) \rightarrow H^{0}(V, \mathcal{L}_{x})$ is exact. Therefore, $dim H^{0}(X, \mathcal{L}_{x})$ $= dim H^{0}(V, \mathcal{L}_{x}) \geq dim H^{0}(V, \mathcal{L}) - dim H^{0}(V, \mathcal{O}_{v}) \geq n.$ **Theorem 1.** Let V be a complete variety defined over a field K and X a non-degenerate positive Cartier divisor on V rational over K such that $X^{(n)}=1$ and $l(X) \ge n+1$. Then $V \cong \mathbf{P}^n$ over K and the isomorphism is determined by X.

Proof. Let \mathcal{L} be as above. By lemmas 1, 2, and 3 X is a complete variety defined over K with the non-degenerate positive Cartier divisor \mathcal{L}_x on X rational over K and with $\chi(\mathcal{L}_x^{n-1})_x = 1$ and dim $H^0(X, \mathcal{L}_x) \ge n$. Therefore, by induction on n, since the theorem is true for n=1, $(X, \mathcal{L}_x) \cong (\mathbf{P}^n, \mathcal{O}(1))$ over K and dim $H^0(X, \mathcal{L}_x) = n$. Therefore l(X) = n+1 and $0 \to H^0(V, \mathcal{O}_v) \to H^0(V, \mathcal{L}) \to H^0(X, \mathcal{L}_x) \to 0$ is exact.

Now let x be any point of V and Y a positive Cartier divisor on V such that $\mathcal{O}_{v}(Y) \cong \mathcal{O}_{v}(X)$ and $x \in \text{Supp } Y$. There exists such Y since $l(X) \ge 2$. Then, since Y is a Cartier divisor, there exists $t \in \mathcal{O}_{v,x}$ such that $\mathcal{O}_{r,x} \cong \mathcal{O}_{v,x}/t\mathcal{O}_{v,x}$. But, as above, $Y \cong \mathbf{P}^{n-1}$ so the maximal ideal of $\mathcal{O}_{r,x}$ is generated by n-1 elements. Therefore, by Nakayama, the maximal ideal of $\mathcal{O}_{v,x}$ is generated by n elements and hence x is a simple point of V. Thus V is nonsingular.

Since l(X) = n+1, to show $V \cong \mathbf{P}^n$ over K with the isomorphism determined by X it will suffice to show that X is ample on V. By Weil's criterion for ampleness ([6], ch. IX, §5, thm. 12, p. 288) it will suffice, given $x \in V$, to find n divisors Y_1, \dots, Y_n on V in $\Lambda(X)$, the complete linear system associated to X, intersecting properly such that $Y_1 \cdot Y_2 \cdots Y_n = 1 \cdot x$. Let $Y \in \Lambda(X)$ such that $x \in Y$. As above, $Y \cong \mathbf{P}^{n-1}$. Then choose n-1 hyperplanes of Y whose intersection is just x and pull them back to V. This is possible since $H^0(V, \mathcal{L}) \to H^0(Y, \mathcal{L}_Y)$ is onto. Their intersection with Y is now $1 \cdot x$. Q.E.D.

Professor Mumford pointed out that for the above characterization of P^n it was unnecessary to assume V nonsingular.

2) Theorem 2. Let W be a variety flat and proper over

Robert Goren

 \mathcal{O} and let $V \cong W \times_{\mathfrak{o}} K$, $V' \cong W \times_{\mathfrak{o}} k$. If $V \cong \mathbf{P}^*$ over K then $V' \cong \mathbf{P}^*$ over k and $W \cong \mathbf{P}^*$ over v. Furthermore, if the divisor X on V corresponds to a hyperplane of \mathbf{P}^* , then $X' = \overline{X} \cdot V'$ and \overline{X} respectively determine these last two isomorphisms where \overline{X} is the closure of X on W.

Assuming V' nonsingular a proof of this result was given in [3], lemma 1.7, while for k=C and V' a compact Kähler manifold this result was proved in [4]. The proof of the general result will use the following proposition and lemma.

Proposition. Let W be flat and proper over \mathcal{O} , $V \cong W \times_{\mathfrak{o}} K$, $V' \cong W \times_{\mathfrak{o}} k$. Assume W is nonsingular in codimension 1, $\operatorname{Pic}^{\mathfrak{o}}(V) = 0$, and the rank of $G(V)/G_{\mathfrak{a}}(V)$ is one. Then W is projective over \mathfrak{o} and, if X is a non-degenerate Weil divisor on V, the \overline{X} is a non-degenerate Weil divisor on W.

Proof. We may write $W = \bigcup_{i=1}^{r} U_i$, U_i open affines over v such that $U_i \times_{v} k$ is non-empty. Assume all $U_i \subset A^N$ as closed subsets and let h_i be the composition of the inclusions $U_i \subset A^N \subset P^N$. Let Γ_{h_i} be the graph of h_i , Γ_i be the closure of Γ_{h_i} in $W \times P^N$, and $X_i = \operatorname{pr}_W(\Gamma_i \cdot W \times H)$ where H is a generic hyperplane of P^N . Let $Y_i = \operatorname{pr}_{v_i}(\Gamma_{h_i} \cdot U_i \times H)$ and \overline{Y}_i be the closure of Y_i in W. Then $X_i > Y_i$ so $X_i > \overline{Y}_i$.

Claim: If $Z_i = X_i - \overline{Y}_i$, $|Z_i|$ does not meet U_i .

Proof of claim. Let x be a generic point of a component of $U_i \cap |Z_i|$. Since U_i is open in W, x is a generic point of a component of $|Z_i|$ and hence is simple on W. $\Gamma_{z_i} = \Gamma_i \cap (U_i \times P^N)$ so $\Gamma_{z_i} \cdot (U_i \times H) = \Gamma_i \cdot (U_i \times H)$. Therefore, Γ_{z_i} regular at x implies Γ_i regular at x so the unique component T of $|X_i|$ containing x appears with multiplicity 1 in X_i and $T \cap U_i$ appears with multiplicity 1 in X_i . Hence T does not appear in $|Z_i|$.

Proof of proposition. Since $\Lambda(Y_i)$ is ample on U_i , $\Lambda(X_i)$ is

Projective space

ample on U_i because $\Lambda(X_i) \cap U_i = \Lambda(Y_i)$. Now let r be the order of the torsion part of $G(V)/G_a(V)$. Then $r \cdot G(V)/G_i(V)$ $= r \cdot G(V) / G_i(V) \cong Z$ by hypothesis. Since $\Lambda(X_i) \cap U_i$ is ample on U_i , $\Lambda(rX_i) \cap U_i$ is ample on U_i and hence $\Lambda(rX_i \times_p K) \cap U_i \times_p K$ is ample on $U_i \times {}_{\mathfrak{o}}K$. Therefore $rX_i \times {}_{\mathfrak{o}}K$ corresponds to a positive element r_i in Z under the above isomorphism. If X is a nondegenerate divisor on V, let rX correspond to $r_0 > 0$ in Z. Let s be a common multiple of the r_i and let $a_i = rs/r_i$. Then all $a_i X_i \times {}_{\mathfrak{p}} K$ correspond to the same element of Z so $a_i X_i \times {}_{\mathfrak{p}} K \sim$ Let f_i be a function on V such that $a_t X_t \times {}_{\mathfrak{p}} K(\sim a_0 X).$ $(f_i) = a_i X_i \times_p K - a_i X_i \times_p K$. Modifying f_i by a constant if necessary we can assume f_i extends to a function $\overline{f_i}$ such that $(\overline{f_i}) = a_i X_i$ $-a_{t}X_{t}$. This is possible since the only subvariety of W of codim 1 wholly contained in V' is V' itself. Similarly, $a_0 \overline{X} \sim a_t X_t$. Thus $\Lambda(a_iX_i) = \Lambda(a_iX_i)(=\Lambda(a_0\overline{X}))$ is ample on U_i for all i and hence on $\bigcup_{i=1}^{i} U_i = W$.

Lemma 4. Let the hypotheses be as in theorem 2. Then \overline{X} is a positive Cartier divisor on W not containing V' in its support.

Proof (suggested by Dr. W. Fulton of Brandeis University). Let (U_i) be an open affine cover of W such that all U_i meet V'. Suppose $U_i = \operatorname{Spec} B_i$. Let (f_{ij}) be a collection of non-units of B_i generating B_i over \mathfrak{o} . Then the $U_{ij} = (\operatorname{Spec} B_i)_{fij}$ which intersect V' form a collection of open affine subsets of W covering V' and hence all of W. The $U_{ij} \times_{\mathfrak{o}} K$ form an open affine cover of V. f_{ij} can be viewed as a function on $U_i \times_{\mathfrak{o}} K$ and, by taking the closure in V of the divisor of zeroes of f_{ij} , we get a hypersurface H_{ij} of V not containing any point of $U_{ij} \times_{\mathfrak{o}} K$. If we can show that in $U_{ij} \times_{\mathfrak{o}} K$ X is given as the divisor of a single function $g_{ij} \in (B_i \times_{\mathfrak{o}} K)_{fij}$ then, modifying g_{ij} by an element of K and extending g_{ij} to U_{ij} , we can assume that $g_{ij} \in (B_i)_{fij}$ and $U_{ij} \times_{\mathfrak{o}} k$ Robert Goren

is not a component of (g_{ij}) . Thus, $\overline{X} = (U_{ij}, g_{ij})$ will be a positive Cartier divisor on W not containg V' in its support. Therefore, to complete the proof, it will suffice to show that $B = (B_i \otimes K)_{fij}$ is a unique factorization domain. $f(U_{ij} \times_{\mathfrak{o}} K) \subset \mathbf{P}^n - f(H_{ij}) \cong \mathbf{A}^n$ so Spec B may be viewed as an open affine subset of \mathbf{A}^n . Then $K[X_1, \dots, X_n] \subset B \subset K(X_1, \dots, X_n)$ and B is a noetherian integral domain.

Let Q be a minimal prime of B. Then Q induces an irreducible subvariety of codim 1 of Spec B and hence of A^n . But $K[X_1, \dots, X_n] = K[X]$ is a UFD so there exists $h \in K[X]$ such that $Q \cap K[X] = h \cdot K[X]$. Thus it remains only to show that $Q = h \cdot B$. Let $r(X)/s(X) \in Q$ in lowest terms, $r(X) = \prod r_i(X)$, s(X) $= \prod s_j(X)$. Then $r = s(r/s) \in Q \cap K[X]$ so $r/s = hr^*/s$. Suppose $1/s_j \notin B$. Then $\{x: s_j(x) = 0\} \cap$ Spec B is an open non-empty subset of $\{x: s_j(x) = 0\}$. Since no $r_i = s_j$, r(x) can not vanish on this set so $r/s \notin B$. Contradiction. Thus $1/s \in B$ so $r/s = hr^*/s \in h \cdot B$.

Proof of theorem 2. Let $d: V' \rightarrow W$ be the closed immersion. Then $X' = d^*(\overline{X})$ is a positive non-degenerate Cartier divisor on V' by the proposition and lemma. Therefore, to show X' induces an isomorphism of V' with P^n over k, it suffices to show that $l(X') \ge n+1$ and $X'^{(n)}=1$. But these are immediate consequences of upper semicontinuity and invariance of Euler-Poincaré characteristic ([1], III. 7.7.5 and III. 7.9.4). Thus $V' \cong P^n$ over k and the map is just the isomorphism on V extended. Q.E.D.

3) Theorem 3. Let W be proper and flat over $v, V \cong W \times_{v} K$, $V' \cong W \times_{v} k \cong \mathbf{P}^{*}$ over k. Then V is projective nonsingular and

a) there exists a finite separable field extension K_0 of K such that $V \cong \mathbf{P}^n$ over K_0 . (Such varieties are classified by the set of isomorphism classes of central simple algebras of dimension $(n+1)^2$ over K. They are isomorphic to \mathbf{P}^n over K if and only if they carry a K-rational point (F. Châtelet, [7]).) If v is complete we can take $K_0 = K$.

b) if V carries a divisor rational over K of self-intersection number 1, then $V \cong \mathbf{P}^n$ over K.

Proof. V' nonsingular implies V nonsingular. Let Y be any positive divisor on V and let $Y' = \overline{Y} \cdot V'$. Then Y' is a positive divisor on V' and so is non-degenerate. Hence \overline{Y} and Y are nondegenerate ([1], III. 4.7.1.). (a) is proved in ch. 0 in [4] and in general in [2] exposé III, pp. 19-20. (b): Let $X = Y_1 - Y_2$, $Y_i > 0$ be a K-rational divisor on V such that $X^{(n)} = 1$. Suppose $Y'_i = \overline{Y}_i \cdot V'$, $X' = Y'_1 - Y'_2$. Then $X'^{(n)} = 1$ so l(X') = n+1 and $H^i(V', X') = 0$ if i > 0. Therefore $H^i(V, X) = 0$ for i > 0 and $l(X) = \alpha(V, X)$ $= \alpha(V', X') = l(X') = n+1$. Therefore there exists $X^* \sim X$, positive and rational over K, hence non-degenerate. Also, $X^{*(n)} = 1$ and $l(X^*) = n+1$ so $V \cong \mathbf{P}^n$ over K. An alternate proof of (b) is given in [3], lemma 1.6.

Bibliography

- A. Grothendieck, Eléments de Géometrie Algébriques, III. Publications Mathématiques Institut des Hautes Etudes Scientifiques, Paris, nos. 11 and 17.
- [2] A. Grothendieck, Séminaire de Géométrie Algébrique, Institut des Hautes Etudes Scientifiques, 1960-61 exposé III.
- [3] H. Hironaka, Smoothing of Algebraic Cycles of Lower Dimensions, to apper.
- [4] F. Hirzebruch and K. Kodaira, "On the Complex Projective Spaces," Journal de Mathématiques Pures et Appliquées. ser. 9. vol. 36 (1957), pp. 201-216.
- [5] S. Kleiman, "Toward a numerical theory of ampleness, "Ann. of Math. 84 (1966), pp. 293-344.
- [6] A. Weil, Foundations of Algebraic Geometry, AMS Colloquium Publications no. 29 (1962).
- [7] F. Chatelet, Variations sur un thème de H. Poincaré. Annales E. N. S. 61, 1944, pp. 249-300.

BRANDEIS UNIVERSITY