Characterization and algebraic deformations of projective space

By
Robert Goren
(Communicated by Professor Nagata, November 21, 1967)

Let V and V^{\prime} be complete algebraic varieties of dimension n defined over K and k respectively. Then V^{\prime} is a specialization of V if there exists a discrete valuation ring \mathfrak{o} with quotient field K and residue field k and a variety W proper and flat over \mathfrak{o} such that $V \cong W \times{ }_{0} K$ over K and $V^{\prime} \cong W \times_{0} k$ over k. The above notations will be fixed throughout this paper. U and U^{*} are called deformations of each other if there exist U_{1}, \cdots, U_{m} with $U \cong U_{1}, \quad U^{*} \cong U_{m}$ and $U_{i} \cong U_{i+1}$ or U_{i} a specialization of U_{i+1} or the converse. The question considered here is, what are the possible deformations of \boldsymbol{P}^{n} ? If $V \cong \boldsymbol{P}^{n}$ over K, then we will show that $V^{\prime} \cong \boldsymbol{P}^{n}$ over k. Conversely, if $V^{\prime} \cong \boldsymbol{P}^{n}$ over k and if V admits a K-rational divisor with self-intersection number 1 , then $V \cong \boldsymbol{P}^{n}$ over K. I wish here to thank Professor Matsusaka for his advice, suggestions, and encouragement in this work.

1) The proofs of the above results are based on the following characterization of \boldsymbol{P}^{n} :

Let V be a complete variety of dimension n defined over K. Then $V \cong \boldsymbol{P}^{n}$ over K if and only if there exists a non-degenerate positive Cartier divisor X on V rational over K such that $X^{(n)}$, the self-intersection number of X on V, equals 1 and $l(X) \geq n+1$.
X non-degenerate means that a high multiple of X is ample,
i.e., $H^{0}\left(V, \mathcal{L}^{\otimes m}\right)$ defines a projective embedding of V for m sufficiently large where \mathcal{L} is the invertible sheaf associated to X. $X^{(n)}=\chi\left(\mathcal{L}^{n}\right)_{v}$ is defined ([5], p. 296) to be the coefficient of the leading term in the Hilbert polynomial $\chi\left(V, \mathcal{L}^{\otimes m}\right)=\sum_{i=0}^{n}(-1)^{i}$ $\times \operatorname{dim} H^{i}\left(V, \mathcal{L}^{\otimes m}\right)$. The above characterization of projective space is proved using the following sequence of lemmas:

Lemma 1. Suppose X is a positive non-degenerate Cartier divisor on V and $X^{(n)}=1$. Then X is irreducible.

Proof. Let Y_{1}, \cdots, Y be the irreducible components of X and let \mathcal{L} be the sheaf associated to X. Then

$$
\begin{aligned}
1=X^{(n)}=\chi\left(\mathcal{L}^{n}\right)_{V} & =\chi\left(\mathcal{L}^{n-1} \cdot \mathcal{O}_{X}\right)([5], \text { prop. } 4, \text { p. } 297) \\
& =\sum_{i} \chi\left(\mathcal{L}^{n-1} \cdot \mathcal{O}_{X} \otimes \mathcal{O}_{Y_{i}}\right)([5], \text { cor. } 1 \text { of prop. } 5, \text { p. 298) } \\
& \geq r \text { since } \mathcal{L} \text { is non-degenerate ([5], thm. 1, p. 317). }
\end{aligned}
$$

Lemma 2. Under the hypotheses of lemma 1, $\left(X, \mathcal{O}_{x}\right)$ is a reduced subscheme of $\left(V, \mathcal{O}_{V}\right)$ and $\chi\left(\mathcal{L}_{X}^{n--}\right)_{x}=1$ where $\mathcal{L}_{X}=\mathcal{L} \otimes \mathcal{O}_{x}$.

Proof. Let x be a generic point of X and let $f: X^{\prime} \rightarrow X$ where $X^{\prime}=X_{\text {red }}$. Then $\operatorname{deg}(f)=1 / \mathrm{s}$ where $s=$ length $\mathcal{O}_{X, x} \mathcal{O}_{X, x}$ ([5], p. 299, ex. 1). Let $\mathcal{L}_{x^{\prime}}=\mathcal{L} \otimes \mathcal{O}_{x^{\prime}}$. Then $\mathcal{L}_{x^{\prime}}=\mathcal{L}_{X} \otimes \mathcal{O}_{X} \mathcal{O}_{X^{\prime}}=f^{*} \mathcal{L}_{x}$. Therefore, $\chi\left(\mathcal{L}_{x^{\prime}}^{n-1}\right)_{x^{\prime}}=\operatorname{deg}(f) \cdot \chi\left(\mathcal{L}_{x}^{n-1}\right)_{x}$ ([5], prop. 6, p. 299). But $\chi\left(\mathcal{L}_{x}^{n-1}\right)_{x}=\chi\left(L^{n-1} \cdot X\right)_{V}=\chi\left(L^{n}\right)_{V}=1$ ([5], props. 4 and 5, p. 298). Therefore $\chi\left(\mathcal{L}_{X^{\prime}}^{n-1}\right)_{x^{\prime}}=1 / \mathrm{s}$. But $\mathcal{L}_{X^{\prime}}$ is a non-degenerate invertible sheaf on X^{\prime} so $\chi\left(\mathcal{L}_{X^{\prime}}^{n-1}\right)_{X^{\prime}}$ is an integer. Therefore $s=1$ and $\mathcal{O}_{X, x}$ is a field so $\left(X, \mathcal{O}_{X}\right)$ is reduced.

Lemma 3. If 'in lemma 2 we assume $\operatorname{dim} H^{0}(V, \mathcal{L}) \geq n+1$, then $\operatorname{dim} H^{\circ}\left(X, \mathcal{L}_{X}\right) \geq n$.

Proof. $0 \rightarrow \mathcal{O}_{V}(-X) \rightarrow \mathcal{O}_{V} \rightarrow \mathcal{O}_{X} \rightarrow 0$ is exact, so, since $\mathcal{L}=\mathcal{O}_{V}(X)$ is locally free, $0 \rightarrow \mathcal{O}_{V} \rightarrow \mathcal{L} \rightarrow \mathcal{L}_{x} \rightarrow 0$ is exact and hence $0 \rightarrow H^{0}\left(V, \mathcal{O}_{v}\right)$ $\rightarrow H^{0}(V, \mathcal{L}) \rightarrow H^{0}\left(V, \mathcal{L}_{x}\right)$ is exact. Therefore, $\operatorname{dim} H^{0}\left(X, \mathcal{L}_{x}\right)$ $=\operatorname{dim} H^{0}\left(V, \mathcal{L}_{X}\right) \geq \operatorname{dim} H^{0}(V, \mathcal{L})-\operatorname{dim} H^{\circ}\left(V, \mathcal{O}_{V}\right) \geq n$.

Theorem 1. Let V be a complete variety defined over a field K and X a non-degenerate positive Cartier divisor on V rational over K such that $X^{(n)}=1$ and $l(X) \geq n+1$. Then $V \cong \boldsymbol{P}^{n}$ over K and the isomorphism is determined by X.

Proof. Let \mathcal{L} be as above. By lemmas 1, 2, and $3 X$ is a complete variety defined over K with the non-degenerate positive Cartier divisor \mathcal{L}_{X} on X rational over K and with $\chi\left(\mathcal{L}_{X}^{x-1}\right)_{X}=1$ and $\operatorname{dim} H^{0}\left(X, \mathcal{L}_{x}\right) \geq n$. Therefore, by induction on n, since the theorem is true for $n=1,\left(X, \mathcal{L}_{X}\right) \cong\left(\boldsymbol{P}^{n}, \mathcal{O}(1)\right)$ over K and $\operatorname{dim} H^{0}\left(X, \mathcal{L}_{X}\right)=n . \quad$ Therefore $l(X)=n+1$ and $0 \rightarrow H^{0}\left(V, \mathcal{O}_{V}\right)$ $\rightarrow H^{0}(V, \mathcal{L}) \rightarrow H^{0}\left(X, \mathcal{L}_{X}\right) \rightarrow 0$ is exact.

Now let x be any poiat of V and Y a positive Cartier divisor on V such that $\mathcal{O}_{V}(Y) \cong \mathcal{O}_{V}(X)$ and $x \in \operatorname{Supp} Y$. There exists such Y since $l(X) \geq 2$. Then, since Y is a Cartier divisor, there exists $t \in \mathcal{O}_{V, x}$ such that $\mathcal{O}_{Y, x} \cong \mathcal{O}_{V, x} / t \mathcal{O}_{V, x}$. But, as above, $Y \cong \boldsymbol{P}^{n-1}$ so the maximal ideal of $\mathcal{O}_{Y, x}$ is generated by $n-1$ elements. Therefore, by Nakayama, the maximal ideal of $\mathcal{O}_{V, x}$ is generated by n elements and hence x is a simple point of V. Thus V is nonsingular.

Since $l(X)=n+1$, to show $V \cong \boldsymbol{P}^{n}$ over K with the isomorphism determined by X it will suffice to show that X is ample on V. By Weil's criterion for ampleness ([6], ch. IX, §5, thm. 12, p. 288) it will suffice, given $x \in V$, to find n divisors Y_{1}, \cdots, Y_{n} on V in $\Lambda(X)$, the complete linear system associated to X, intersesting properly such that $Y_{1} \cdot Y_{2} \cdots Y_{n}=1 \cdot x$. Let $Y \in \Lambda(X)$ such that $x \in \dddot{Y}$. As above, $Y \cong \boldsymbol{P}^{n-1}$. Then choose $n-1$ hyperplanes of Y whose intersection is just x and pull them back to V. This is possible since $H^{0}(V, \mathcal{L}) \rightarrow H^{0}\left(Y, \mathcal{L}_{Y}\right)$ is onto. Their intersection with Y is now $1 \cdot x$. Q.E.D.

Professor Mumford pointed out that for the above characterization of \boldsymbol{P}^{n} it was unnecessary to assume V nonsingular.
2) Theorem 2. Let W be a variety flat and proper over
\mathcal{O} and let $V \cong W \times{ }_{0} K, V^{\prime} \cong W \times{ }_{0} k$. If $V \cong \boldsymbol{P}^{n}$ over K then $V^{\prime} \cong \boldsymbol{P}^{n}$ over k and $W \cong \boldsymbol{P}^{n}$ over 0 . Furthermore, if the divisor X on V corresponds to a hyperplane of \boldsymbol{P}^{n}, then $X^{\prime}=\bar{X} \cdot V^{\prime}$ and \bar{X} respectively determine these last two isomorphisms where \bar{X} is the closure of X on W.

Assuming V^{\prime} nonsingular a proof of this result was given in [3], lemma 1. 7, while for $k=\boldsymbol{C}$ and V^{\prime} a compact Kähler manifold this result was proved in [4]. The proof of the general result will use the following proposition and lemma.

Proposition. Let W be flat and proper over $\mathcal{O}, V \cong W \times{ }_{0} K$, $V^{\prime} \cong W \times_{0} k$. Assume W is nonsingular in codimension 1 , $\operatorname{Pic}^{\circ}(V)=0$, and the rank of $G(V) / G_{a}(V)$ is one. Then W is projective over \mathfrak{v} and, if X is a non-degenerate Weil divisor on V, the \bar{X} is a non-degenerate W eil divisor on W.

Proof. We may write $W=\bigcup_{i=1}^{t} U_{i}, U_{i}$ open affines over 0 such that $U_{i} \times{ }_{0} k$ is non-empty. Assume all $U_{i} \subset \boldsymbol{A}^{N}$ as closed subsets. and let h_{i} be the composition of the inclusions $U_{i} \subset \boldsymbol{A}^{N} \subset \boldsymbol{P}^{N}$. Let $\Gamma_{k_{i}}$ be the graph of h_{i}, Γ_{i} be the closure of $\Gamma_{k_{i}}$ in $W \times P^{N}$, and $X_{i}=\operatorname{pr}_{w}\left(\Gamma_{i} \cdot W \times H\right)$ where H is a generic hyperplane of \boldsymbol{P}^{N}. Let $Y_{i}=\operatorname{pr}_{U_{i}}\left(\Gamma_{h_{i}} \cdot U_{i} \times H\right)$ and \bar{Y}_{i} be the closure of Y_{i} in W. Then $X_{i}>Y_{i}$ so $X_{i}>\bar{Y}_{i}$.

Claim: If $Z_{i}=X_{i}-\bar{Y}_{i},\left|Z_{i}\right|$ does not meet U_{i}.
Proof of claim. Let x be a generic point of a component of $U_{i} \cap\left|Z_{i}\right|$. Since U_{i} is open in W, x is a generic point of a componer.t of $\left|Z_{i}\right|$ ard herce is simple on $W . \quad \Gamma_{s_{i}}=\Gamma_{i} \cap\left(U_{i} \times P^{N}\right)$ so $\quad \Gamma_{n_{i}} \cdot\left(U_{i} \times H\right)=\Gamma_{i} \cdot\left(U_{i} \times H\right)$. Therefore, $\Gamma_{i_{i}}$ regular at x implies Γ_{i} regular at x so the urique component T of $\left|X_{i}\right|$ containing x appears with multiplicity 1 in X_{i} and $T \cap U_{i}$ appears with multiplicity 1 in Y_{i}. Hence T does not appear in $\left|Z_{i}\right|$.

Proof of proposition. Since $\Lambda\left(Y_{i}\right)$ is ample on $U_{i}, \Lambda\left(X_{i}\right)$ is
ample on U_{i} because $\Lambda\left(X_{i}\right) \cap U_{i}=\Lambda\left(Y_{i}\right)$. Now let r be the order of the torsion part of $G(V) / G_{a}(V)$. Then $r \cdot G(V) / G_{l}(V)$ $=r \cdot G(V) / G_{a}(V) \cong \boldsymbol{Z}$ by hypothesis. Since $\Lambda\left(X_{i}\right) \cap U_{i}$ is ample on $U_{i}, \Lambda\left(r \mathrm{X}_{i}\right) \cap U_{i}$ is ample on U_{i} and hence $\Lambda\left(r X_{i} \times{ }_{0} K\right) \cap U_{i} \times{ }_{0} K$ is ample on $U_{i} \times{ }_{0} K$. Therefore $r X_{i} \times{ }_{0} K$ corresponds to a positive element r_{i} in Z under the above isomorphism. If X is a nondegenerate divisor on V, let $r X$ correspond to $r_{0}>0$ in \boldsymbol{Z}. Let s be a common multiple of the r_{i} and let $a_{i}=r s / r_{i}$. Then all $a_{i} X_{i} \times{ }_{0} K$ correspond to the same element of \boldsymbol{Z} so $a_{i} X_{i} \times{ }_{0} K \sim$ $a_{t} X_{t} \times{ }_{0} K\left(\sim a_{0} X\right)$. Let f_{i} be a function on V such that $\left(f_{i}\right)=a_{i} X_{i} \times{ }_{0} K-a_{t} X_{t} \times{ }_{0} K$. Modifying f_{i} by a constant if necessary we can assume f_{i} extends to a function $\overline{f_{i}}$ such that $\left(\overline{f_{i}}\right)=a_{i} X_{i}$ $-a_{t} X_{t}$. This is possible since the only sabvariety of W of codim 1 wholly contained in V^{\prime} is V^{\prime} itself. Similarly, $a_{0} \bar{X} \sim a_{t} X_{t}$. Thus $\Lambda\left(a_{t} X_{t}\right)=\Lambda\left(a_{i} X_{i}\right)\left(=\Lambda\left(a_{0} \bar{X}\right)\right)$ is ample on U_{i} for all i and hence on $\bigcup_{i=1}^{t} U_{i}=W$.

Lemma 4. Let the hypotheses be as in theorem 2. Then \bar{X} is a positive Cartier divisor on W not containing V^{\prime} in its support.

Proof (suggested by Dr. W. Fulton of Brandeis University). Let $\left(U_{i}\right)$ be an open affine cover of W such that all U_{i} meet V^{\prime}. Suppose $U_{i}=\operatorname{Spec} B_{i}$. Let $\left(f_{i j}\right)$ be a collection of non-units of B_{i} generating B_{i} over 0 . Then the $U_{i j}=\left(\operatorname{Spec} B_{i}\right)_{f_{i j}}$ which intersect V^{\prime} form a collection of open affine subsets of W covering V^{\prime} and hence all of W. The $U_{i j} \times{ }_{0} K$ form an open affine cover of V. $f_{i j}$ can be viewed as a function on $U_{i} \times{ }_{0} K$ and, by taking the closure in V of the divisor of zeroes of $f_{i j}$, we get a hypersurface $H_{i j}$ of V not containing any point of $U_{i j} \times{ }_{0} K$. If we can show that in $U_{i j} \times{ }_{0} K X$ is given as the divisor of a single function $g_{i j} \in\left(B_{i} \times{ }_{0} K\right)_{f_{i j}}$ then, modifying $g_{i j}$ by an element of K and extending $g_{i j}$ to $U_{i j}$, we can assume that $g_{i j} \in\left(B_{i}\right)_{f_{i j}}$ and $U_{i j} \times_{0} k$
is not a component of $\left(g_{i j}\right)$. Thus, $\bar{X}=\left(U_{i j}, g_{i j}\right)$ will be a positive Cartier divisor on W not containg V^{\prime} in its support. Therefore, to complete the proof, it will suffice to show that $B=\left(B_{i} \otimes K\right)_{f_{i} ;}$ is. a unique factorization domain. $f\left(U_{i j} \times{ }_{0} K\right) \subset \boldsymbol{P}^{n}-f\left(H_{i j}\right) \cong \boldsymbol{A}^{n}$ so Spec B may be viewed as an open affere subset of \boldsymbol{A}^{n}. Then $K\left[X_{1}, \cdots, X_{n}\right] \subset B \subset K\left(X_{1}, \cdots, X_{n}\right)$ and B is a noetherian integral domain.

Let Q be a minimal prime of B. Then Q induces an irreducible subvariety of codim 1 of $\operatorname{Spec} B$ and hence of \boldsymbol{A}^{n}. But $K\left[X_{1}, \cdots\right.$, $\left.X_{n}\right]=K[X]$ is a UFD so there exists $h \in K[X]$ such that $Q \cap K[X]=h \cdot K[X]$. Thus it remains only to show that $Q=h \cdot B$. Let $r(X) / s(X) \in Q$ in lowest terms, $r(X)=\Pi r_{i}(X), s(X)$ $=\Pi s_{j}(X)$. Then $r=s(r / s) \in Q \cap K[X]$ so $r / s=h r^{*} / s$. Suppose $1 / s_{j} \notin B$. Then $\left\{x: s_{j}(x)=0\right\} \cap \operatorname{Spec} B$ is an open non-empty subset of $\left\{x: s_{j}(x)=0\right\}$. Since no $r_{i}=s_{j}, r(x)$ can not vanish on this set: so $r / s \notin B$. Contradiction. Thus $1 / s \in B$ so $r / s=\mathrm{hr}^{*} / s \in h \cdot B$.

Proof of theorem 2. Let $d: V^{\prime} \rightarrow W$ be the closed immersion. Then $X^{\prime}=d^{*}(\bar{X})$ is a pcsitive ron-degenerate Cartier divisor on V^{\prime} by the proposition and lemma. Therefore, to show X^{\prime} induces an isomorphism of V^{\prime} with \boldsymbol{P}^{n} over k, it suffices to show that $l\left(X^{\prime}\right) \geq n+1$ and $X^{\prime(n)}=1$. But these are immediate consequences. of upper semicontinuity and invariance of Euler-Poincaré characteristic ([1], III. 7. 7.5 and III. 7.9.4). Thus $V^{\prime} \cong \boldsymbol{P}^{n}$ over k and the map is just the isomorphism on V extended. Q.E.D.
3) Theorem 3. Let W be proper and flat over $\mathfrak{v}, V \cong W \times{ }_{0} K$, $V^{\prime} \cong W \times{ }_{\mathrm{o}} k \cong \boldsymbol{P}^{n}$ over k. Then V is projective nonsingular and
a) there exists a finite separable field extension K_{0} of K such that $V \cong \boldsymbol{P}^{n}$ over K_{0}. (Such varieties are classified by the set of isomorphism classes of central simple algebras of dimension $(n+1)^{2}$ over K. They are isomorphic to \boldsymbol{P}^{n} over K if and only if they carry a K-rational point (F. Châtelet, [7]).) If o is complete we can take $K_{0}=K$.
b) if V carries a divisor rational over K of self-intersection number 1 , then $V \cong \boldsymbol{P}^{n}$ over K.

Proof. V^{\prime} nonsingular implies V nonsingular. Let Y be any positive divisor on V and let $Y^{\prime}=\bar{Y} \cdot V^{\prime}$. Then Y^{\prime} is a positive divisor on V^{\prime} and so is non-degenerate. Hence \bar{Y} and Y are nondegenerate ([1], III. 4.7.1.). (a) is proved in ch. 0 in [4] and in general in [2] exposé III, pp. 19-20. (b) : Let $X=Y_{1}-Y_{2}, \quad Y_{i}>0$ be a K-ratioral divisor on V such that $X^{(n)}=1$. Suppose $Y_{i}^{\prime}=\bar{Y}_{i} \cdot V^{\prime}$, $X^{\prime}=Y_{1}^{\prime}-Y_{2}^{\prime}$. Then $X^{\prime(n)}=1$ so $l\left(X^{\prime}\right)=n+1$ and $H^{i}\left(V^{\prime}, X^{\prime}\right)=0$ if $i>0$. Therefore $H^{i}(V, X)=0$ for $i>0$ and $l(X)=x(V, X)$ $=\chi\left(V^{\prime}, X^{\prime}\right)=l\left(X^{\prime}\right)=n+1$. Therefore there exists $X^{*} \sim X$, positive and ratioral over K, hence non-degenerate. Also, $X^{*(n)}=1$ and $l\left(X^{*}\right)=n+1$ so $V \cong \boldsymbol{P}^{n}$ over K. An alternate proof of (b) is given in [3], lemma 1.6.

Bibliography

[1] A. Grothendieck, Eléments de Géometrie Algébriques, III. Publications Mathématiques Institut des Hautes Etudes Scientifiques, Paris, nos. 11 and 17.
[2] A. Grothendieck, Séminaire de Géométrie Algébrique, Institut des Hautes Etudes Scientifiques, 1960-61 exposé III.
[3] H. Hironaka, Smoothing of Algebraic Cycles of Lower Dimensions, to apper.
[4] F. Hirzebruch and K. Kodaira, "On the Complex Projective Spaces," Journal de Mathématiques Pures et Appliquées. ser. 9, vol. 36 (1957), pp. 201-216.
[5] S. Kleiman, "Toward a numerical theory of ampleness, "Ann of Math. 84 (1966), pp. 293-344.
[6] A. Weil, Foundations of Algebraic Geometry, AMS Colloquium Publications no. 29 (1962).
[7] F. Chatelet, Variations sur un thème de H. Poincaré. Annales E. N. S. 61, 1944, pp. 249-300.

