Regular operators and spaces of harmonic functions with finite Dirichlet integral on open Riemann surfaces

By
Hiroshi Yamaguchi

(Received May 20, 1968)

Introduction Let R be an open Riemann surface and let W be an open subset of R consisting of a finite number of regularly imbedded regions on R such that $R-W$ is connected and compact. We denote by $C^{\omega}(\partial W)$ the family of real analytic functions on ∂W and by $H(\bar{W})$ the family of harmonic functions on \bar{W}. L. Sario introduced (see [1]) the notion of a normal operator L : $C^{\omega}(\partial W) \rightarrow H(\bar{W})$ which is defined by the following conditions:
(1) $L f=f$ on ∂W,
(2) $L\left(c_{1} f_{1}+c_{2} f_{2}\right)=c_{1} L f_{1}+c_{2} L f_{2}$,
(3) $L 1=1$,
(4) $L f \geqq 0$ if $f \geqq 0$,
(5) $\int_{\partial W}(d L f)^{*}=0$.

One of Sario's important results is the following existence theorem for principal functions: Let a harmonic function s be given on \bar{W}. Then there exists a harmonic function p on R satisfying $p-s$ $=L(p-s)$ on W if and only if $\int_{\partial w}(d s)^{*}=0$. The function p is uniquely determined up to an additive constant.

He constructed two normal operators L_{0} and $(P) L_{1}$. Using the above existence theorem for these operators he gave elegant proofs to some classical theorems and obtained some results which have been applied to the theory of conformal mapping by many authors ([6], [9], [10], etc). However neither Dirichlet operator H^{W} ([3]
or [4]) nor Neumann operator N^{W} (§11) is normal in general, and so the existence of the Green function or the Neumann function is not derived by a direct application of the above existence theorem. On the other hand, B. Rodin [11] showed that $L_{0^{-}}$or $(P) L_{1}{ }^{-}$ principal functions give the reproducing kernels for some subspaces of Γ_{k} ($=$ the space of harmonic differentials on R with finite Dirichlet norm), while he remarked that the reproducing kernel for the subspace Γ_{s} of Schottky differentials do not seem to be obtained in terms of these principal functions.

Thus, in this paper, we modify conditions (1)-(5) and introduce an operator $L: C^{\omega}(\partial W) \rightarrow H(\bar{W})$ which is defined by the following conditions
(1*) $L f=f$ on ∂W,
$\left(2^{*}\right) \quad D_{w}(L f)<\infty$,
$\left(3^{*}\right) \quad D_{W}(L f, L g)=\int_{\partial W} f(d L g)^{*}$ for all $f, g \in C^{\omega}(\partial W)$.
Here $D_{W}(L f)$ (resp. $D_{W}(L f, L g)$) denotes the Dirichlet integral (resp. mixed Dirichlet integral) over W. We shall call such an operator L regular ($§ 2$). Although normal operators are not always regular, H^{w} and N^{w} as well as L_{0} and $(P) L_{1}$ are regular operators.

A large part of this paper is devoted to the establishment of correspondence between regular operators and subspaces of the Banach space $H D$, the space of Dirichlet finite harmonic functions u on R with the norm $\left\|\|u\|_{R}=\sqrt{D_{R}(u)}+\left|u\left(a_{0}\right)\right|\right.$. Using this correspondence, the existence theorem of principal functions for a regular operator is proved by a method of orthogonal decomposition (§7). Also a condition that a regular operator be normal is given by a property of the corresponding subspace ($§ \S 4,8$). From these results, we shall see that the reproducing kernels for Γ_{s} cannot be always expressed in terms of normal operators but they are expressed in terms of a regular operator ($(\S 9,11$).

The author acknowledges that many ideas of the present paper
came out through the discussions with Professor M. Yoshida (cf. [14]). The author also wishes to express his gratitudes to Professor Y. Kusunoki for his encouragement and many remarks.

§1. Preliminaries

Given an open Riemann surface R, we denote by \mathfrak{W} the collection of open sets W of R such that for each $W, R-W$ is connected and compact and W and its exterior have the same non-empty relative boundary in common which consists of a finite number of mutually disjoint simple analytic closed curves. For each $W \in \mathfrak{W}$, we denote by ∂W the relative boundary of W and set $\bar{W}=W \cup \partial W$. We suppose that the orientation of ∂W is positive with respect to W. We assume that functions defined on subsets of R are always real-valued. As for the differentials we shall use the notations and terminology used in Chapter V of L. Ahlfors and L. Sario [1], but we restrict ourselves to real differentials. The classes Γ, Γ_{h}, $\Gamma_{e}, \Gamma_{h e}, \cdots$ are Hilbert spaces with the inner product $\left(\omega_{1}, \omega_{2}\right)_{R}$ $=\int_{R} \omega_{1} \omega_{2}^{*}$. Also we refer to C. Constantinescu and A. Cornea [4] for the Dirichlet functions and Dirichlet potentials and use the same notations e.g., $D, H D, D_{0}, C_{0}^{\infty}, d D, d H D, \cdots$. The following propositions are well-known:

Proposition 1 (See [1], $V, 10 A$) Let Γ_{1} be a closed linear subspace of Γ_{h}. Then $\Gamma=\Gamma_{1}+\Gamma_{e 0}+\Gamma_{1}^{\perp}+\Gamma_{c 0}^{*}$ where Γ_{1}^{\perp} is the orthogonal complement of Γ_{1} with respect to Γ_{h}.

Proposition 2 (Royden decomposition) (See [4], Satz 7.6) If R is hyperbolic, then $D=H D+D_{0}$ on R. Moreover, let $u_{1}, u_{2} \in H D$ and $f_{01}, f_{02} \in D_{0}$ such that $u_{1}+f_{01}=u_{2}+f_{02}$ quasi-everywhere on some $W \in \mathfrak{W}$. Then $u_{1}=u_{2}$ on R.

Proposition 3 (See [1], II, 13B) Let $\left\{u_{n}\right\}$ be a sequence in HD satisfying $\lim _{m, n \rightarrow \infty}\left\|d u_{n}-d u_{m}\right\|_{R}=0$ and let $\left\{u_{n}(a)\right\}$ converge at least
at one point a in R. Then there exists a function u in $H D$ such that $\lim _{n \rightarrow \infty}\left\|d u_{n}-d u\right\|_{R}=0$ and $\left\{u_{n}\right\}$ converges locally uniformly to u on R.

Proposition 4 (See [4], Hilfssatz 7.8) Suppose that R is hyperbolic. Let $\left\{f_{0 n}\right\}$ be a sequence in D_{0} such that $\left\|d f_{0 n+1}-d f_{0 n}\right\|_{R}$ $<1 / 2^{n}$. Then $\left\{f_{0 n}\right\}$ converges to an $f_{0} \in D_{0}$ quasi-everywhere on R and $\lim _{n \rightarrow \infty}\left\|d f_{0 n}-d f_{0}\right\|_{R}=0$.

Finally we explain the meaning of notation $\int_{\beta} \omega$. Let ω be a differential of class C^{1}. Then, if for any exhaustion $\left\{\Omega_{n}\right\}$ of $R \lim _{n \rightarrow \infty} \int_{\partial \Omega_{n}} \omega$ exists then we write $\int_{\beta} \omega=\lim _{n \rightarrow \infty} \int_{\partial \Omega n} \omega$ where β stands for the ideal boundary of R and Ω_{n} is a relatively compact region in R whose boundary consists of a finite number of analytic curves. On using Green's formula we obtain the following fact: Let $f \in C^{1}(\bar{W}) \cap D(W)$ and $\omega^{*} \in \Gamma_{c}^{1}(\bar{W})$. Then $\int_{\beta} f \omega^{*}$ exists and $\int_{\beta} f \omega^{*}=(d f, \omega)_{W}-\int_{\partial W} f \omega^{*}$.

§2. Regular operators

Let $W \in \mathfrak{W}$. Let $C^{\omega}(\partial W)$ be the family of real-analytic functions f on ∂W. We denote by $H(\bar{W})$ the family of restrictions u to \bar{W} of harmonic functions on open sets containing \bar{W}.

Definition We say that an operator $L: C^{\omega}(\partial W) \rightarrow H(\bar{W})$ is regular (with respect to W), if it satisfies the following conditions
(1) $L f=f$ on ∂W,
(2) $\|d L f\|_{W}<\infty$,
(3) $(d L f, d L g)_{W}=\int_{\partial W} f(d L g)^{*}$ for any $f, g \in C^{\omega}(\partial W)$.

On account of the equality obtained at the end of $\S 1$, condition (3) is equivalent to
(3') $\int_{\beta}(L f)(d L g)^{*}=0 \quad$ for any $f, g \in C^{\omega}(\partial W)$.

We see from Green's formula that a regular operator is linear:

$$
L\left(c_{1} f_{1}+c_{2} f_{2}\right)=c_{1} L f_{1}+c_{2} L f_{2} .
$$

Definition A regular operator is called canonical, if $L 1=1$ on W. A regular operator is called positive, if $f \geqq 0$ on ∂W implies $L f \geqq 0$ on W.

Condition (3) implies that $\|d L 1\|_{W}^{2}=\int_{\partial W}(d L 1)^{*}$ and $(d L 1, d L f)_{W}$ $=-\int_{\beta}(d L f)^{*}$ for any $f \in C^{\omega}(\partial W)$. It follows that L is canonical if any only if $\int_{\beta}(d L 1)^{*}=0$. Moreover in this case $\int_{\beta}(d L f)^{*}=0$ for any $f \in C^{\omega}(\partial W)$.

Remark In case L is not canonical, let $L^{\prime}=L\left(f-c_{f}\right)+c_{f}$ where $c_{f}=\int_{\beta}(d L f)^{*} / \int_{\beta}(d L 1)^{*}$. Then L^{\prime} is canonical.

Uniqueness theorem Let L be a regular operator with respect to W. Let $u \in H D$ satisfy the equation $u=L u$ on W. Then u is a constant. If, in addition, L is not canonical, then the constant must be zero.

Proof Since $R-W$ is compact, we have by Green's formula $\|d u\|_{R-W}^{2}=\int_{\partial(R-W)} u(d u)^{*}=-\int_{\partial w} u(d u)^{*}$. It follows from $u=L u$ on \bar{W} that $\|d u\|_{R}^{2}=\|d u\|_{R-W}^{2}+\|d L u\|_{W}^{2}=-\int_{\partial W} u(d u)^{*}+\int_{\partial W} u(d L u)^{*}=0$. Hence u is a constant c on R. If L is not canonical, $c=L c$ implies $c=0$.

§3. Subspaces \boldsymbol{A} of $\boldsymbol{H D}$, regular operators L_{W}^{A} and consistent sysems \mathcal{L}^{A}

If a given Riemann surface R is parabolic, conditions (1), (2) in $\S 2$ imply condition (3), and moreover, for each $W \in \mathfrak{W}$, all the regular operators become identical. Hence hereafter we always assume that R is hyperbolic. Let $a_{0} \in R$ be fixed. The space $H D$ is a Banach space with respect to the norm $\left\|\|u\|_{R}=\right\| d u \|_{R}+\left|u\left(a_{0}\right)\right|$.

Let a subspace $A^{1)}$ of Banach space $H D$ be given, that is, A is a closed linear subset of $H D$. Let $W \in \mathfrak{M}$. For any $f \in C^{\omega}(\partial W)$, let

$$
M_{f}^{A}=M_{f}=\left\{g \in A+D_{0} ; g=f \text { quasi-everywhere on } \partial W\right\} .
$$

Denote by $\Lambda_{f}^{A}=\Lambda_{f}$ the set of restrictions of the differentials $d g\left(\in d M_{f}\right)$ to W. Then, Λ_{f} is a non-empty subset of the Hilbert space $d D(W)=\Gamma_{e}(W)$.

Lemma $1 \Lambda_{f}$ is convex and complete.
Proof The convexity is clear. To show the completenss, let $\left\{\omega_{n}\right\}$ be any sequence in Λ_{f} which satisfies $\left\|\omega_{n}-\omega_{m}\right\|_{w} \rightarrow 0$ as $m, n \rightarrow \infty$. We can find $u_{n} \in A, f_{0 n} \in D_{0}$ such that $u_{n}+f_{0 n} \in M_{f}, d\left(u_{n}+f_{0 n}\right)=\omega_{n}$ on W. Moreover we can require $u_{n}+f_{0 n}=H_{f}^{R-\bar{w}}$ on $R-W$ for all n, where $H_{f}^{R-\bar{W}}$ is the harmonic function on $R-W$ with the boundary values f on $\partial(R-W)(=-\partial W)$. For, when $f_{0 n}$ does not satisfy $u_{n}+f_{0 n}=H_{f}^{R-\bar{w}}$ on $R-W$, we consider the function $g_{0 n}$ which is $f_{0 n}$ on \bar{W} and is $H_{f-u_{n}}^{R-\bar{W}}$ on $R-W$. Then $g_{0 n} \in D_{0}, u_{n}+g_{0 n} \in M_{f}, d\left(u_{n}+g_{0 n}\right)=\omega_{n}$ and $u_{n}+g_{0 n}$ $=H_{f}^{R-\bar{W}}$. Since $\lim _{m, n \rightarrow \infty}\left\|d\left(u_{m}+f_{0 m}\right)-d\left(u_{n}+f_{0 n}\right)\right\|_{R}=\lim _{m, n \rightarrow \infty}\left\|\omega_{m}-\omega_{n}\right\|_{W}=0$, we can choose a subsequence $\left\{u_{n_{k}}+f_{n_{k}}\right\}$ which satisfies $\| d\left(u_{n_{k+1}}+f_{0 n_{k+1}}\right)$ $-d\left(u_{n_{k}}+f_{0 n_{k}}\right) \|_{R}<1 / 2^{k}$. Hence we have $\left\|d u_{n_{k+1}}-d u_{n_{k}}\right\|_{R}<1 / 2^{k}$ and $\left\|d f_{0 n_{k+1}}-d f_{0 n_{k}}\right\|_{R}<1 / 2^{k}$, because $d H D \perp d D_{0}$. It follows from Proposition 4 that $\left\{f_{0 n_{k}}\right\}$ converges quasi-everywhere on R to a Dirichlet potential f_{0} and $\lim _{k \rightarrow \infty}\left\|d f_{0 n_{k}}-d f_{0}\right\|_{R}=0$. Since $u_{n_{k}}+f_{0 n_{k}}=H_{f}^{R-\bar{W}}$ on $R-W$ for all $k,\left\{u_{n_{k}}\right\}$ converges at least at one point in $R-W$. It follows from Proposition 3 that $\left\{u_{n_{k}}\right\}$ converges locally uniformly on R to an $H D$-function u. Hence $\lim _{k \rightarrow \infty}\| \| u_{n_{k}}-u\| \|_{R}=0$ and $u+f_{0}=f$ quasieverywhere on ∂W. By the closedness of A we have $u \in A$. We conclude that $u+f_{0} \in M_{f}$ and $\lim _{n \rightarrow \infty}\left\|d\left(u+f_{0}\right)-\omega_{n}\right\|_{W}=0$. Consequently Λ_{f} is complete.

Under these preliminaries we shall construct a regular operator

[^0]L_{W}^{A} for a given subspace A and $W \in \mathfrak{B}$. By a well-known theorem in the theory of Hilbert space, Lemma 1 implies that there exists a unique element $\omega_{f} \in \Lambda_{f}$ such that $\left\|\omega_{f}\right\|_{W}=\inf \left\{\|\omega\|_{W} ; \omega \in \Lambda_{f}\right\}$. Moreover ω_{f} must be a harmonic differential on W and $\left(\omega_{f}, \omega\right)_{W}=0$ for all $\omega \in \Lambda_{0}$ and therefore $\left\|\omega-\omega_{f}\right\|_{W}^{2}=\|\omega\|_{W}^{2}-\left\|\omega_{f}\right\|_{W}^{2}$ for all $\omega \in \Lambda_{f}$. Since $\omega_{f} \in \Lambda_{f}$ and ω_{f} is harmonic on W, there exists a function F in M_{f} which satisfies $d F=\omega_{f}$ and is harmonic on W. Since $F=f$ quasieverywhere on ∂W, the restriction F_{1} of F to W is uniquely determined. Moreover F_{1} assumes continuously f on $\partial W,{ }^{2)}$ i.e., for any $\zeta \in \partial W, \lim _{\substack{z \rightarrow \zeta \\ z \in W}} F_{1}(z)=f(\zeta)$. Therefore if we denote by $L_{W}^{A} f(=L f)$ the function which is F_{1} on W and f on ∂W, then $L f \in H(\bar{W})$ $\cap H D(W)$. We have thus an operator $L_{W}^{A}: C^{\omega}(\partial W) \rightarrow H(\bar{W})$ which satisfies conditions (1), (2) in §2. It furthermore satisfies condition (3) in §2. In fact, let $f, g \in C^{\omega}(\partial W)$ and consider a function $f_{0} \in C_{0}^{\infty}(R) \cap M_{f}$. It follows from $d\left(L f-f_{0}\right) \in \Lambda_{0}$ that $\left(d\left(L f-f_{0}\right)\right.$, $d L g)_{W}=0$. By Green's formula we have $0=\int_{\beta+2 W}\left(L f-f_{0}\right)(d L g)^{*}$ $=\int_{B}(L f)(d L g)^{*}$. Consequently, L_{W}^{A} is a regular operator with respect to W. We shall call L_{W}^{A} the regular operator induced by A for W. The system $\mathcal{L}^{A}=\left\{L_{W}^{A}\right\}_{W \in \mathfrak{M}}$ has the following property:

Proposition 5 If $W_{1}, W_{2} \in \mathfrak{W}$ such that $W_{1} \supset W_{2}$, then for any $f \in C^{\omega}\left(\partial W_{1}\right), L_{W_{2}}^{A}\left(L_{W_{1}}^{A} f\right)=L_{W_{1}}^{A} f$ on W_{2}.

Proof We write simply $L_{W_{1}}^{A}=L_{1}$ and $L_{W_{2}}^{A}=L_{2}$. Consider the function g on W_{1} which is $L_{2}\left(L_{1} f\right)$ on W_{2} and is $L_{1} f$ on $\bar{W}_{1}-W_{2}$. Then $d g \in \Lambda_{f}\left(W_{1}\right)$, and hence $\|d g\|_{W_{1}}^{2} \geqq\left\|d L_{1} f\right\|_{W_{1}}^{2}$ or $\left\|d L_{2}\left(L_{1} f\right)\right\|_{W_{2}}^{2}$ $\geqq\left\|d L_{1} f\right\|_{W_{2}}$. It follows from $d L_{1} f \in \Lambda_{L_{1} f}\left(W_{2}\right)$ that $L_{1} f=L_{2}\left(L_{1} f\right)$ on W_{2}.

Definition For each $W \in \mathfrak{W}$ suppose a regular operator L_{W} with respect to W is given. Then the system $\mathcal{L}=\left\{L_{W}\right\}_{W \in \Re M}$ is said to be consistent if, for any $W_{1}, W_{2} \in \mathfrak{M}$ such that $W_{1} \supset W_{2}, L_{W_{1}} f$

[^1]$=L_{W_{2}}\left(L_{W_{1}} f\right)$ on W_{2} for any $f \in C^{\omega}\left(\partial W_{1}\right)$.
Proposition 5 shows that the system \mathcal{L}^{A} induced by A is consistent.

Definition Suppose a consistent system $\mathcal{L}=\left\{L_{W}\right\}_{W \in \mathfrak{M}}$ is given. Let u be a harmonic function defined near the ideal boundary β. Precisely speaking, there is a compact subset K of R such that u is defined and is harmonic on $R-K$. Then we say that u has \mathcal{L}-behavior on β, if $u=L_{W} u$ on W for any $W \in \mathfrak{F}$ such that $\bar{W} \subset R-K$.

We note that u has \mathcal{L}-behavior on β, if $u=L_{W} u$ for some $W \in \mathfrak{B}$ such that $\bar{W} \subset R-K$. In fact, let W_{1} be any set in \mathfrak{F} such that $\bar{W}_{1} \subset R-K$. Choose $W_{2} \in \mathfrak{W}$ sach that $W \cap W_{1} \supset W_{2}$. Then the consistency of \mathcal{L} implies that, on $W_{2}, u=L_{W} u=L_{W_{2}}\left(L_{W} u\right)=L_{W_{2}} u$ and $L_{W_{1}} u=L_{W_{2}}\left(L_{W_{1}} u\right)$. By making use of condition (3) in $§ 2$ we have $\left\|d\left(u-L_{W_{1}} u\right)\right\|_{W_{1}}^{2}=\int_{\beta+2 W_{1}}\left(u-L_{W_{1}} u\right)\left(d\left(u-L_{W_{1}} u\right)\right)^{*}=\int_{\beta} L_{W_{2}}\left(u-L_{W_{1}} u\right)\left(d L_{W_{2}}\right.$ $\left.\left(u-L_{W_{1}} u\right)\right)^{*}=0$. It follows that $u=L_{W_{1}} u$ on W_{1}.

§4. Canonical and positive operators

We shall give a necessary and sufficient condition in order that the regular operator L_{W}^{A} induced by A should be canonical or positive. Let $u \in H D$ and write $u \bigvee 0=\inf \{v \in H P ; v \geqq \max (u, 0)$ on $R\}$. It is well-known that $u \bigvee 0 \in H D,\|d(u \vee 0)\|_{R} \leqq\|d u\|_{R}$ and $u \vee 0$ is the harmonic part of the Royden decomposition of $\max (u, 0)$. Moreover, let $\left\{\Omega_{n}\right\}$ be an exhaustion of R such that Ω_{n} is a relatively compact and open subset in R and $\partial \Omega_{n}$ consists of a finite number of analytic curves. Then $\left\{H_{\max (u, 0)}^{g_{n}}\right\}$ converges locally uniformly on R to $u \bigvee 0$ and $\lim _{n \rightarrow \infty}\left\|d H_{\max (u, 0)}^{Q_{n}}-d(u \bigvee 0)\right\|_{2_{n}}=0$ (see [4], p. 61). We say that a subspace A of $H D$ forms a vector lattice, if $u \in A$ implies $u \bigvee 0 \in A$ (see [4], p. 16).

Theorem 1 If a subspace A contains 1, then L_{W}^{A} is canonical for any $W \in \mathfrak{W}$. Conversely if L_{W}^{A} is canonical for some $W \in \mathfrak{W}$, then $A \ni 1$. If a subspace A forms a vector lattice, then L_{W}^{A} is
positive for any $W \in \mathfrak{F}^{33}$. If a subspace A does not form a vector lattice, then there exists $W_{0} \in \mathfrak{F}$ such that L_{W}^{A} is not positive for any $W \in \mathfrak{B}$ which is contained in W_{0}.

Proof If A contains 1, then the construction of L_{W}^{A} implies $L_{W}^{A} 1=1$ on W. Conversely, for some $W \in \mathfrak{W}$ suppose that $L_{W}^{A} 1=1$ on W. Then we find $u_{1} \in A, f_{0} \in D_{0}$ such that $u_{1}+f_{0}=1$ on W. It follows from Proposition 2 that $u_{1}=1$ on R, proving $A \ni 1$.

Suppose that A forms a vector lattice. Let $W \in \mathfrak{W}$ and let $f \in C^{\omega}(\partial W)$ such that $f \geqq 0$. We can choose $u_{f} \in A$ and $f_{0} \in D_{0}$ such that $L_{W}^{A} f=u_{f}+f_{0}$ on W. Consider the function g_{0} which is equal to $H_{f-\left(u_{f} \vee 0\right)}^{W}$ on W and $H_{f-\left(u_{f}, V\right)}^{R-W}$ on $R-W$. Here $H_{f-\left(u_{f} \vee 0\right)}^{W}$ denotes the Dirichlet solution on W with the boundary values $f-(u \bigvee 0)$ on ∂W and 0 on the ideal boundary β of R. Then $g_{0} \in D_{0}$. Hence by our assumption we have $u_{f} \bigvee 0+g_{0} \in M_{f}^{A}(W)$. On the other hand, the function $u_{f} \backslash 0+g_{0}$ on W is equal to $\left(u_{f}+f_{0}\right) \cup 0=\inf \left\{v \in H P(W) ; v \geqq \max \left(0, u_{f}+f_{0}\right)\right.$ on $\left.W\right\}$. In fact, let $\left\{\Omega_{n}\right\}$ be an exhaustion of R. Then, because of the fact that $f \geqq 0$ on ∂W, we can prove that both $u_{f} \bigvee 0+g_{0}$ and $\left(u_{f}+f_{0}\right) \cup 0$ are equal to the limit of the Dirichlet solutions in $W \cap \Omega_{n}$ for the boundary function equal to f on ∂W and to $\max \left(u_{f}, 0\right)$ on $\partial \Omega_{n}$ (cf. [8]). It follows from $\left\|d\left(u_{f}+f_{0}\right)\right\|_{W} \geqq\left\|d\left(\left(u_{f}+f_{0}\right) \cup 0\right)\right\|_{w}$ that $\left\|d\left(u_{f} \bigvee 0+g_{0}\right)\right\|_{W} \leq\left\|d\left(u_{f}+f_{0}\right)\right\|_{W}=\left\|d L_{W}^{A} f\right\|_{W}$. By minimum property of $L_{W}^{A} f$ we infer that $L_{W}^{A} f=u_{f} \bigvee 0+g_{0}$, or $L_{W}^{A} f=\left(u_{f}+f_{0}\right) \cup 0$ on W. Hence $L_{W}^{A} f \geqq 0$ on W, proving that L_{W}^{A} is positive for any $W \in \mathfrak{B}$ under the hypothesis that A forms a vector lattice.

If the last assertion were not true, there would exist a sequence $\left\{W_{n}\right\}$ in \mathfrak{W} such that $W_{n} \supset \bar{W}_{n+1}, \bigcap_{n=1}^{\infty} W_{n}=\phi$ and $L_{W_{n}}^{A}$ is positive. If we write $\Omega_{n}=R-\bar{W}_{n}$, then $\left\{\Omega_{n}\right\}$ is an exhaustion of R such that $\bar{\Omega}_{n}$ is compact and $\partial \Omega_{n}=-\partial W_{n}$. Let u be any function of A and let $u^{+}=\max (u, 0)$ on R. For the sake of convenience we write

[^2]$L_{W_{n}}^{A}=L_{n}$. First we shall show $\|d u\|_{W_{n}} \geqq\left\|d L_{n} u^{+}\right\|_{W_{n}}$ for all n. Since $L_{n} u^{+}$is non-negative on \bar{W} and vanishes on $\partial W_{n} \cap\{u<0\}$, we have $\left(d L_{n} u^{+}\right)^{*}=\left(\partial L_{n} u^{+} / \partial n\right) d s \leqq 0$ on $\partial W_{n} \cap\{u<0\}$ where $\partial / \partial n$ denotes differentiation in the direction of the exterior normal with respect to W_{n}. It follows from condition (3) in §2 that
\[

$$
\begin{aligned}
& \left(d L_{n} u^{+}, d L_{n} u\right)_{W_{n}}=\int_{\partial W_{n}} u\left(d L_{n} u^{+}\right)^{*}=\int_{W_{n} \cap\{u \geq 0\}} u\left(d L_{n} u^{+}\right)^{*}+\int_{\partial W_{n} \cap\{u<0\}} u\left(d L_{n} u^{+}\right)^{*} \\
& \quad \geqq \int_{\partial W_{n} \cap\{u \geq 0\}} u\left(d L_{n} u^{+}\right)^{*}=\int_{\partial W_{n}} u^{+}\left(d L_{n} u^{+}\right)^{*}=\left\|d L_{n} u^{+}\right\|_{W_{n}}^{2} .
\end{aligned}
$$
\]

By making use of Schwarz's inequality we have $\left\|d L_{n} u^{+}\right\|_{W_{n}}$ $\left\|d L_{n} u\right\|_{W_{n}} \geqq\left|\left(d L_{n} u^{+}, d L_{n} u\right)_{W_{n}}\right| \geqq\left\|d L_{n} u^{+}\right\|_{W_{n}}^{2}$, or $\left\|d L_{n} u\right\|_{W_{n}} \geqq\left\|d L_{n} u^{+}\right\|_{W_{n}}$. Since $u \in M_{u}^{A}\left(W_{n}\right)$, the definition of $L_{n} u$ implies $\|d u\|_{W_{n}} \geqq\left\|d L_{n} u\right\|_{W_{n}}$. Hence we see that $\|d u\|_{W_{n}} \geqq\left\|d L_{n} u^{+}\right\|_{W_{n}}$ for all n. Next we find $u_{n} \in A$ and $f_{0 n} \in D_{0}$ such that $L_{n} u^{+}=u_{n}+f_{0 n}$ on W_{n} and $u_{n}+f_{0 n}=H_{u^{+}}^{\Omega_{n}}$ on $\bar{\Omega}_{n}$ (see the proof of Lemma 1). For $m>n$, with the help of triangle inequality, we obtain

$$
\begin{aligned}
& \left\|d\left(u_{m}+f_{0 m}\right)-d\left(u_{n}+f_{0 n}\right)\right\|_{R}^{2} \\
& =\left\|d H_{u^{+}}^{Q_{m}}-d H_{u^{+}}^{\Omega_{n}}\right\|_{\Omega_{n}}^{2}+\left\|d H_{u^{-}}^{\Omega_{m}}-d L_{n} u^{+}\right\|_{\Omega_{m}-\Omega_{n}}^{2}+\left\|d L_{m} u^{+}-d L_{n} u^{+}\right\|_{W_{m}}^{2} \\
& \leqq\left\|d H_{u^{\prime}}^{\Omega_{m}}-d H_{u^{\prime}}^{\Omega_{n}}\right\|_{\Omega_{n}}^{2}+\left(\left\|d H_{u+}^{\varsigma_{m}}\right\|_{\Omega_{m}-\Omega_{n}}+\left\|d L_{n} u^{+}\right\|_{\Omega_{m}-\Omega_{n}}\right)^{2} \\
& +\left(\left\|d L_{m} u^{+}\right\|_{W_{m}}+\left\|d L_{n} u^{+}\right\|_{W_{m}}\right)^{2} \\
& \leq\left\|d H_{u_{t}}^{\Omega_{m}}-d H_{u^{+}}^{\Omega_{n}}\right\|_{\Omega_{n}}^{2}+\left(\left\|d H_{u^{\prime}}^{Q_{m}}\right\|_{\Omega_{m}-\Omega_{n}}+\|d u\|_{W_{n}}\right)^{2}+4\|d u\|_{W_{n}}^{2} .
\end{aligned}
$$

On the other hand, since $\left\{H_{u^{*}}^{Q_{n}}\right\}$ converges locally uniformly on R to $u \bigvee 0, \lim _{n \rightarrow \infty}\left\|d H_{u^{+}}^{Q_{n}}-d(u \bigvee 0)\right\|_{\Omega_{n}}=0$ and $u_{n}+f_{0 n}=H_{u^{+}}^{Q_{n}}$ on Ω_{n}, it follows that $\lim _{n \rightarrow \infty}\left\|d(u \vee 0)-d\left(u_{n}+f_{0 n}\right)\right\|_{R}=0$. Hence $\lim _{n \rightarrow \infty}\left\|d(u \vee 0)-d u_{n}\right\|_{R}=\lim _{n \rightarrow \infty}\left\|d f_{\text {on }^{\prime}}\right\|_{R}=0$, because $d H D \perp d D_{0}$. It follows from Proposition 4 that there exists a subsequence $\left\{f_{0 n_{k}}\right\}$ in D_{0} which converges to zero quasi-everywhere on R. This, together with $\lim _{k \rightarrow \infty}\left(u_{n_{k}}+f_{0 n_{k}}\right)(z)=(u \vee 0)(z)$ on R, implies that $\left\{u_{n_{k}}\right\}$ converges to $u \bigvee 0$ quasi-everywhere on R. Since $\lim _{k \rightarrow \infty}\left\|d(u \bigvee 0)-d u_{n_{k}}\right\|_{R}$ $=0$, we have by Proposition $3 \lim _{k \rightarrow \infty} \mid\left\|u \bigvee 0-u_{n_{k}}\right\|_{R}=0$. Hence $u \bigvee 0$ $\in A$. In other words, the subspace A must form a vector lattice,
which is a contradiction to our hypothesis. The theorem is completely proved.

§5. Lemmas

Let $\bar{\Omega}$ be a compact bordered Riemann surface with contours $\beta(\Omega): \bar{\Omega}=\Omega \cup \beta(\Omega)$. We orient $\beta(\Omega)$ positively with respect to Ω, and let $\beta(\Omega)$ consist of q contours $\beta_{1}, \cdots, \beta_{q}$. Consider $\omega \in \Gamma_{c}^{1}(S)$ where S is an open set (with respect to $\bar{\Omega}$) which contains q closed ring domains $\left\{S_{i}\right\}_{i=1}^{q}$ such that $\partial S_{i} \supset \beta_{i}$ and $\bar{S}_{i} \cap \bar{S}_{j}=\phi$ for $i \neq j$. We denote by α_{i} the other contour of S_{i} and orient it negatively with respect to $S_{i}: \partial S_{i}=\beta_{i}-\alpha_{i}$. Using this notation we have the following elementary lemma:

Lemma 2 There exists an $\widehat{\omega} \in \Gamma_{c}^{1}(\Omega)$ such that $\widehat{\omega}=\omega$ on $\bigcup_{i=1}^{Q} S_{i}$ if and only if $\int_{\beta(\Omega)} \omega=0$.

Proof For the proof it is essential that Ω is connected. The "only if" part is clear from the closedness of $\hat{\omega}$. To prove the "if" part, suppose that $\int_{B(\Omega)} \omega=0$. We write $a_{i}=\int_{\beta_{i}} \widehat{\omega}$. Then $\sum_{i=1}^{n} a_{i}=0$. We fix a closed disk $\bar{\Delta}$ in $\Omega-\bar{S}$, and orient its contour $\delta=\partial \Delta$ positively with respect to Δ. For each i, we can easily construct a closed of class C^{1} differential ω_{i} on $\bar{\Omega}-\Delta$ such that $\int_{\beta_{i}} \omega_{i}=\int_{\delta} \omega_{i}=1$ and $\int_{\beta_{j}} \omega_{i}=0$ for any $j \neq i$. If we consider the closed differential $\sigma=\sum_{i=1}^{q} a_{i} \omega_{i}$ on $\bar{\Omega}-\Delta$, then $\int_{\delta} \delta=\sum_{i=1}^{q} a_{i} \int_{\delta} \omega_{i}=\sum_{i=1}^{q} a_{i}=0$. Hence there exists a function g of class C^{2} on $\bar{\Delta}_{1}-\Delta$ such that $\sigma=d g$ on $\overline{\Delta_{1}}-\Delta$, where Δ_{1} is an open disk containing $\bar{\Delta}$. We are thus able to extend g to $\overline{\Delta_{1}}$ being kept of class C^{2}. If we set $\widehat{\sigma}=d g$ on $\overline{\Delta_{1}}$ and σ on $\Omega-\Delta$, then $\widehat{\sigma} \in \Gamma_{c}^{1}(\bar{\Omega})$ and $\int_{\beta_{i}} \widehat{\sigma}=a_{i}$ for each i. Because of the fact that $\int_{\beta_{i}}(\omega-\widehat{\sigma})=0$, we find a function f_{i} of class C^{2} on S_{i} such that $d f_{i}$
$=\omega-\hat{\sigma}$ on S_{i}. Obviously, there exists a function f on $\bar{\Omega}$ of class C^{2} such that $f=f_{i}$ on each S_{i}. If we set $\widehat{\omega}=d f+\widehat{\sigma}$ on $\bar{\Omega}$, then $\widehat{\omega}$ is one of the required differentials.

We return to a hyperbolic Riemann surface R. Let A be a linear subset of $H D$. Then we have

Lemma 3 If A is closed in $H D$, then $d A$ is closed in $\Gamma_{h e}$. Conversely, suppose that $d A$ is closed in $\Gamma_{n c}$. Then, if either $A \ni 1$ or $\bar{A} \nexists 1$, then A is closed in HD. ${ }^{4)}$

Proof It is clear from Proposition 3 that, if $A \ni 1$, then A is closed if and only if $d A$ is closed. Suppose that A is closed and $A \nexists 1$. First we shall show that, if a is an arbitrarily fixed point in R, then there exists a positive number $\lambda_{a}^{A}=\lambda_{a}$ such that $|u(a)| \leqq \lambda_{a}\|d u\|_{R}$ for any $u \in A$. If such a λ_{a} did not exist, then we find a sequence $\left\{u_{n}\right\}$ in A such that $u_{n}(a)=1$ and $\lim _{n \rightarrow \infty}\left\|d u_{n}\right\|_{R}=0$. It follows from Proposition 3 that $\lim _{n \rightarrow \infty}\left\|u_{n}-1\right\| \|_{R}=0$, and hence $A \ni 1$. This is a contradiction. Secondly, let $u_{n} \in A$ and $\left\{d u_{n}\right\}$ form a Cauchy sequence. Then the above inequality implies that $\lim _{m, n \rightarrow \infty}\left|\left\|u_{n}-u_{m} \mid\right\|_{R}=\lim _{m, n \rightarrow \infty}\left(\left|u_{n}\left(a_{0}\right)-u_{m}\left(a_{0}\right)\right|+\left\|d u_{n}-d u_{m}\right\|_{R}\right) \leq \lim _{m, n \rightarrow \infty}\right.$
4) There exists a linear non-closed subset A such that $d A$ is closed. In fact, let R be a Riemann surface such that the dimension of $\Gamma_{\text {he }}$ is infinite. First, take a sequence $\left\{u_{n}\right\}$ in HD which satisfies $u_{n}\left(a_{0}\right)=0$ for all n and $\left(d u_{n} . d u_{m}\right)_{R}=0$ if $m \neq n$ and $=1$ if $m=n$. Consider the space $l^{2}=\left\{\xi\left(=\left\{\xi_{i}\right\}\right) ; \xi_{i}\right.$ is real and $\left.\sum_{i=1}^{\infty} \xi_{i}^{2}<\infty\right\}$ and write $\|\xi\|_{l^{2}}=\left(\Sigma \xi_{i}^{2}\right)^{1 / 2}$. Then $\left\{\Sigma \xi_{i} d u_{i}: \xi=\left\{\xi_{i}\right\} \in l^{2}\right\}$ is a closed subspace in $\Gamma_{h e}$ and Proposition 3 guarantees that, for any $\xi=\left\{\xi_{i}\right\} \in l^{2}, \Sigma \xi_{i} u_{i}(z)$ certainly is a harmonic function on R. Next, consider a non-continuous linear functional f on l^{2} and set $A=\left\{f(\xi)+\sum \xi_{i} u_{i}(z): \xi \in l^{2}\right\}$ ($\subset H D$). Then it is clear that A is linear and $d A$ is closed. If we suppose $A \ni 1$, then there exists $\xi \neq 0$ in l^{2} such that $1=f(\xi)+\Sigma \xi_{i} u_{i}(z)$ on R. Considering Dirichlet integrals, we have $0=\left\|d\left(\Sigma \xi_{i} u_{i}\right)\right\|_{R}^{2}=\|\xi\|_{\iota_{2}}^{2}$, or $\xi=0$, which is a contradiction. Hence $A \neq 1$. On the other hand, since f is not continuous at 0 , there exists a sequence $\left\{\xi^{(n)}\right\}$ in l^{2} such that $\lim _{n \rightarrow \infty}\left\|\xi^{(n)}\right\|_{l^{2}}=0$ and $\lim _{n \rightarrow \infty} f\left(\xi^{(n)}\right)=1$. Then we have $\lim _{n \rightarrow \infty}\left\|f\left(\xi^{(n)}\right)+\Sigma \xi_{i}^{(n)} u_{i}(z)-1\right\|\| \|_{n=1} \lim _{n \rightarrow \infty}\left\|\mid \xi^{(n)}\right\|_{l^{2}}=0$. Hence closure of A in $H D$ contains 1 . Consequently, A is not closed.
$\left(\lambda_{a_{0}}+1\right)\left\|d u_{n}-d u_{m}\right\|_{R}=0$. On account of the closedness of A, we find u in A such that $\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\| \|_{R}=0$, and hence $\lim _{n \rightarrow \infty}\left\|d u_{n}-d u\right\|_{R}$ $=0$. Thus $d A$ is closed in $\Gamma_{h c}$.

Finally suppose that $d A$ is closed and $\bar{A} \nexists 1$. If we denote by C the family of constant functions, then $d(A+C)(=d A)$ is closed and $A+C \ni 1$. The fact mentioned above implies $A+C$ is closed and hence $A+C \supset \bar{A}$. We have thus $d A=d(A+C) \supset d \bar{A} \supset d A$, or $d A=d \bar{A}$. It follows from $\bar{A} \neq 1$ that $A=\bar{A}$, i.e., A is closed.

Corollary 1 Let A be a subspace of $H D$ which does not contain 1 and write $\left\langle u_{1}, u_{2}\right\rangle=\left(d u_{1}, d u_{2}\right)_{R}$ for any $u_{1}, u_{2} \in A$. Then A becomes a Hilbert space with respect to the inner product \langle,$\rangle . Moreover the linear functional T_{a}: u \rightarrow u(a)$ is continuous.

Corollary 2 Suppose that A and B are subspaces of $H D$ such that $d A$ is orthogonal to $d B$. Then $A+B$ is closed.

Proof Since $d A$ is othogonal to $d B, d(A+B)$ is closed (see for example [1], $V, 7 G)$. First suppose that A or B contains 1. Then the above lemma implies that $A+B$ is closed. Next suppose that neither A nor B contains 1 . Then $\overline{A+B}$ does not contain 1. For, if $\overline{A+B}$ contained 1 , then there would exist $u_{n} \in A$ and $v_{n} \in B$ such that $\lim _{n \rightarrow \infty} \mid\left\|u_{n}+v_{n}-1\right\| \|_{R}=0$. We have thus $\lim _{n \rightarrow \infty}\left(u_{n}\left(a_{0}\right)+v_{n}\left(a_{0}\right)\right)$ $=1$ and $0=\lim _{n \rightarrow \infty}\left\|d u_{n}+d v_{n}\right\|_{R}^{2}=\lim _{n \rightarrow \infty}\left(\left\|d u_{n}\right\|_{R}^{2}+\left\|d v_{n}\right\|_{R}^{2}\right)$, because $d A \perp d B$. Since $A \nexists 1$ and $B \nexists 1$, it follows from $\lambda_{a_{0}}^{A}\left\|d u_{n}\right\|_{R} \geqq\left|u_{n}\left(a_{0}\right)\right|$, $\lambda_{a_{0}}^{B}\|d v\|_{R} \geqq\left|v_{n}\left(a_{0}\right)\right|$ that $\lim _{u \rightarrow \infty} u_{n}\left(a_{0}\right)=\lim _{n \rightarrow \infty} v_{n}\left(a_{0}\right)=0$, which contradicts $\lim _{n \rightarrow \infty}\left(u_{n}\left(a_{0}\right)+u_{n}\left(a_{0}\right)\right)=1$. Consequently $\overline{A+B} \nexists 1$. We see from the above lemma that $A+B$ is closed in $H D$.

§6. A characterization of $\boldsymbol{L}_{W}^{A} \boldsymbol{f}$

Proposition 6 Let $W \in \mathfrak{F}$. Let $f_{0} \in C^{1}(R) \cap D_{0}$ and ω $\in \Gamma_{c}^{1}(W)$. Then $\int_{\beta} f_{0} \omega=0$.

Proof Consider a function F in $C^{1}(R)$ which is 1 outside of a compact set in R and is 0 on a (relatively compact) open set Ω which contains $R-W$ and whose boundary consists of a finite number of closed analytic curves. Then $F f_{0} \in D_{0} \cap C^{1}(R)$ and $F f_{0}=0$ on $\partial \Omega$. Therefore the restriction of $F f_{0}$ to $R-\Omega$ is a Dirichlet potential on $R-\bar{\Omega}$ (see for example [13], Lemma 1). It follows from $d D_{0}(R-\Omega) \perp \Gamma_{c}^{*}(R-\Omega)$ that $\left(d\left(F f_{0}\right), \omega^{*}\right)_{R-\Omega}=0$. By making use of Green's formula we have thus $0=\int_{\beta-\partial \Omega}\left(F f_{0}\right) \omega$ $=\int_{\beta}\left(F f_{0}\right) \omega=\int_{\beta} f_{0} \omega . \quad$ q.e.d.

Let A be a subspace of $H D$. Since $d A$ is a subspace of Γ_{b} (Lemma 3), we have the following decompsition: $\Gamma_{h}=d A+(d A)^{\perp}$. For each $W \in \mathfrak{B}$, we consider the following subset of $\Gamma_{c}^{1}(W)$:

$$
\Sigma_{A}(W)=\left\{\omega \in \Gamma_{c}^{1}(\bar{W}) ; \int_{\beta} u \omega=0 \text { for any } u \in A\right\}
$$

Since $(d A)^{\perp}+\Gamma_{c 0}^{*}$ is orthogonal to $d A$ (Proposition 1), $\omega^{*} \in(d A)^{\perp}$ $+\Gamma_{e 0}^{*} \cap \Gamma^{1}$ implies that $0=\left(d u, \omega^{*}\right)_{R}=-\int_{\beta} u \omega$ for any $u \in A$, and hence $\omega \in \Sigma_{A}(W)$. That is, $\left\{\omega \mid W ; \omega \in(d A)^{\perp *}+\Gamma_{e 0} \cap \Gamma^{1}\right\} \subset \Sigma_{A}(W)$, where $\omega \mid W$ denotes the restriction of ω to W. If A contains 1 , the opposite inclusion relation is valid. In fact, let ω be any differential in $\Sigma_{A}(W)$. Since $A \ni 1$, we have $\int_{\partial W} \omega=-\int_{B} 1 \omega=0$. It follows from Lemma 2 that there exists $\widehat{\omega} \in \Gamma_{c}^{1}(R)$ such that $\widehat{\omega}=\omega$ on \bar{W}. For any $u \in A$, we obtain $\left(d u, \widehat{\omega^{*}}\right)_{R}=-\int_{\beta} u \hat{\omega}=-\int_{\beta} u \omega=0$. Since $\Gamma_{c}^{*}=\Gamma_{h}+\Gamma_{c 0}^{*}=(d A)+(d A)^{\perp}+\Gamma_{c 0}^{*}$, it follows that $\widehat{\omega^{*} \in\left((d A)^{\perp}\right) ~}$ $\left.+\Gamma_{c 0}^{*}\right) \cap \Gamma^{1}$, and hence $\widehat{\omega} \in(d A)^{\perp *}+\Gamma_{c 0} \cap \Gamma^{1}$. We state this fact as

Remark If $A \ni 1$, then $\Sigma_{A}(W)=\left\{\omega \mid W ; \omega \in(d A)^{\perp *}+\Gamma_{e 0} \cap \Gamma^{1}\right\}$.
The following characterization of $L_{W}^{A} f$ will be used frequently.
Theorem $2^{5)}$ Let A be a subspace of $H D$. Let $W \in \mathfrak{F}$ and

[^3]$f \in C^{\omega}(\partial W)$. The function $u=L_{W}^{A} f$ satisfies the following conditions:
(a) $u=f$ on ∂W,
(b) $u=v+f_{0}$ on W for some $v \in A$ and $f_{0} \in D_{0}$,
(c) $(d u)^{*} \in \Sigma_{A}(W)$.

Conversely, a function u with properties (a), (b), (c) must be equal to $L_{W}^{A} f$.

Proof In this proof we write simply $L_{W}^{A}=L$. From the construction of $L f$ we see that $u=L f$ satisfies (a), (b). It further satisfies (c). In fact, it is clear that $(d L f)^{*} \in \Gamma_{c}^{1}(\bar{W})$. Let w be any function in A. Take $g_{0} \in C_{0}^{\infty}(R)$ such that $g_{0}=w$ on ∂W. Then $w-g_{0} \in M_{0}^{A}$. Since $d L f$ is orthogonal to Λ_{0}^{A}, we have thus $0=\left(d\left(w-g_{0}\right), d L f\right)_{W}=\int_{B+\partial W}\left(w-g_{0}\right)(d L f)^{*}=\int_{B} w(d L f)^{*}$. Hence $(d L f)^{*} \in \Sigma_{A}(W)$. In order to prove the converse, suppose that u satisfies (a), (b), (c). Conditions (a), (b) imply $u\left(=v+f_{0}\right) \in \mathfrak{B}_{j}^{A}$. Hence it is enough to show that $\|d L f\|_{W} \geqq\|d u\|_{W}$. There exists $v_{1} \in A, f_{01} \in D_{0} \cap C^{1}(R)$ such that $L_{W}^{A} f=v_{1}+f_{01}$ on W. By condition (c) we have $\int_{B} v(d u)^{*}=\int_{B} v_{1}(d u)^{*}=0$. This, with Proposition 6, implies that $\int_{\beta} u(d u)^{*}=\int_{\beta}(L f)(d u)^{*}=0$. Hence $(d L f, d u)_{w}=$ $\int_{B+\partial W}(L f)(d u)^{*}=\int_{\partial W} f(d u)^{*}=\int_{B+\partial W} u(d u)^{*}=\|d u\|_{W}^{2}$. We conclude from Schwarz's inequality that $\|d L f\|_{W} \geqq\|d u\|_{W}$.

Corollary Suppose that A and B are subspaces of $H D$ such that $d A \perp d B$. Let $W \in \mathfrak{B}$ and $f \in C^{\omega}(\partial W)$. Then there exist $f_{A} \in C^{\omega}(\partial W)$ and $u_{B} \in B$ such that $L_{W}^{A+B} f=L_{W}^{A} f_{A}+u_{B}$ on W.

Proof Corollary 2 to Lemma 3 guarantees that $A+B$ induces the regular operator L_{W}^{A+B}. We find $u_{A} \in A, u_{B} \in B$ and $f_{0} \in D_{0}$ such that $L_{W}^{A+B} f=u_{A}+u_{B}+f_{0}$ on W. Let u be any function in A. Because of $d A \perp d B$, we have $0=\left(d u, d u_{B}\right)_{R}=\int_{B} u\left(d u_{B}\right)^{*}$. This, together with
(c) in Theorem 2, implies $0=\int_{B} u\left(d\left(u_{A}+f_{0}\right)\right)^{*}$, that is, $\left(d\left(u_{A}+f_{0}\right)\right)^{*}$ $\in \Sigma_{A}(W)$. It follows from Theorem 2 that $L_{W}^{A}\left(u_{A}+f_{0}\right)=u_{A}+f_{0}$ on W. If we set $f_{A}=u_{A}+f_{0}$ on ∂W, then $f_{A} \in C^{\omega}(\partial W)$ and $L_{W}^{A+B} f=$ $L_{W}^{A} f_{A}+u_{B}$.

Let L be regular operator with respect to $W \in \mathfrak{W}$. Now we are going to find a subspace A of $H D$ which induces L for W, i.e., $L_{W}^{A}=L$. Let $f \in C^{\omega}(\partial W)$. We extend $L f$ onto $R-W$ to be a Dirichlet function F on R and denote by u_{f}^{L} the harmonic part of F in the Royden decomposition, which is uniquely determined by $L f$ on account of Proposition 2. Consider the following subfamily of $H D$:

$$
\mathfrak{H}(L)=\left\{u_{f}^{L} ; f \in C^{\omega}(\partial W)\right\}
$$

and denote by A_{L} the closure of $\mathfrak{M}(L)$ in $H D$. With these preparations we prove

Lamma 4 Let L be a regular operator with respect to $W \in \mathfrak{B}$. Then the subspace A_{L} induces L for W.

Proof Let $f \in C^{\omega}(\partial W)$. We shall prove $L_{A_{L}}^{W} f=L f$ by applying Theorem 2 to $A=A_{L}$. It is clear that $L f$ satisfies (a), (b). Let $u_{s}^{L}(=w)$ be any function in $\mathfrak{N}(L)$. Then we find from the definition of w a Dirichlet potential g_{0} such that $w+g_{0}=L g$ on W. Condition (3^{\prime}) in $\S 2$, together with Proposition 6, implies that $\int_{\beta} w(d L f)^{*}=\int_{\beta}(L g)(d L f)^{*}-\int_{\beta} g_{0}(d L f)^{*}=0$, and hence that $(d w, d L f)_{w}=-\int_{\partial w} w(d L f)^{*}$ for any $w \in \mathfrak{H}(L)$. Next let w be any function in A_{L}. Then there exists a sequence $\left\{w_{n}\right\}$ in $\mathfrak{A}(L)$ such that $\lim _{n \rightarrow \infty}\| \| w_{n}-w \|_{R}=0$. It follows that $\lim _{n \rightarrow \infty}\left\|d w_{n}-d w\right\|_{W} \leqq \lim _{n \rightarrow \infty} \| d w_{n}$ $-d w \|_{R}=0$ and $\left\{w_{n}\right\}$ converges to w uniformly on ∂W. We have thus $(d w, d L f)_{W}=\lim _{n \rightarrow \infty}\left(d w_{n}, d L f\right)_{w}=-\lim _{n \rightarrow \infty} \int_{\partial W_{n}} w_{n}(d L f)^{*}=-\int_{\partial w} w(d L f)^{*}$, and hence $\int_{B} w(d L f)^{*}=0$, proving $(d L f)^{*} \in \Sigma_{A_{L}}(W)$.

§7. Existence theorem for principal functions

Let L be a regular operator with respect to $W \in \mathfrak{W}$. Let s be a harmonic function on \bar{W} except for isolated singularities not accumulating to the boundary ∂W. We investigate the existence and the uniqueness of function p harmonic on R except for the singularities of s which satisfies the following equation:

$$
p-s=L(p-s) \text { on } W
$$

Theorem $3^{6)}$ (I) If L is canonical, the necessary and sufficient condition for the existence of p is that $\int_{\partial w}(d s)^{*}=0$. The function p is uniquely determined $u p$ to an additive constant.
(II) If L is not canonical, then for any s the function p exists and is uniquely determined.

Proof We denote by $\left\{a_{i}\right\}$ the set of singular points of s. The necessity in (I) is immediately proved. To prove the uniqueness in (I) or (II), suppose that both p_{1} and p_{2} satisfy $p-s=L(p-s)$ on W. Then $p_{1}-p_{2} \in H D(R)$ and $p_{1}-p_{2}=L\left(p_{1}-p_{2}\right)$ on W. By virtue of uniqueness theorem in $\S 2$, we see that $p_{1}=p_{2}+$ const. if L is canonical, and $p_{1}=p_{2}$ if L is not canonical.

The sufficiency in (I): Suppose a given s satisfies the condition $\int_{\partial W}(d s)^{*}=0$. We extend s on $R-W$ so that we obtain $\widehat{s} \in C^{2}(R-W)$. Lemma 2 , together with $\int_{\partial W}(d s)^{*}=0$ and the fact that $R-W$ is connected, implies that $(d s)^{*}$ is also extendible to a closed differential 6 on $R-W$, that is, $\sigma \in \Gamma_{c}^{1}(R-W)$ and $\sigma=(d s)^{*}$ on $\bar{W}-\left\{a_{i}\right\}$. Then since $\widehat{d s}+\sigma^{*}$ is identically zero on $W-\left\{a_{i}\right\}$, it is square integrable on R. Namely,

[^4]$\widehat{d s}+\sigma^{*} \in \Gamma$. Now we take the subspace $A_{L}=A$ inducing L for W (Lemma 4) and consider the orthogonal decomposition:
$$
\Gamma=d\left(A+D_{0}\right)+\left((d A)^{\perp}+\Gamma_{e 0}^{*}\right) .
$$

We use this to obtain

$$
\widehat{d s}+6^{*}=d F+\omega \text { on } R
$$

where $F \in A+D_{0}$ and $\omega \in(d A)^{\perp}+\Gamma_{c 0}^{*}$. On rewriting the equation in the form

$$
\widehat{d s}-d F=-6^{*}+\omega \text { on } R-\left\{a_{i}\right\}
$$

we find that the differential on the left is exact (and hence closed) and the differential on the right is coclosed on any region which does not contain any a_{i}. Therefore the above differential is harmonic on $R-\left\{a_{i}\right\}$ (Weyl's lemma). In particular, we may assume that F is of class C^{2} on R and ω is of class C^{1} on R. If we set $p=\widehat{s}-F$ on $R-\left\{a_{i}\right\}$, the function p is harmonic on $R-\left\{a_{i}\right\}$. Let us prove $L(p-s)=p-s$ on W. Since $\widehat{s}=s$ on \bar{W}, it is enough to prove $L F=F$ on W. It is clear that F satisfies conditions (a), (b) in Theorem 2 for $f=F$. Since $\sigma=(d s)^{*}$ on W, we have, on $W,(d F)^{*}=\left(\widehat{d s}+\sigma^{*}\right.$ $-\omega)^{*}=(d s)^{*}-6-\omega^{*}=-\omega^{*}$. It follows from $\omega^{*} \in(d A)^{1 *}+\Gamma_{\epsilon 0} \cap \Gamma^{1}$ and the remark in $\S 6$ that $(d F)^{*} \mid W \in \Sigma_{A}(W)$. Consequently Theorem 2 shows $L_{W}^{A} F=F$ on W, or $L F=F$ on W. Hence p is one of the required functions.

The existence in (II): For given L consider the canonical operator L^{\prime} which is defined in the remark in §2. Also for a given s consider the function $s^{\prime}=s-c L 1$ on W where $c=\int_{\partial w}(d s)^{* /}$ $\int_{\partial w}(d L 1)^{*}$. Then we can apply (I) to these L^{\prime} and s^{\prime}, and have a harmonic function p^{\prime} on R such that $p^{\prime}-s^{\prime}=L^{\prime}\left(p^{\prime}-s^{\prime}\right)$ on W. Precisely speaking, $p^{\prime}-(s-L c)=L\left(p^{\prime}-(s-c)-c_{1}\right)+\dot{c}_{1}$ on W where $c_{1}=\int_{\partial w}\left(d L\left(p^{\prime}-s^{\prime}\right)\right)^{*} / \int_{\partial w}(d L 1)^{*}$. If we set $p=p^{\prime}-c_{1}$ on R, then p is harmonic on $R-\left\{a_{i}\right\}$ and $p-s=L(p-s)$ on W.
p will be called the principal function associated with s for L.

§8. Uniqueness for \boldsymbol{A} which induces a given L

Lemma 5 Let A be any subspace of $H D$ and W be any set in \mathfrak{W}. Then $\overline{\mathfrak{H}\left(L_{W}^{A}\right)}=A$.

Proof First we shall show that, for arbitrary two points a and b in $R-\bar{W}$, there exists a function $u_{a, b}^{A}=u_{a, b}$ in $\mathfrak{H}\left(L_{W}^{A}\right)(\subset A)$ such that $\left(d u, d u_{a, b}\right)_{R}=u(a)-u(b)$ for any $u \in A$. Let $\overline{\Delta_{a}}$ (resp. Δ_{b}) be a
 set $W_{1}=W \cup \Delta_{a} \cup \Delta_{b}$. We apply Theorem 3 to $W=W_{1}, L=L_{W_{1}}^{A}$ and $s=\log 1 /|z-a|$ on $\Delta_{a},=-\log 1 /|z-b|$ on Δ_{b} and $=0$ on W. Then $\int_{\partial W_{1}}(d s)^{*}=0$, and hence we can solve the equation $p-s=L(p-s)$ on W_{1}. Thus there exists a harmonic function $G_{a, b}(z ; A)=G^{A}(z)$ $=G(z)$ on $R-\{a, b\}$ such that $G(z)-\log 1 /|z-a|$ and $G(z)+\log$ $1 /|z-b|$ are harmonic on Δ_{a} and Δ_{b} respectively and that $L_{w} G=G$ on $\left.W .{ }^{7}\right)$ Hence we find $v \in \mathfrak{A}\left(L_{W}^{A}\right)$ and $f_{0} \in D_{0}$ such that $G=v+f_{0}$ on W. Now we consider a special case: $A=\{0\}$ and write $G_{a, b}(z ;\{0\})$ $=G^{0}(z)$. Then $G^{0}=0+g_{0}=g_{0}$ on W where g_{0} is a certain Dirichlet potential on R. Set $u_{a, b}=1 / 2 \pi\left(G-G^{0}\right)$. Since $u_{a, b} \in H D(R)$ and $u_{a, b}=1 / 2 \pi\left(\left(\left(v+f_{0}\right)-g_{0}\right)\right.$ on W, it follows from Proposition 2 that $u_{a, b}=(1 / 2 \pi) v$, proving $u_{a, b} \in \mathfrak{H}\left(L_{W}^{A}\right)$. Let u be any function in A. By (c) in Theorem 2 we have $\int_{B} u(d G)^{*}=\int_{\beta} u\left(d L_{W}^{A} G\right)^{*}=0$. According to Proposition 6 we also have $\int_{B} G^{0}(d u)^{*}=\int_{\beta} g_{0}(d u)^{*}=0$. Computing Cauchy's principal values, we have thus $(d u, d G)_{R}=2 \pi(u(a)-u(b))$ and $\left(d u, d G^{0}\right)_{R}=0$. Consequently, $\left(d u, d u_{a, b}\right)_{R}=u(a)-u(b)$, proving the assertion.

Next we shall show $\overline{d\left[\mathscr{H}\left(L_{W}^{A}\right)\right]=d A \text {. We write simply } \overline{\mathfrak{H}\left(L_{W}^{A}\right)}}$

[^5]$=A^{\prime}$. Let u be any function of A such that $d u$ is orthogonal to $d A^{\prime}$. Then since $d u_{a, b} \in d \mathscr{H}\left(L_{W}^{A}\right) \subset d A^{\prime}$ for any $a, b \in R-\bar{W}$, we have $0=\left(d u, d u_{a, b}\right)_{R}=u(a)-u(b)$. Hence u is a constant on a non-empty open set $R-\bar{W}$, or on R. Namely $d u=0$. We have thus $\left(d A^{\prime}\right)^{\perp} \cap(d A)=\{0\}$. On the other hand, $d A \supset d A^{\prime}$, because $A \supset \mathfrak{H}\left(L_{w}^{A}\right)$. Since $d A$ and $d A^{\prime}$ are closed (Lemma 3), it follows that $d A=d A^{\prime}+\left(d A^{\prime}\right)^{\perp} \cap(d A)=d A^{\prime}$. Finally let u be any function in A. Then $d A=d A^{\prime}$ implies that there is a function $v \in A^{\prime}$ such that $d v=d u$, that is, $v=u+c$ where c is a constant. If $A \ni 1$, then L_{W}^{A} is canonical (Theorem 1,) and hence $\mathfrak{Y}\left(L_{W}^{A}\right) \ni 1$. Consequently $A^{\prime} \ni u$. If $A \nexists 1$, then $c=u-v(\in A)$ must be 0 . Hence $A^{\prime} \ni v=u$. Therefore $A=A^{\prime}$.

Remark In the above proof we do not assume $A \ni 1$ or $\nexists 1$. Now suppose that $A \nexists 1$. Fix a point a in R and let $W \in \mathfrak{W}$ such that $\bar{W} \nexists a$. Since L_{W}^{A} is not canonical, we use (II) in Theorem 3, by a similar method to that in the construction of $G_{a, b}(z ; A)$, to obtain a harmonic function $G_{a}(z ; A)=G_{a}(z)$ on $R-\{a\}$ which has the singularity $\log 1 /|z-a|$ at a and has $L_{W}^{A} G_{a}=G_{a}$ on W. The same reasoning as in the above proof implies that $u_{a}^{A}=u_{a}=G_{a}-G^{0}$ $\in \mathfrak{A}\left(L_{W}^{A}\right)$ and, for any $u \in A,\left(d u, d u_{a}\right)_{R}=u(a)$. Using the terminology in Corollary 2 in $\S 5$, we have thus $T_{a} u=\left\langle u, u_{a}\right\rangle$ for any $u \in A$.

Theorem 4 Let L be a regular operator with respect to $W \in \mathfrak{B}$. Then there exists a unique subspace of $H D$ which induces L for W.

Proof The existence was shown in Lemma 4. In order to prove the uniqueness, let A be any subspace such that $L_{w}^{A}=L$. Then, it follows from Lemma 5 that $A=\overline{\mathfrak{V}}\left(L_{W}^{A}\right)=\overline{\mathfrak{Y}(L)}=A_{L}$, which is defined in $\S 6$. Hence A is uniquely determined by L and coincides with A_{L}.

For a given regular operator L with respect to W, we denote in the sequel by $A(L)$ the subspace inducing L for W, i.e., $L_{W}^{A(L)}=L$.

Consider the following subset of $H D$:

$$
A^{L}=\left\{u \in H D ; \int_{\beta} u(d L f)^{*}=0 \text { for all } f \in C^{\omega}(\partial W)\right\}
$$

With these notations we have

Corollary $1 A^{L}=A_{L}=A(L)$.

Proof It is clear that A^{L} is closed in $H D$. Hence it is sufficient to prove that A^{L} induces L for W. For the sake of convenience we write $L_{W}^{A L}=L_{1}$ and $L_{W}^{A}=L_{2}$. Let u be any function of A_{L}. Then we see from $L_{2}=L$ (Lemma 4) and (c) in Theorem 2 that, for any $u \in A_{L}, \int_{\beta} u(d L f)^{*}=\int_{\beta} u\left(d L_{2} f\right)^{*}=0$ for all $f \in C^{\omega}(\partial W)$. Hence $A^{L} \supset A_{L}$. If f is any function in $C^{\omega}(\partial W)$, we have thus $\left\|d L_{1} f\right\|_{W} \leqq\left\|d L_{2} f\right\|_{W}=\|d L f\|_{W}$. On the other hand, we find $u \in A^{L}$ and $f_{0} \in D_{0}$ such that $L_{1} f=u+f_{0}$ on $W . \int_{\beta} u(d L f)^{*}=0$, together with Proposition 6, implies $\int_{\beta}\left(L_{1} f\right)(d L f)^{*}=0$. It follows that $\left(d L_{1} f, d L f\right)_{W}=\int_{\text {aV }} f(d L f)^{*}=\|d L f\|_{W}^{2}$, and hence $\left\|d L_{1} f\right\|_{W} \geqq\|d L f\|_{W}$. Consequently $L_{1} f=L f$ on W.

In $\S 3$ we have seen that a subspace A of $H D$ induces a consistent system $\mathcal{L}^{A}=\left\{L_{W}^{A}\right\}_{W \in 刃}$. Here we shall state the converse as

Corollary 2 Let $\mathcal{L}=\left\{L_{W}\right\}_{w \in \mathfrak{M}}$ be any consistent system. Then there exists a unique subspace A such that $\mathcal{L}^{A}=\mathcal{L}$.

Proof The uniqueness is clear from Theorem 4. Let us prove the existence. For each $W \in \mathfrak{W}$, consider the subspace $A\left(L_{W}\right)$. Let W_{1}, W_{2} be any set in \mathfrak{F} such that $W_{1} \supset W_{2}$. We write simply $L_{W_{1}}=L_{1}$ and $L_{W_{2}}=L_{2}$. Then, since $L_{2}\left(L_{1} f\right)=L_{1} f$ on W_{2} for any $f \in C^{\omega}\left(\partial W_{1}\right)$, we easily obtain $A^{L_{1}} \supset A^{L_{2}} \supset \mathfrak{N}\left(L_{2}\right) \supset \mathfrak{Y}\left(L_{1}\right)$. Because of $\quad A^{L_{1}}=A_{L_{1}}=\overline{\mathfrak{U}\left(L_{1}\right)} \quad$ (Corollary 1), we have $A\left(L_{1}\right)=A^{L_{1}}=A^{L_{2}}$
$=A\left(L_{2}\right)$. It follows that all the $A\left(L_{W}\right)$ coincide and hence we denote it by A. Then, for any $W \in \mathfrak{F}, L_{W}^{A}=L_{W}^{A\left(L_{W}\right)}=L$. That is, $\mathcal{L}^{A}=\mathcal{L}$.

Fix W_{0} in \mathfrak{M}. Consider the following families:
$\{L\}=$ the family of regular operators with respect to W_{0},
$\{A\}=$ the family of subspaces of $H D$,
$\{\mathcal{L}\}=$ the family of consistent systems of regular operators.
On account of Theorem 4 we have an onto and one-to-one mapping $\varphi:\{A\} \rightarrow\{L\}$ such that $\varphi(A)=L_{W_{0}}^{A}$. By Corollary 2 we also obtain an onto and one-to-one mapping $\psi:\{A\} \rightarrow\{\mathcal{L}\}$ such that $\psi(A)$ $=\mathcal{L}^{A}$. Denote by \mathscr{P} the projection: $\{\mathcal{L}\} \rightarrow\{L\}$, i.e., $\mathscr{P}(\mathcal{L})=L_{W_{0}}$ where $\mathcal{L}=\left\{L_{W}\right\}_{w \in \mathbb{M}}$. Then we obtain $\mathcal{P}=\varphi \circ \psi^{-1}$, and hence \mathscr{P} is onto and one to one. Otherwise stated, for a given regular operator L with respect to W_{0} there exists a unique consistent system $\left\{L_{W}\right\}_{W \in \mathfrak{M}}$ such that $L_{W_{0}}=L$. Summarizing the result, we have the following commutative diagram:

Let L be a regular operator with respect to W and let a be an arbitrary point in W. Then we have the following

Proposition 7 There exists a signed measure $\mu_{a}^{L}=\mu_{a}$ which satisfies $\int_{\partial w} f d \mu_{\alpha}=L f(a)$ for all $f \in C^{\omega}(\partial W)$. Hence we can extend the domain of L from $C^{\omega}(\partial W)$ to $C(\partial W)$, where $C(\partial W)$ is the
family of continuous functions on ∂W.

Proof We choose a point b in $R-\bar{W}$ and consider the subspace $A(L)$. In the proof of Lemma 5 we constructed a harmonic function $G_{a, b}(z ; A(L))=G(z)$ on $R-\{a, b\}$ which has positive and negative logarithmic singularities at a and b respectively and has $\mathcal{L}^{A(L)}$-behavior on β (see $\S 3$). If we set $\widetilde{G}_{a}(z ; L, W)$ $=\widetilde{G}(z)=G(z)-L G(z)$ on W, then the function \widetilde{G} is a harmonic function $W-\{a\}$ which has a positive logarithmic singularity at a, assumes continuously 0 on ∂W and $\mathcal{L}^{A(L)}$-behavior on β. Therefore, computing $(d L f, d \widetilde{G})_{W}$ as Cauchy's principal value, we have $L f(a)=-(1 / 2 \pi) \int_{\partial W} f(d \widetilde{G})^{*}$. Hence the required measure μ_{a} exists and $d \mu_{a}=-(1 / 2 \pi)(\partial \widetilde{G} / \partial n) d s$.

§9. Reproducing kernels

Let Γ_{x} be any subspace of $\Gamma_{i k}=\Gamma_{h}(R)$ and γ be a 1 -chain of R. Then there exists a unique element $\omega_{\gamma}^{r}=\omega_{\gamma}$ in $\Gamma_{x} \operatorname{such}$ that $\left(\omega, \omega_{\gamma}\right)_{R}=\int_{\gamma} \omega$ for all $\omega \in \Gamma_{x}$. The differential ω_{γ} is called the reproducing kernel associated with r for Γ_{x} (see [1], [2], [11] or [14]). B. Rodin expressed the kernels for several known subspaces in terms of principal functions for L_{0} and $(P) L_{1}$. But the situation is different for the kernel for Γ_{s} as he could not treat. Here we shall express the kernel for any subspace Γ_{x} such that $\Gamma_{x} \subset \Gamma_{h e}$ or $\Gamma_{x} \supset \Gamma_{h 0}$ in terms of principal functions for regular operators. The proof can be achieved, under our existence theorem, by a method similar to B. Rodin [11]. Since $\Gamma_{s} \supset \Gamma_{h 0}$, this will give us an answer to Rodin's question ([11], p. 989, Remark). We may assume that r is 1 -simplex contained in a parametric disk $\Delta=\{|z|<1\}$ and write $\partial_{\gamma}=a-b$.

The case where $\Gamma_{x} \subset \Gamma_{u e}$: Let $A^{x}=A=\left\{u \in H D ; d u \in \Gamma_{x}\right\}$. Then A is a subspace of $H D$ containing 1 . Thus A induces a consistent
system \mathcal{L}^{A} of canonical operators. By exactly the same reasoning as in the proof of Lemma 5 we have

$$
\omega_{\gamma}=(1 / 2 \pi)\left(d G-d G^{0}\right)
$$

where G (resp. G_{0}) is a harmonic function on $R-\{a, b\}$ which has logarithmic singularities with coefficients $+1,-1$ at a, b respectively and has \mathcal{L}^{A}-(resp. $\mathcal{L}^{(0)}$-) behavior on β.

The case where $\Gamma_{s} \supset \Gamma_{k 0}$: Consider the orthogonal complement Γ_{x}^{\perp} of $\Gamma_{x} . \quad \Gamma_{x} \supset \Gamma_{t, 0}$ implies $\Gamma_{x}^{1 *} \subset \Gamma_{h 0}^{1 *}=\Gamma_{\text {be }}$. If we write B $=\left\{u \in H D ; d u \in \Gamma_{x}^{+*}\right\}$, then B also induces the canonical system \mathcal{L}^{B} $=\left\{L_{W}^{B}\right\}_{W \in \mathfrak{M}}$. We set $s=\arg (z-a) /(z-b)$ on $\Delta-r$ and $=0$ on $W \in \mathfrak{W}$ such that $\bar{W} \cap \bar{\Delta}=\phi$ and $R-\bar{W}$ is a disk. Taking $R-\gamma$ to be a given Riemann surface, we chocse the regular operator L with respect to $W \cup(\Delta-\gamma)$ such that for any $f \in C^{\omega}((\partial W) \cup(\partial \Delta)), L f$ is $L_{W}^{A} f$ on W and is the restriction to $\Delta-\gamma$ of the Dirichlet solution H_{f}^{s}. Applying (I) in Theorem 3, we have a harmonic function p on $R-\gamma$ satisfying $p-s=L(p-s)$ on $W \cup(\Delta-\gamma)$. That is, $p=L_{W}^{B} p$ on W and $p(z)=\arg (z-a) /(z-b)+u(z)$ on $\Delta-\gamma$ where u is a harmonic function on Δ. Since $\Gamma_{x}=(d B)^{\perp *}$, condition (b) in Theorem 2, together with the remark in $\S 6$, implies $0=\int_{\beta}\left(L_{B}^{\omega} p\right) \omega=\int_{\beta} p \omega$ for all $\omega \in \Gamma_{x}$, and hence $\left(\omega,(d p)^{*}\right)_{R}=\left(\omega,(d p)^{*}\right)_{R-\gamma}=\int_{(\gamma)}(\arg (z-a) /$ $(z-b)) \omega=2 \pi \int_{\gamma} \omega$, where $\int_{(\gamma)}$ indicates the integration carried arround γ. Since $G^{0}=g_{0}$ on W for some $g_{0} \in D_{0} \cap C^{1}(R)$, it follows from Proposition 6 that $\left(\omega, d G^{0}\right)_{R}=0$ as a Cauchy's principal value. Hence $\left(\omega, 1 / 2 \pi\left((d p)^{*}+d G^{0}\right)\right)_{R}=\int_{\gamma} \omega$. On the other hand, $(d p)^{*}+d G^{0} \in \Gamma_{x}$. In fact, obviously $(d p)^{*}+d G^{0} \in \Gamma_{h}$. We see from the remark in $\S 6$ and (c) in Theorem 2 that there exists $\omega_{x} \in \Gamma_{x}$ and $\omega_{\epsilon 0}$ $\in \Gamma_{e 0} \cap \Gamma^{1}$ such that $(d p)^{*}=\left(d L_{W}^{\mathrm{B}}\right)^{*}=\omega_{x}+\omega_{e 0}$ on W. We have thus $(d p)^{*}+d G^{0}=\omega_{x}+\omega_{e 0}+d g_{0}$ on W. On rewriting the equation in the form

$$
(d p)^{*}+d G^{0}-\omega_{x}=\omega_{e 0}+d g_{0} \text { on } W
$$

we find that the differential on R on the left belongs to $\Gamma_{h c}$, because
$R-W$ is simply connected. Since the differential on R on the right belongs to $d D_{0}=\Gamma_{e 0}$, it follows from Proposition 2 that $(d p)^{*}+d G^{0}$ $-\omega_{x}=0$ on R, proving $(d p)^{*}+d G^{0} \in \Gamma_{x}$. Hence

$$
\omega_{\gamma}=1 / 2 \pi\left((d p)^{*}+d G^{0}\right),
$$

where $d p$ is a harmonic differential on $R-\{a, b\}$ such that p is single valued on $R-r$, has \mathcal{L}^{B}-behavior on β and has the following form near $r: p=\arg (z-a) /(z-b)+u$ where u is a harmonic function on Δ.

§10. Convergence theorem

Let S be a subset of $H D$. We denote by $\lceil\bar{S}\rfloor$ the smallest subspace of $H D$ containing S.

Theorem 5 (I) Let $\left\{A_{n}\right\}$ be a sequence of subspaces of HD such that $\bigcap_{n=1}^{\infty}\left[\bigcup_{k=n}^{\infty} A_{k}\right]=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} A_{k}\right)$, which we denote by A. Then, for any $W \in \mathfrak{W}$ and $f \in C^{\omega}(\partial W)$, we have $\lim \left\|d L_{W^{n}}^{A_{n}} f-d L_{W}^{A} f\right\|_{W}=0$.
(II) Let $\left\{\Omega_{n}\right\}$ be a sequence of regions in R such that $\Omega_{n+1} \supset \Omega_{n}$ and $\bigcup_{n=1}^{\infty} \Omega_{n}=R$. Suppose that A_{n} (resp. A) is a subspace of $H D\left(\Omega_{n}\right)$ (resp. $H D(R)$) which satisfies the following conditions: (α) For each $u \in A$, there exists $u_{n} \in A_{n}$ such that $\lim _{n \rightarrow \infty} \mid\left\|u_{n}-u\right\|_{\Omega_{n}}=0$. (β) If $\left\{u_{n_{j}}\right\}, u_{n_{j}} \in A_{n_{j}}$ is a sequence such that $\sup \left\|d u_{n_{j}}\right\|_{n_{n_{j}}}<\infty$ and $\left\{u_{n_{j}}\right\}$ converges to u locally uniformly on R, then u belongs to A. Then, for any $W \in \mathfrak{W}$ and f $\in C^{\omega}(\partial W)$, we have $\lim _{n \rightarrow \infty}\left\|d L_{W_{n}^{\prime}}^{A_{n}} f-d L_{W}^{A} f\right\|_{W_{n}}=0$ where $W_{n}=W \cap \Omega_{n}$.

Proof (I) If we set $B_{n}=\overline{\left[\bigcup_{k=n}^{\infty} A_{k}\right]}$, then $B_{n} \supset B_{n+1}$ and $\bigcap_{n=1}^{\infty} B_{n}=A$. We write simly $L_{W}^{B_{n}}=L_{n}$ and $L_{W}^{A}=L$. We can find $u_{n} \in B_{n}$ and $f_{0 n} \in D_{0}$ such that $L_{n} f=u_{n}+f_{0 n}$ on W and $u_{n}+f_{0 n}=H_{f}^{R-W}$ on $R-W$. Since $B_{n} \supset B_{n+1} \supset A$, we have $\left\|d L_{n} f-d L_{n+1} f\right\|_{W}^{2}=\left\|d L_{n+1} f\right\|_{W}^{2}-\left\|d L_{n} f\right\|_{W}^{2}$ $\geqq 0$ and $\infty>\|d L f\|_{W} \geqq\left\|d L_{n} f\right\|_{W}$. Hence $0=\lim _{n \rightarrow \infty}\left\|d L_{n} f-d L_{n+1} f\right\|_{W}^{2}$
$=\lim _{n \rightarrow \infty}\left\|d\left(u_{n}+f_{0 n}\right)-d\left(u_{n+1}+f_{0 n+1}\right)\right\|_{R}^{2}=\lim _{n \rightarrow \infty}\left(\left\|d u_{n}-d u_{n+1}\right\|_{R}^{2}+\| d f_{0 n}\right.$ $-d f_{0 n+1} \|_{R}^{2}$). Therefore using Propositions 3,4 by the same method as in the proof of Lemma 1, we see that there exist subsequences $\left\{u_{n_{k}}\right\},\left\{f_{0 n_{k}}\right\}$ and $u \in H D$, such that $\lim _{k \rightarrow \infty} \mid\left\|u_{n_{k}}-u\right\|\left\|_{R}=\lim _{k \rightarrow \infty}\right\| d f_{0 n_{k}}-d f_{0} \|_{R}$ $=0$ and $\left\{f_{0 n_{k}}\right\}$ converges to f_{0} quasi-everywhere on R. It follows that $u \in B_{n_{k}}$ for all k, i.e., $u \in A$. Consequently, $u+f_{0} \in M_{f}^{A} \subset M_{f}^{B_{n_{k}}}$. This implies that

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left\|d L f-d L_{n_{k}} f\right\|_{W}^{2}=\lim _{k \rightarrow \infty}\left(\|d L f\|_{W}^{2}-\left\|d L_{n_{k}} f\right\|_{W}^{2} \leqq \lim _{k \rightarrow \infty}\left(\left\|d\left(u+f_{0}\right)\right\|_{W}^{2}\right.\right. \\
& \left.-\left\|d L_{n_{k}} f\right\|_{W}^{2}\right)=\lim _{k \rightarrow \infty}\left\{\left(\|d u\|_{R}^{2}-\left\|d u_{n_{k}}\right\|_{R}^{2}\right)+\left(\left\|d f_{0}\right\|_{R}^{2}-\left\|d f_{0_{k}}\right\|_{R}^{2}\right)\right\}=0 .
\end{aligned}
$$

Since $\left\{B_{n}\right\}$ decreases, we have thus $\lim _{n \rightarrow \infty}\left\|d L_{W}^{A} f-d L_{W}^{B_{n}} f\right\|_{W}^{2}=0$. On the other hand, if we set $C_{n}=\bigcap_{k=n}^{\infty} A_{k}$, we have similarly $\lim _{n \rightarrow \infty} \| d L_{W}^{A} f$ $-d L_{W}^{c_{V}} f \|_{W}=0$. It follows from $C_{n} \subset A_{n} \subset B_{n}$ that $\lim _{n \rightarrow \infty}\left\|d L_{W}^{A} f-d L_{W}^{A_{n}} f\right\|_{W}$ $=0$.
(II) We write simply $L_{W_{n}}^{A_{n}}=L_{n}, L_{W}^{A}=L$ and $R-\bar{W}=G$. We can find $u_{n} \in A_{n}, f_{0 n} \in D_{0}\left(\Omega_{n}\right)$ such that $u_{n}+f_{0 n}=L_{n} f$ on W_{n} and $=H_{f}^{c} \quad$ on $\quad G$. Observe that $\left\|d L_{n} f\right\|_{W_{n}} \leq\left\|d L_{W_{n}}^{\{0\}} f\right\|_{W_{n}}=\left\|d H_{f}^{W_{n}}\right\|_{W_{n}}$ $\leqq\left\|d H_{f}^{W_{1}}\right\|_{W_{1}}\left(=M_{1}\right)<\infty$ where $H_{f}^{W_{n}}$ denotes the Dirichlet solution on W_{n} whose boundary values are f on ∂W and 0 on the ideal boundary $\beta\left(\Omega_{n}\right)$ of Ω_{n}. We have $\left\|d u_{n}\right\|_{\Omega_{n}}^{2}+\left\|d f_{0_{n}}\right\|_{\Omega_{n}}^{2}=\left\|d u_{n}+d f_{0 n}\right\|_{\Omega_{n}}^{2}=\left\|d L_{n} f\right\|_{W_{n}}^{2}$ $+\left\|d H_{f}^{G}\right\|_{G}^{2} \leqq M_{1}^{2}+\left\|d H_{f}^{G}\right\|_{G}^{2}\left(=M_{2}\right)<\infty$. Hence we see that $\left\{\left\|d f_{0_{n}}\right\|_{2_{n}}\right\}$ is bounded. This implies that a subsequence $\left\{f_{0 n_{k}}\right\}$ converges locally uniformly on W. In fact, because of the fact that $f_{0 n}=H_{f_{0 n}}^{W_{n}}$ on W_{n} and that $\left\|d f_{0_{n}}\right\|_{W_{n}} \leq M_{2}$ it is enough to show that, for a fixed point a in W, $\left\{f_{0 n}(a)\right\}$ is bounded. Since the harmonic measure $\omega_{a}^{W_{n}}$ (for Ω_{n}) has finite energy, $f_{0 n} \in D_{0}\left(\Omega_{n}\right)$ yields (see [4], p. 79) $\left(d f_{0 n}, d p^{\omega_{a}^{W n}}\right)_{\Omega_{n}}=2 \pi \quad \int_{\partial G} f_{0 n} d \omega_{a}^{W_{n}}=2 \pi H_{f_{0 n}}^{W_{n}}(a)=2 \pi f_{0 n}(a) . \quad\left\{\left\|d p^{\omega_{a} W_{n}}\right\|_{\Omega_{n}}\right\}$ is bounded, because $\lim _{n \rightarrow \infty}\left\|d p^{\omega_{a}^{W n}}\right\|_{2_{n}}^{2}=2 \pi \lim _{n \rightarrow \infty} \int_{\partial G} p_{\omega_{a}^{W n}}^{W_{n}} d \omega_{a}^{W W_{n}}=2 \pi \lim _{n \rightarrow \infty} H_{g_{a}^{n_{n}}}^{W_{n}}(a)$ $=2 \pi H_{g_{a}^{R}}^{W}(a)=\left\|d p_{a}^{\omega}\right\|_{R}^{2}<\infty$ where $g_{a}^{\Omega_{n}}$ and g_{a}^{R} are Green's functions with pole at a on Ω_{n} and R respectively. It follows from Schwarz's inequality that $\left\{f_{0 n}(a)\right\}$ is bounded.

Now, since $\left\|d L_{n_{k}} f\right\|_{w_{n_{k}}} \leq M_{1}$ and $L_{n_{k}} f=f$ on ∂W for all k, we can find a subsequence $\left\{L_{n_{k_{j}}} f\right\}$ (which we denote by $\left\{L_{v} f\right\}$) which converges locally uniformly on an open set containing \bar{W}. Since $u_{\nu}=L_{\nu} f-f_{0 \nu}$ on \bar{W}_{ν}, we conclude that $\left\{u_{\nu}\right\}$ converges locally uniformly to u on R. In particular, $\left\{f_{0 v}\right\}\left(=\left\{L_{\nu} f-u_{v}\right\}\right)$ converges to $f_{0} \in C^{\omega}(\partial W)$ uniformly on ∂G, and hence from $f_{0 \nu}=H_{f_{0 \nu}}^{W_{n}}$ on W_{n} it converges to $H_{f_{0}}^{W}$ uniformly on \bar{W}. Because of $\left\|d u_{\nu}\right\|_{\Omega_{\nu}} \leq M_{2}$, condition (β) implies $u \in A$. If we extend $H_{f_{0}}^{W}$ to G by $H_{f_{0}}^{G}$, which we denote by g_{0}, then $u+g_{0} \in M_{f}^{A}$. Hence we have $\left\|d\left(u+g_{0}\right)-d L f\right\|_{W}^{2}=\left\|d\left(u+g_{0}\right)\right\|_{W}^{2}-\|d L f\|_{W}^{2} \geqq 0$. Since $\left\{L_{v} f\right\}$ converges to $u+g_{0}$ uniformly on every compact set K on W, it follows from Fatou's lemma that $\left\|d\left(u+g_{0}\right)\right\|_{W} \leq \underset{\nu \rightarrow \infty}{\lim }\left\|d L_{v} f\right\|_{W_{v}}$. Moreover $\lim _{v \rightarrow \infty}\left(d L_{v} f, d\left(u+g_{0}\right)\right)_{W_{\nu}}=\left\|d\left(u+g_{0}\right)\right\|_{W}^{2}$. In fact,

$$
\begin{aligned}
& \left|\left(d L_{v} f, d\left(u+g_{0}\right)\right)_{W_{\nu}}-\left\|d\left(u+g_{0}\right)\right\|_{W}^{2}\right| \leqq\left|\left(d L_{v} f, d\left(u+g_{0}\right)\right)_{W_{\nu-K}}\right| \\
+ & \left\|d\left(u+g_{0}\right)\right\|_{W-K}^{2}+\left|\left(d L_{v} f-d\left(u+g_{0}\right), d\left(u+g_{0}\right)\right)_{K}\right| \\
\leqq & \left\|d L_{v} f\right\|_{W_{\nu}}\left\|d\left(u+g_{0}\right)\right\|_{W-K}+\left\|d\left(u+g_{0}\right)\right\|_{W}\left\|d\left(u+g_{0}\right)\right\|_{W-K}+\| d L_{v} f \\
- & d\left(u+g_{0}\right)\left\|_{K}\right\| d\left(u+g_{0}\right) \|_{W} \leqq M_{1}\left(2\left\|d\left(u+g_{0}\right)\right\|_{W-K}+\left\|d L_{v} f-d\left(u+g_{0}\right)\right\|_{K}\right) .
\end{aligned}
$$

Since $\sup _{K \subset W}\left\|d\left(u+g_{0}\right)\right\|_{K}=\left\|d\left(u+g_{0}\right)\right\|_{W}$ and $\lim _{\nu \rightarrow \infty}\left\|d L_{v} f-d\left(u+g_{0}\right)\right\|_{K}=0$, this inequality yields the above relation.

On the other hand, it is clear from condition (α) that $\varlimsup_{n \rightarrow \infty}\left\|d L_{n} f\right\|_{W_{n}} \leq\|d L f\|_{W}$. We have thus $\left\|d\left(u+g_{0}\right)\right\|_{W}=\lim _{\nu \rightarrow \infty}\left\|d L_{v} f\right\|_{W_{\nu}}$ $\left(=\|d L f\|_{W}\right)$. Consequently, $\lim _{\nu \rightarrow \infty}\left\|d L_{\nu} f-d\left(u+g_{0}\right)\right\|_{W_{\nu}}=0$ and $u+f_{0}$ is equal to $L f$ on W, which is independent of the choice of subsequence $\left\{L_{\nu} f\right\}$. It follows that $\lim _{n \rightarrow \infty}\left\|d L_{n} f-d L f\right\|_{W_{n}}=0$.

§11. Examples

Example 1 ($L_{0^{-}}$and (P) L_{1}-operators) If we take $H D$ (resp. $(P) H M)$ for A in $\S 3$, then it contains 1 and forms a vector lattice. It follows from Theorem 1 that $H D$ (resp. (P) $H M$) induces a canonical and positive operator $L_{W}^{H D}$ (resp. $L_{W}^{(P) H M}$) for each $W \in \mathfrak{W}$.

By virtue of Oikawa's characterization for $L_{0 w}$ in [9], we have

$$
L_{W}^{H D}=L_{0 W} \quad \text { and } \quad L_{W}^{(P) H M}=(P) L_{1 W} .
$$

For the definition of $L_{0 W}$ and $(P) L_{1 W}$ refer to Chapter III of L. Ahlfors and L. Sario [1]. In case P is the canonical partition ([1], $I, 38 A$) also see Y. Kusunoki [5].

Remark Let us prove (I) in Theorem 3 by making use of the fact that there exists p^{\prime} on R which satisfies $p^{\prime}-s=L_{0 W}\left(p^{\prime}-s\right)$ (see footnote 6 on page 185). Consider the subspace $A=A_{L}$ (Lemm 4) and set $B=\left\{u \in H D ; d u \in(d A)^{\perp} \cap \Gamma_{n c}\right\}$. Then $A+B$ $=H D$ and $d A \perp d B$. It follows from the corollary to Theorem 2 and $L_{W}^{H D}=L_{0 W}$ that there exist $g \in C^{\omega}(\partial W)$ and $u \in B$ such that $p^{\prime}-s$ $=L_{W}^{A} g+u$ on W. Therefore $p=p^{\prime}-u$ is one of the required functions.

Example 2 ($L_{W}^{H D \cap H D *}$-operator) We consider the following subspace: $H D \cap H D^{*}=\{u \in H D ; u$ has a single valued conjugate harmonic function on $R\}$. Then $H D \cap H D^{*}$ contains 1 but there exist surfaces for which $H D \cap H D^{*}$ does not form a vector lattice. On such surfaces, $L_{W}^{H D O H D *}$ is canonical for each $W \in \mathfrak{W}$, but for sufficiently small $W \in \mathfrak{W}$ it is not positive (Theorem 1). Since $\Gamma_{s}^{* \perp}$ $=d\left(H D \cap H D^{*}\right)$, we see from the case where $\Gamma_{x} \supset \Gamma_{10}$ in $\S 9$ that the reprcducing kernel for Γ_{s} can be expressed in terms of $L_{W}^{H D \cap H D *}$. principal functions.

Example 3 (Dirichlet operator H^{W}) We take $\{0\}$ for A. Then we have positive but not canonical operator $L_{W}^{\{0\rangle}$. Obviously each $L_{W}^{\{0\rangle}$ is equal to the Dirichlet operator H^{w} (see [3]).

Example 4 (Neumann operator N^{W}) We assume that a given Riemann surface R is a region in the plane whose boundary β consists of a finte number of closed analytic Jordan curves. Consider the following subset of $H D$:

$$
\mathfrak{\Re}=\left\{u \in H(R \cup \beta) ; \int_{\beta} u d s=0\right\}
$$

and write its closure in $H D$ by N. Then N is a subspace of $H D$ which neither contains 1 nor forms a vector lattice. Hence L_{w}^{N} is not canonical or positive. We say that L_{W}^{N} is the Neumann operator with respect to W, and denote it by $N^{w} . N_{f}^{W}(=u)$ is characterized by the following properties: u is a harmonic function on $\bar{W} \cup \beta$ such that $u=f$ on $\partial W, \int_{\beta} u d s=0$ and $\partial u / \partial u=$ const. on β. Now, let $a \in R$ and let Δ be a disk with center at a and $\Delta^{1 / 2}$ be the concentric disk with radius one-half of Δ. We write $W=R-\left(\bar{\Delta}-\Delta^{1 / 2}\right)$ and $W_{1}=W-\bar{\Delta}$, and set $s=\log 1 /|z-a|$ on $\Delta^{1 / 2}$, $=0$ on W_{1}. On applying (II) in Theorem 5 with $L=N^{w}$, we have the harmonic function $N(a, z)$ on $R-\{a\}$ such that $N(a, z)=\log 1 /|z-a|+u(z)$ on $\Delta^{1 / 2}-\{a\}$ where u is a harmonic function on $\Delta^{1 / 2}, \int_{\beta} N(a, \zeta) d s_{\zeta}=0$ and $\partial N(a, \zeta) / \partial n_{\zeta}=$ const. on β. Consequently, $N(a, z)$ is what is called the Neumann function with pole at a (see [2]).

Example 5 Fix a point a in R and consider the following subspace of $H D$:

$$
N_{a}=\{u \in H D ; u(a)=0\} .
$$

Similarly we see that $L_{W}^{N_{a}}$ is not canonical or positive. In particular, let $R=\{z ;|z|<1\}$ and $a=0$. Then, since $\int_{\{\zeta \mid=1} u(\zeta) d s_{\zeta}=2 \pi u(0)$ for any $u \in H\{|z| \leqq 1\}$, we can prove $N_{a}=N$. Hence in this case $L_{W}^{N_{a}}$ coincides with the Neumann operator.

Let $\left\{\Omega_{n}\right\}$ be a canonical exhaustion of R (see [1], I, 29A). If we set $A_{n}=H D\left(\Omega_{n}\right)$ (resp. (P) $H M\left(\Omega_{n}\right),\left(H D \cap H D^{*}\right)\left(\Omega_{n}\right),\{0\}$ and $N_{a}\left(\Omega_{n}\right)$) and $A=H D$ (resp. (P) $H M, H D \cap H D^{*},\{0\}$ and N_{a}), then it is clear that they satisfy conditions (α), (β) of (II) in Theorem 5.

Suppose that R is a hyperbolic Riemann surface. Fix $W_{0} \in \mathfrak{W}$. On applying Corollary 1 in $\S 8$ to $L=H^{W_{0}}$ and $L=L_{0 W_{0}}$, we have the following two simple facts: i) If $u \in H D$ and $\int_{\beta} u\left(d H_{f}^{w_{0}}\right)^{*}=0$ for all $f \in C^{\omega}(\partial W)$, then $u \equiv 0$. ii) The space $H D$ is identical with
the closure of the set \{the harmonic part of the Royden decomposition of $\left.L_{0 w} f ; f \in C^{\omega}\left(\partial W_{0}\right)\right\}$.

References

[1] L. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, N. J., 1960.
[2] S. Bergman, The kernel function and conformal mapping, Math. Surveys 5. Amer. Math. Soc., New York, 1950.
[3] C. Constantinescu. Ideale Randkomponenten einer Riemannschen Fläche, Rev. Math. Pures Appl., 4 (1959), 43-76.
[4] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
[5] Y. Kusunoki, Theory of Abelian intergals and its applications to conformal mapping, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 32 (1959), 235-258.
[6] A. Marden and B. Rodin, Extremal and conjugate extremal distance of open Riemann surface with applications to circular radial slit mappings, Acta Math.. 115 (1966), 237-269.
[7] M. Nakai and L. Sario, Construction of principal functions by orthogonal projection, Canad. J. Math. 18 (1966), 887-896.
[8] M. Ohtsuka, Dirichlet principle on Riemann surfaces, J. Analyse Math., 19 (1967), 295-311.
[9] K. Oikawa, Minimal slit regions and linear operator method, Kōdai Math. Sem. Rep., 17 (1965), 187-190.
[10] K. Oikawa and N. Suita, Circular slit disk with infinite radius, Nagoya Math. J., 30 (1967), 57-70.
[11] B. Rodin, Reproducing kernels and principal functions, Proc. Amer. Math. Soc., 13 (1962), 982-992.
[12] B. Rodin and L. Sario, Principal functions, D. Van Nostrand Co., Inc., Princeton, N. J.. 1968.
[13] H. Yamaguchi, Distinguished normal operators on open Riemann surfaces, J. Sci. Hiroshima Univ. Ser. A-I Math., 31 (1967), 221-241.
[14] M. Yoshida, The method of orthogonal decomposition for differentials on open Riemann surfaces., J. Sci. Hiroshima Univ. Ser. A-I Math., 32 (1968), 181-210.

[^0]: 1) If $A=H D$, then most of the proofs in this section coincide with those in Chapter 15 (pp. 154-166) of C. Constantinescu and A. Cornea [4]. Also see M. Ohtsuka [8].
[^1]: 2) This fact can be proved by making use of Lemma 3 of M . Ohtsuka [8].
[^2]: 3) This condition for the positiveness was suggested by Professor F-Y. Maeda.
[^3]: 5) This formulation is due to Professor M. Yoshida (see [14]). The author's original one was much more complicated, though they are essentially the same. On account of this formulation the author could make the following argument simpler.
[^4]: 6) The existence and the uniqueness of p for L_{0}-operator are well-known (see [1], III, 3A). Using this fact, we can easily prove Theorem 3 (see §11). Here we shall prove Theorem 3 by a method of orthogonal decomposition, which is different from the one used in M. Nakai and L. Sario [7]. In this connection confer with B. Rodin and L. Sario (12).
[^5]: 7) It is an immediate consequence of the defintion of regular operators that $L_{V_{1}}^{1}$ is composed of $H^{\Delta_{a}} . H^{\Delta_{b}}$ and L_{k}^{A} on Δ_{a}, Δ_{l} and W respectively where $H^{\Delta_{a}} f$, for instance,
 $=G(z)+\log 1 /|z-b|$ on Δ_{a} and Δ_{b}.
