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Introduction Let R be an open Riemann surface and let W
bs an open subset of R consisting of a finite number of regularly
imbedded regions on R such that R— W is connected and compact.
We denote by C<(@W ) the family of real analytic functions on
0W and by H(W) the family of harmonic functions on W. L.

Sario introduced (see [1]) the notion of a normal operator L:

Ce(eW)—H(W ) which is defined by the following conditions:
(1) Lf=f on oW, 2) Leifitefo=calfi+alf,
® Li=1, & Lfz0 if f20, & | @LpH*=o.

One of Sario’s important results is the following existence theorem
for principal functions: Let a harmonic function s be given on W.
Then there exists a harmonic function p on R satisfying p—s
—L(p—s) on W if and only if Sawus)*:o. The function b is
uniquely determined up to an additive constant.

He constructed two normal operators L, and (P)L,. Using the
above existence theorem for these operators he gave elegant proofs
to some classical theorems and obtained some results which have
been applied to the theory of conformal mapping by many authors
([6], [9], [10], etc). However neither Dirichlet operator H" ([3]
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or [4]) nor Neumann operator N* (§11) is normal in general, and
so the existence of the Green function or the Neumann function is
not derived by a direct application of the above existence theorem.
On the other hand, B. Rodin [11] showed that L, or (P)L,
principal functions give the reproducing kernels for some subspaces
of I, (=the space of harmonic differentials on R with finite Diri-
chlet norm), while he remarked that the reproducing kernel for
the subspace I's of Schottky differentials do not seem to be obtained
in terms of these principal functions.

Thus, in this paper, we modify conditions (1)-(5) and introduce
an operator L: C*(6W)—H(W) which is defined by the following
conditions

a*) Lf=f on oW,
(2*) Dy(Lf)<<oo,

(3 Dy(Lf, Lg)zgaw F(dL)* for all f, geCo(@W).

Here Dy(Lf) (resp. Dyw(Lf, Lg)) denotes the Dirichlet integral
(resp. mixed Dirichlet integral) over W. We shall call such an
operator L regular (§2). Although normal operators are not always
regular, H" and N% as well as L, and (P)L, are regular operators.

A large part of this paper is devoted to the establishment of
correspondence between regular operators and subspaces of the
Banach space HD, the space of Dirichlet finite harmonic functions
# on R with the norm ||| «|||x=1"De(u)+ |u(a,)|. Using this
correspondence, the existence theorem of principal functions for a
regular operator is proved by a method of orthogonal decomposi-
tion (§7). Also a condition that a regular operator be normal is
given by a property of the corresponding subspace (§§4, 8). From
these results, we shall see that the reproducing kernels for I
cannot be always expressed in terms of normal operators but they
are expressed in terms of a regular operator (§§9, 11).

The author acknowledges that many ideas of the present paper



Regular operators 171

came out through the discussions with Professor M. Yoshida (cf.
[14]). The author also wishes to express his gratitudes to
Professor Y. Kusunoki for his encouragement and many remarks.

§1. Preliminaries

Given an open Riemann surface R, we denote by T the collec-
tion of open sets W of R such that for each W, R— W is connected
and compact and W and its exterior have the same non-empty
relative boundary in common which consists of a finite number of
mutually disjoint simple analytic closed curves. For each W&y,
we denote by 8 W the relative boundary of W and set W= WUaW.
We suppose that the orientation of W is positive with respect to
W. We assume that functions defined on subsets of R are always
real-valued. As for the differentials we shall use the notations and
terminology used in Chapter V of L. Ahlfors and L. Sario [1],
but we restrict ourselves to real differentials. The classes I, I},
., T, -~ are Hilbert spaces with the inner product (w;, @)z
=8Rw1w2*. Also we refer to C. Constantinescu and A. Cornea [4]
for the Dirichlet functions and Dirichlet potentials and use the
same notations e.g., D, HD, D,, Cy, dD, dHD,---. The following

propositions are well-known:

Proposition 1 (See [1], V,104) Let ', be a closed linear
subspace of TI'y. Then I'=I',+T'.,+T'i+T)% where TI't is the
orthogonal complement of I'y with respect to I';.

Proposition 2 (Royden decomposition) (See [4], Satz 7.6) If
R is hyperbolic, then D= HD+ D, on R. Moreover, let u,, u,= HD
and  fo, fe€D, such that u,+ fo=u.+fo. quasi-everywhere on
some Wels. Then u,=u, on R.

Proposition 3 (See [1], II, 13B) Let {u,} be a sequence in
HD satisfying lim|du,—du,||z=0 and let {u,(a)} converge at least
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at one point ain R. Then there exists a function u in HD such that
lim||du, —dulx=0 and {u.} converges locally uniformly to u on R.

Proposition 4 (See [4], Hilfssatz 7.8) Suppose that R is
hyperbolic. Let {f.} be a sequence in Dy such that ||dfo.i—dfulz
<1/2". Then {f.} converges to an f,€D, quasi-everywhere on
R and lim|df..—dfil|x=0.

Finally we explain the meaning of notation st. Let w be a differen-

tial of class C*. Then, if for any exhaustion {2,} of R limg o exists

n->o0

then we write SBw=lim Sa o where B stands for the ideal boundary
Ln

n->co

of R and £, is a relatively compact region in R whose boundary
consists of a finite number of analytic curves. On using Green’s

formula we obtain the following fact: Let feC'(W)ND(W) and
o*er'(W). Then SB fo* exists and SB Jo*=(df, w)w—ga fo*.

§2. Regular operators

Let We2. Let C°(@W) be the family of real-analytic func-
tions f on 8W. We denote by H(W) the family of restrictions %
to W of harmonic functions on open sets containing w.

Definition We say that an operator L: Ce(dW)—H(W) is
regular (with respect to W), if it satisfies the following conditions

(1) Lf=f on oW,

2) ldLfllw<<eo,

3 (dLf, dLg)w=SaW F(dLg)* for any f, geCo(@W).

On account of the equality obtained at the end of §1, condition (3)
is equivalent to

(3) SB(Lf)(dLg)*=O for any f, geCo(@W).
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We see from Green’s formula that a regular operator is linear:

L(c, fite fo)=clfi+clLf,.

Definition A regular operator is called canonical, if L1=1 on
W. A regular operator is called positive, if f=0 on 8 W implies
Lf=0on W.
Condition (3) implies that [|dL1]3 :Sa (dL1)* and (dL1,dLf)w
w
=—SB(de)* for any fC(@W). It follows that L is canonical

if any only if SB(dLl)*=O. Moreover in this case SB(de)*zo for
any f€C°@W).

Remark In case L is not canonical, let L'=L(f—c¢,) +¢,

where cfng(de)*/SB(dLl)*. Then L’ is canonical.

Uniqueness theorem Let L be a regular operator with
respect to W. Let usHD satisfy the equation u=Lu on W.
Then u is a constant. If, in addition, L is not canonical, then
the constant must be zero.

Proof Since R— W is compact, we have by Green’s formula
lldulli_wzg u(du)*=—g u(du)*. It follows from u=Lu on W
A(R-W) aw

that ||dul%=||du|%-w+ ||dLully= —Sawu(du)*+gawu(dLu)*=0. Hence

u is a constant ¢ on R. If L is not canonical, ¢=Lc implies ¢=0.

§3. Subspaces 4 of HD, regular operators Ly
and consistent sysems 4

If a given Riemann surface R is parabolic, conditions (1), (2)
in §2 imply condition (3), and moreover, for each W&, all the
regular operators become identical. Hence hereafter we always
assume that R is hyperbolic. Let ¢, =R be fixed. The space HD
is a Banach space with respect to the norm |||%||| x=[dullz+ |u(a,)].
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Let a subspace A" of Banach space HD be given, that is, A is a
closed linear subset of HD. Let W&®. For any f€C@W), let

Mi=M;,={geA+D,; g=f quasi-everywhere on 9W}.

Denote by A= 4, the set of restrictions of the differentials dg(=dM,)

to W. Then, 4, is a non-empty subset of the Hilbert space
dD(W)=r.(W).

Lemma 1 A4, is convex and complete.

Proof The convexity is clear. To show the completenss, let {w,}
be any sequence in 4, which satisfies ||w,—w.|[s»—0 as m, n—oco. We
can find u.€A4, fo.€D, such that u,+ fo,EM;, d(u,+ fs.) =0, on W.
Moreover we can require #,+ fo,= H¥"" on R—W for all #, where H%™"
is the harmonic function on R— W with the boundary values f on
d(R—W) (=—8W). For, when f,, does not satisfy u,~+ fo,=H%"
on R— W, we consider the function g, which is f,, on W and is H?:¥.
on R—W. Then g.€D,, u,+gn=M,;, d(u,+g) =0, and u,+ g,
=H}". Since m||d (s + fon) —d (st fou) [l=lim[lon —o,[lw =0, we
can choose a sul;;gqjlence {u,,+f,,} which satisfies ld(tto,.,+ fon,.)
—d(#,,+ fo.,)|le<<1/2*. Hence we have |du., —du,[z<<1/2* and
l@fon,,,— Afon,llz<<1/2* because d HD_| dD,. It follows from Proposi-
tion 4 that {f,.,} converges quasi-everywhere on R to a Dirichlet
potential f, and £i_)qgl|dfo,,,,—dfol|,?=0. Since #,,+ fo,,=H¥ " on R— W
for all &, {u«
from Proposition 3 that {,,} converges locally uniformly on R to

..} converges at least at one point in R— W. It follows
an HD-function #. Hence limlllu,,,‘—uHIR:O and u+f,=f quasi-
everywhere on 8 W. By the closedness of A we have uA. We con-
clude that u+f,EM, and lim|d(u+ f,) —o.|w=0. Consequently 4,
is complete.

Under these preliminaries we shall construct a regular operator

1) If A=HD, then most of the proofs in this section coincide with those in
Chapter 15 (pp. 154-166) of C. Constantinescu and A. Cornea [4]. Also see M.
Ohtsuka [8].
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L} for a given subspace 4 and W =2B. By a well-known theorem
in the theory of Hilbert space, Lemma 1 implies that there exists
a unique element w,E 4, such that |o,|lw=inf{||o|lsy; 0=4,}. More-
over o, must be a harmonic differential on W and (w,, w)»=0 for
all wE 4, and therefore ||o—w,|¥=|o|¥ —|lo/|% for all e4,. Since
w;E 4, and o, is harmonic on W, there exists a function F in M,
which satisfies dF=w, and is harmonic on W. Since F=f quasi-
everywhere on oW, the restriction F; of F to W is uniquely
determined. Moreover F, assumes continuously f on aW.,” i.e., for
any £€aW, }1—)1? F,(2)=f(¢). Therefore if we denote by Ly f(=Lf)
zEW

€

the function which is F; on W and f on 8W, then LfeH(W)
NHD(W). We have thus an operator Li: C*(6W)—H(W) which
satisfies conditions (1), (2) in §2. It furthermore satisfies condition
(3) in §2. In fact, let f, g€C*(6W) and consider a function
foeCr(RYNM,. 1t follows from d(Lf—f,) E4, that (d(Lf—fo),
dLg)y=0. By Green’s formula we have 0=SB+8W(Lf—fo)(dLg)*

=SB(Lf Y(dLg)*. Consequently, Ly is a regular operator with
respect to W. We shall call Ly the regular operator induced by
A for W. The system L%= {Lj}wcop has the following property:

Proposition 5 If W,, W.e® such that WD W, then for
any feCe(0W,), Ly,(Ly,. f)=Ly f on W,.

Proof We write simply L# =L, and Ly,=L,. Consider the
function g on W, which is L,(L,f) on W, andis L,f on W,— W,.
Then dge4,(W,), and hence |ldglly,=dL.f|[%, or |dL.(L.)ll},
=|dL,f|lw, ItfollowsfromdL,f<4,,,(W,) that L,f=L,(L,f) on W,.

Definition For each We&® suppose a regular operator Ly
with respect to W is given. Then the system L= {Ly}wecgy is said
to be consistent if, for any W,, W, such that W,D W,, Ly, f

2) This fact can be proved by making use of Lemma 3 of M. Ohtsuka [8].
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=LW2(LW1f) on W2 fOI‘ any fEC“’(@Wl).
Proposition 5 shows that the system _£* induced by A is con-
sistent.

Definition Suppose a consistent system L= {Ly}wecgy is given.
Let # be a harmonic function defined near the ideal boundary §8.
Precisely speaking, there is a compact subset K of R such that # is
defined and is harmonic on K — K. Then we say that «# has L-behavior
on B, if u=Lyu on W for any We such that WcR—K.

We note that # has _L-behavior on 3, if u=Lyu for some WelB
such that WcR-K. In fact, let W, be any set in T8 such that
W.,cR-K. Choose W,=%® sach that WNW,DW,. Then the
consistency of £ implies that, on W,, u=Lyu=Ly,(Lyu)=Ly,u and
Lyu=Ly,(Ly,u). By making use of condition (3) in §2 we have

|G~ L)l = L) (@~ Ly))*= Ly Ly (aLy,
(u—Ly,u))*=0. It follows that =Ly, u on W,.

§4. Canonical and positive operators

We shall give a necessary and sufficient condition in order that
the regular operator L# induced by A should be canonical or
positive. Let #= HD and write #\/0=inf{ve HP; v =max(«,0) on
R}. 1t is well-known that #\/0€ HD, ||d(u\/0)||:<|ldu|r and z\/0
is the harmonic part of the Royden decomposition of max(#,0).
Moreover, let {®2,} be an exhaustion of R such that £, is a
relatively compact and open subset in R and 892, consists of a finite
number of analytic curves. Then {Hgiicw.op converges locally
uniformly on R to #\/0 and ljglldHﬁ’;x(u.m—d(u\/O)”g,.=0 (see [4],
p. 61). We say that a subspace A of HD forms a wvector lattice,
if u€ A implies u\/0= A (see [4], p. 16).

Theorem 1 If a subspace A contains 1, then Ly is canonical
for any WeB. Conversely if Ly is canonical for some WeE,
then A=1. If a subspace A forms a vector lattice, then Lj is
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positive for any WeBR®. If a subspace A does not form a
vector lattice, then there exists W,eB such that Lj is not
positive for any WeB which is contained in W,.

Proof If A contains 1, then the construction of Lj implies
Li1=1 on W. Conversely, for some WeE® suppose that Lil=1
on W. Then we find u,€A, fo€D, such that u,+f,=1 on W. It
follows from Proposition 2 that #,=1 on R, proving A>1.

Suppose that A forms a vector lattice. Let W& and let
feC*@W) such that f=0. We can choose #,€A and f,€D,
such that Ly f=u,+f, on W. Consider the function g, which is
equal to HY w,yn on W and HfZ{ ., on R-W. Here H ., o
denotes the Dirichlet solution on W with the boundary values
f—(u\/0) on 8W and O on the ideal boundary B of R. Then
S ED,. Hence by our assumption we have u,\/0+ g, EM54(W).
On the other hand, the function #,\/0+g, on W is equal to
(u;+ fo) UO=inf{ve HP(W); v =max(0, u,+ f,) on W}. In fact,
let {2,} be an exhaustion of R. Then, because of the fact that
f=0 on 8W, we can prove that both u,\/0+ g, and (u,+f,) U0
are equal to the limit of the Dirichlet solutions in W2, for the
boundary function equal to f on 8 W and to max(#,, 0) on 82, (cf.
[8]1). It follows from |d(u,+ f)llw=1d((u,+ f,)UO)|l» that
ldCu,\V O+ g) lw=<d(us+f)lw=dLi f|lw. By minimum property
of Lyf we infer that Ly f=u,\/0+ g, or Lijf= (u,+f,) U0 on W.
Hence Ly f=0 on W, proving that L} is positive for any Wl
under the hypothesis that A forms a vector lattice.

If the last assertion were not true, there would exist a sequence
{W,} in T such that W,D W,.,, :ﬁl W,=¢ and Lj, is positive. If
we write 2,=R— W,, then {2,} is an exhaustion of R such that £,

is compact and 02,= —9W,. Let u be any function of A and let
u*=max(#, 0) on R. For the sake of convenience we write

3) This condition for the positiveness was suggested by Professor F-Y. Maeda.
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Lj =L,. First we shall show || du|w,=||dL,u*|w, for all n. Since
L.,u* is non-negative on W and vanishes on 8 W, {#<<0}, we have
(dL,u")*=(@L,u"/on)ds<0 on aW,N{#<<0} where 8/on denotes
differentiation in the direction of the exterior normal with respect
to W,. It follows from condition (3) in §2 that

(dLu*, dL,,u)w”=SaW”u(dL,,u+)*=S u(dL,,u*)*—l—S u(dL,u*)*

W {x20} W 4N {40}

gg u(dL,.u‘“)*:S ut(dLu*)*=||dLu*[%,.
aw N {x20} ow,

By making use of Schwarz’'s inequality we have [dL,u"|w,
ldL.ullw,= | (dL.u", dLu)w,| Z||dL.u*[,, or |dLulw,=]ldLu*w,.
Since u€M:(W,), the definition of L,u implies ||du|lw,=|dL.ulw,.
Hence we see that [dullw,=|dL.u*|lw, for all n. Next we find
u,€A and f,,€D, such that Lu*=u,+f,, on W, and u,+ f,,= H%
on 2, (see the proof of Lemma 1). For m>mn, with the help of
triangle inequality, we obtain

1@ (ot fon) —d (st fo) Il
=|dH>—dH?|}, + |dH —dLu* (%, -0+ |dLut —dL,u*||3,
<ldHir—dH|o,+ (dH o, -0, + | dL,u" || o,-0,)
+ ldL.u* |w,+ | dLu*[|w,)*
<l|dHix—dH|o,+ (ldHi o,-o, + | dullw,)* + 4lldull,.

On the other hand, since {H:} converges locally uniformly
on R to u\O, lnih)rglldH,‘f:—d(u\/O)llg,=0 and #,+fo.,=H" on
2., it follows that lim ld (u\/ 0) —d(#,+ fo.)llg=0. Hence
limlld(u\/O)—du,,”R=limﬂll;fonll;a:O, because dHD_| dD,. It follows
f;_c)); Proposition 4 thz:: Nthere exists a subsequence {f.,} in D,
which converges to zero quasi-everywhere on R. This, together
with lki_)rg(u,,‘+ Son 2 (@)=(u#\/0)(2) on R, implies that {u,} con-
verges to #\/(Q quasi-everywhere on K. Since li_)IEHd(u\/O)—du,,,,llR
=0, we have by Proposition 3 P_)IB”W\/O"%.I“R:O- Hence #\/0

€A. In other words, the subspace A must form a vector lattice,
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which is a contradiction to our hypothesis. The theorem is com-
- pletely proved.

§5. Lemmas

Let 2 be a compact bordered Riemann surface with contours
B(2): 2=2UB(2). We orient B(2) positively with respect to £,
and let B(2) consist of ¢ contours pBi, -*-, B,. Consider w&r:i(S)
where S is an open set (with respect to £2) which contains ¢ closed
ring domains {S:}?_, such that 8S;D>8; and S;NS;=¢ for i#j. We
denote by «; the other contour of S; and orient it negatively with
respect to S;: 8S;=B;—a;. Using this notation we have the
following elementary lemma:

Lemma 2 There exists an :o\el“i(s?) such that w—w on

U S, if and only if \ o0
i=1 B(D
Proof TFor the proof it is essential that 2 is connected. The

P
“only if” part is clear from the closedness of w. To prove the “if”

A ”
part, suppose that S ; )w:O. We write at:SB w. Then > a,=0.
B(2. i i=1

We fix a closed disk 4 in 2—3S, and orient its contour =94 positively
with respect to 4. For each ¢, we can easily construct a closed of

class C*! differential »; on 2— 4 such that SB w":st‘:l and SB 0;=0
i i

for any j#i. If we consider the closed differential 6‘=Zq a,»; on
i=1

J— q q
2—4, then 856: M a'Ss‘”‘:Z a;=0. Hence there exists a function
i=1 i=1

g of class C? on 4,—4 such that 6=dg on 4,—d, where 4, is an
open disk containing 4. We are thus able to extend g to 4; being
kept of class C®. If we set 6=dg on 4, and 6 on 2—4, then

EEF}(E) and SB./6§=¢2,~ for each 7. Because of the fact that

SB.(a)—%‘\)———O, we find a function f; of class C* on S; such that df;
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=w—8‘\ on S;. Obviously, there exists a function f on £ of class
C? such that f=f; on each S;. If we set $=df+?)‘\ on £, then o

is one of the required differentials.

We return to a hyperbolic Riemann surface K. Let A be a
linear subset of HD. Then we have

Lemma 3 If A is closed in HD, then dA is closed in T,..
Conversely, suppose that dA is closed in I',.. Then, if either
A>1 or AD1, then Ais closed in HD.®

Proof 1t is clear from Proposition 3 that, if A=>1, then A is
closed if and only if dA is closed. Suppose that A is closed and
A=$1. First we shall show that, if ¢ is an arbitrarily fixed point
in R, then there exists a positive number 1Z=1, such that
lu(a) | <A |ldullr for any u=A. If such a A, did not exist,
then we find a sequence {#,} in A such that #,(¢)=1 and
lﬂi_r)roxolldu,.llR=0. It follows from Proposition 3 that lﬂi_)n:l”u,,—lll[,e:O,
and hence A=>1. This is a contradiction. Secondly, let #,=A and
{du,} form a Cauchy sequence. Then the above inequality implies

that lim ||| %, — .||z = lim (|, (@) —u.(a) | +lldu,—du,|[z) <lim

m, n->c0

4) There exists a linear non-closed subset A such that dA is closed. In fact,
let R be a Riemann surface such that the dimension of I'ne is infinite. First, take
a sequence {us} in HD which satisfies #s(a0)=0 for all » and (dus. dum)r=0 if

m=n and =1 if m=n. Consider the space /?={t(={¢}); ¢ is real and §§3<oo}

and write |]|;2=(Zt)v2. Then {Zt:dui: §={&} 1%} is a closed subspace in I'he and
Proposition 3 guarantees that. for any {={¢}E/%, Stiui(z) certainly is a harmonic
function on R. Next, consider a non-continuous linear functional f on /? and set
A={f® +3tui(2): te1?} (CHD). Then it is clear that A is linear and dA is
closed. If we suppose A21, then there exists §3:0 in /2 such that 1=5()+3%ui(2)
on R. Considering Dirichlet integrals, we have 0=||d(Z¢u:)|li=|ltl|?2, or £=0,
which is a contradiction. Hence A®1. On the other hand, since f is not con-
tinuous at 0, there exists a sequence {¢”} in /2 such that li_inllﬁ("’[[l2=0 and

limf(¢®)=1. Then we have lim || (™) +2tPui(2) —1 || =1im|E™]|;2=0. Hence
n->co n->oo n->c0 )

closure of A in HD contains 1. Consequently, A4 is not closed.
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(Aey+1)||du,—du,|[z=0. On account of the closedness of A, we
find # in A such that 1i_)m|||u,,—u|[[R=O, and hence lﬂi_)rglldu,,—dullk
=0. Thus dA is close;,i ?n Th..

Finally suppose that dA is closed and A®1. If we denote by
C the family of constant functions, then d(A+C) (=dA) is closed
and A+C>1. The fact mentioned above implies A+ C is closed,
and hence A+C>A. We have thus dA=d(A+C)>DdADdA, or
dA=dA. 1t follows from A1 that A=A, ie., A is closed.

Corollary 1 Let A be a subspace of HD which does not
contain 1 and write {u,, u,y= (du,, du,)r for any u,, u,A. Then
A becomes a Hilbert space with respect to the inner product
o, >, Moreover the linear functional T,: u—u(a) is con-
tinuous.

Corollary 2 Suppose that A and B are subspaces of HD
such that dA is orvthogonal to dB. Then A+ B is closed.

Proof Since dA is othogonal to dB, d(A+B) is closed (see
for example [1], V, 7G). First suppose that A or B contains 1.
Then the above lemma implies that A+ B is closed. Next suppose
that neither A nor B contains 1. Then A+ B does not contain 1.
For, if A+ B contained 1, then there would exist #,€A and v,€B
such that 1i_)r2][|u,,+v,,—1|]|R=O. We have thus lim (%, (a,) +v,(a,))

n—>oo

=1 and 0=gr£]ldu,,+dv,,llfe=}_i£)(Hdu,,llfe+Hdv,,l[?;), because dA.1 dB.
Since A®»1 and B>H1, it follows from i%|du,lz=]|u.(a)],
A2lldvl|lr=|v.(a)| that h_)rg u,(a,) =lim v.(a,) =0, which contradicts
Iff (u.(ay) +u,(a,))=1. Consequentl; A+B®1. We see from

the above lemma that A+ B is closed in HD.

§6. A characterization of Ljf

Proposition 6 Let WeR., Let f,€C'(R)ND, and o
er'(W). Then Sﬂfom=0.
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Proof Consider a function F in C'(R) which is 1 outside of
a compact set in R and is O on a (relatively compact) open set 2
which contains R— W and whose boundary consists of a finite
number of closed analytic curves. Then Ff,€D,NC*(R) and
Ff,=0 on 82. Therefore the restriction of Ff, to R—2 is a
Dirichlet potential on R—2 (see for example [13], Lemma 1). It
follows from dD,(R—)1r*(R—2) that (d(Ff,), o*)ro=0. By
making use of Green’s formula we have thus OZSB_aQ(F fo)o
= SB(Ffo)wz ngow. q.ed.

Let A be a subspace of HD. Since dA is a subspace of T,

(Lemma 3), we have the following decompsition: I',=dA+ (dA)*.
For each We&B, we consider the following subset of I':(W):

SA(W)={wer'(W); SBuw=0 for any usA}.

Since (dA)'+r} is orthogonal to dA (Proposition 1), o*&(dA)*
+rXOr* implies that 0= (du, w*)R:_Sﬁuw for any #u<A, and
hence wE3,(W). That is, {o|W; 0= (dA)*+T.. NI} CI(W),
where o| W denotes the restriction of w to W. If A contains 1,

the opposite inclusion relation is valid. In fact, let o be any
differential in Z.(W). Since A>1, we have Sa w=—881w=0. It
w

follows from Lemma 2 that there exists :u\EI"i(R) such that /c;=w

J— N
on W. For any u€A, we obtain (du, o®)r= —SBu¢5= —gﬁuwzo.

Since I'* =Ty +T%=(dA) + (dA)*+T%, it follows that o*e ((dA)*
+r*¥)Nrt, and hence o= (dA)*+T1.,NI''. We state this fact as

Remark If A>1, then S,(W)={w|W; o= (dA)*+1. . NT}.
The following characterization of Ly f will be used frequently.

Theorem 2 Let A be a subspace of HD. Let Weld and

5) This formulation is due to Professor M. Yoshida (see [14]). The author’s
original one was much more complicated, though they are essentially the same. On
account of this formulation the author could make the following argument simpler.
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feC2(@W). The function u=Lj [ satisfies the following con-
ditions:

(@) u=f on oW,

(b) u=v+f, on W for some veA and f,€D,,

() (duw*ezs.(W).

Conversely, a function u with properties (a), (b), (c) must be
equal to Ly f.

Proof 1In this proof we write simply L#=L. From the con-
struction of Lf we see that u=Lf satisfies (a), (b). It further
satisfies (c). In fact, it is clear that (dLf)*er:(W). Let w be
any function in A. Take g,€Cy(R) such that g,=w on oW.
Then w—g,=EM;. Since dLf is orthogonal to 4§, we have
thus 0= (d(w—g), dLf)w= SW(“’— 20 (dLf)*= Sﬂw(de)*. Hence
(dLf)*e3,(W). In order to prove the converse, suppose that u
satisfies (a), (b), (c). Conditions (a), (b) imply u(=v+f,) €Td7.
Hence it is enough to show that ||dLf|lw=|dullw. There exists
€A, fueD,NC*'(R) such that Ly f=v,+fo; on W. By condition
(c) we have Sav(du)*zgavl(du)*=0. This, with Proposition 6,

implies  that SBu(du)*=SB(Lf)(du)*=O. Hence (dLf, du)y —

SB 8W(Lf)(du)*=gaw f(du)*=§6 _u(dw*=|dulfy. We conclude
from Schwarz's inequality that ||[dLf |y = |ldullw.

Corollary Suppose that A and B are subspaces of HD such
that dA1dB. Let Wels and fCe(0W). Then there exist
fa€C°(@W) and ussB such that Ly*®f=Ly fat+us on W.

Proof Corollary 2 to Lemma 3 guarantees that A+ B induces
the regular operator Ly*?. We find ua€ A, u,B and f,€D, such
that Li*%f =ua+us+f, on W. Let u be any function in 4. Because

of dAdB, we have 0= (du, duB)R=SBu(duB)*. This, together with
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(¢) in Theorem 2, implies O=Sau(d(u,,+fo))*, that is, (d(ua+fo))*
€3.(W). It follows from Theorem 2 that L{(us+f,) =ua+f, on
W. If we set fa=uas+f, on aW, then fo&C(@W) and Li*%f=
Ly fatus.

Let L be regular operator with respect to We®. Now we
are going to find a subspace A of HD which induces L for W, ie.,
Li=L. Let feCe(@W). We extend Lf onto R—W to be a
Dirichlet function F on R and denote by #; the harmonic part of F
in the Royden decomposition, which is uniquely determined by Lf on
account of Proposition 2. Consider the following subfamily of HD:

ACL) = {uy; feC@W)}

and denote by A, the closure of A(L) in HD. With these prepara-

tions we prove

Lamma 4 Let L be a regular operator with respect to
We®. Then the subspace A, induces L for W.

Proof Let feCe(@W). We shall prove L%, f=Lf by apply-
ing Theorem 2 to A=A,. It is clear that Lf satisfies (a), (b).
Let #:(=w) be any function in A(L). Then we find from the
definition of w a Dirichlet potential g, such that w+g,=Lg on W.
Condition (3’) in §2, together with Proposition 6, implies that

SB w(de)*=SB (Lg)(de)*—SB 2(dLf)*=0, and hence that

(dw, de)w=—ga w(dLf)* for any weA(L). Next let w be any
w

function in A,. Then there exists a sequence {w,} in UA(L) such
that lim|||w,—w|||e=0. It follows that lim|dw,—dw|~<lim|dw,

—dwl||z=0 and {w,} converges to w uniformly on 8W. We have thus
(dw, dLf)w=1lim (dw,, dLf)w= —limSaW w,(dLf)* = —Saw w(dLf)*,

and hence Saw(de)*=0, proving (dLf)*€3.,(W).
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§7. Existence theorem for principal functions

Let L be a regular operator with respect to We®. Let s be
a harmonic function on W except for isolated singularities not
accumulating to the boundary 8W. We investigate the existence
and the uniqueness of function p harmonic on R except for the
singularities of s which satisfies the following ejuation:

p—s=L(p—s) on W.

Theorem 3 (1) If L is canonical, the mnecessary and
sufficient condition for the existence of p is that Sa (ds)*=0.
w
The function p is uniquely determined up to an additive con-
stant.

() If L is not canonical, then for any s the function p
exists and is uniquely determined.

Proof We denote by {a;} the set of singular points of s. The
necessity in (I) is immediately proved. To prove the uniqueness
in (I) or (II), suppose that both p, and p. satisfy p—s=L(p—s)
on W. Then p,—p.€c HD(R) and p,—p.=L(p,—p.) on W. By
virtue of uniqueness theorem in §2, we see that p,=p,+const. if L
is canonical, and p,=p, if L is not canonical.

The sufficiency in (I): Suppose a given s satisfies
the condition Saw (ds)*=0. We extend s on R—W so
that we obtain g\e C*(R—W). Lemma 2, together with
Saw(ds)*zo and the fact that R— W is connected, implies that
(ds)* is also extendible to a closed differential 6 on R— W, that is,
6er*(R—W) and 6=(ds)* on W—{a;}. Then since dfs\+6* is

identically zero on W — {a,}, it is square integrable on K. Namely,

6) The existence and the uniqueness of p for Lo-operator are well-known (see
[1], III, 3A). Using this fact, we can easily prove Theorem 3 (see §11). Here we
shall prove Theorem 3 by a method of orthogonal decomposition, which is different
from the one used in M. Nakai and L. Sario [7]. In this connection confer with
B. Rodin and L. Sario (12].
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N\
ds+6*=r. Now we take the subspace A.,=A inducing L for W

(Lemma 4) and consider the orthogonal decompcsition:
r=d(A+D,)+ ((dA)*+T%).
We use this to obtain
ds+6*=dF+o on R,

where FE A+ D, and o= (dA)*+Tr%. On rewriting the equation

in the form
ds—dF=—6*+w» on R—{a},

we find that the differential on the left is exact (and hence closed)
and the differential on the right is coclosed on any region which
does not contain any a;. Therefore the above differential is harmonic
on R— {a;} (Weyl’s lemma). In particular, we may assume that F
is of class C* on R and o is of class C' on R. If we set p=§\—F
on R—{a;}, the function p is harmonic on R— {a;}. Let us prove
L(p—s)=p—son W. Since /s\—*—s on W, it is enough to prove LF=F
on W. It is clear that F satisfies conditions (a), (b) in Theorem 2
for f=F. Since 6=(ds)* on W, we have, on W, (dF)*= (ds+6*
—w)¥=(ds)*—6—ow*= —o* It follows from o*e& (dA)*+I,NI*
and the remark in §6 that (dF)*|Wex,(W). Consequently
Theorem 2 shows LpF=F on W, or LF=F on W. Hence p is
one of the required functions.

The existence in (II): For given L consider the canonical

operator L’ which is defined in the remark in §2. Also for a given

s consider the function §'=s—cLl on W where C:Sa (ds)*/
w

gaw(dLl)*. Then we can apply (I) to these L’ and s’, and have a
karmonic function p’ on R such that p'—s'=L'(p'—s") on W.
Precisely speaking, p’— (s—Lc)=L(p'—(s—c¢)—cy)+c, on W where
c‘:Saw<dl'(p/_S/D*/Saw(dLl)*' If we set p=p"—c, on R, then p
is harmonic on R—{a;} and p—s=L(p—s) on W.
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p will be called the principal function associated with s for L.

§8. Uniqueness forr 4 which induces a given L
Lemma 5 Let A be any subspace of HD and W be any set
in W. Then A(Ly)=A.

Proof First we shall show that, for arbitrary two points ¢ and
b in R— W, there exists a function #2,=u,, in AL (CA) such

that (du, du.,)r=u(a) —u(b) for any uc A. Let 4, (resp. 4,) be a
closed disk in R— W with center at a (resp. &) and let 4, dy=¢. We
set Wi=WU4.,Ud,. We apply Theorem 3 to W=W,, L=Lj;, and
s=logl/|z—a| on 4,,=—log1/|z—b| on 4, and =0 on W. Then
San(ds)*zo, and hence we can solve the equation p—s=L(p—s)

on W,. Thus there exists a harmonic function G, ,(z; A)=G*(2)
=G(z) on R—{a, b} such that G(z)—logl/]z—a| and G(z)+log
1/|z—b| are harmonic on 4, and 4, respectively and that L,G=G on
W.> Hence we find veA(L$) and f,€D, such that G=v+f, on
W. Now we consider a special case: A= {0} and write G, ,(z; {0})
=G°(z). Then G'=0+g,=g, on W where g, is a certain Dirichlet
potential on R. Set u,,=1/2z(G—G"). Since u,,= HD(R) and
Uo=1/22(((v+fy) — &) on W, it follows from Proposition 2 that
U.,= (1/2x)v, proving u,,=A(Lj). Let u be any function in A. By

(c) in Theorem 2 we have Sﬂu(dG)*:SB u(dLy G)*=0. According

to Proposition 6 we also have SBG°(du)*: SBgo(du)*=O. Computing
Cauchy’s principal values, we have thus (du, dG)z=2r(u(a) —u(b))
and (du, dG°)x=0. Consequently, (du, du,,)==u(a) —u(b), proving
the assertion.

Next we shall show d[A(Li#)] =dA. We write simply A(Li)

7) It is an immediate consequence of the defintion of regular operators that Li,
is composed of H4. H“ and L# on 4a, 4y and W respectively where H4f, for instance,
is defined by H{e. Hence H%g_jop/¢c-a(2) = G(2) —log 1/|z—a| and H*g.1001/c-51(2)
=G(2)+log 1/|z—b| on 44 and 4. )
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=A’. Let u be any function of A such that du is orthogonal to
dA’. Then since du,,=di(Li)cdA’ for any a,b=sR—W, we
have 0= (du, du,,)r=u(a) —u(b). Hence u is a constant on a
non-empty open set R— W, or on K. Namely du=0. We have
thus (dA