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Introduction Let R  be an open Riemann surface and let W
be an open subset of R  consisting o f  a  finite number o f  regularly

imbedded regions on R  such that R — W  is connected and compact.
We denote by C0(8 W ) th e  fam ily o f  real analytic functions on
W  an d  b y  H( W  ) th e  fam ily o f  harmonic functions on W . L.

Sario introduced (see [I] )  the notion  of a norm al operator L :

C0( W ) - >H ( W )  which is defined by the following conditions :

( 1 )  L f =  f  on 0 W, ( 2 )  L (c1f1+c2f2)— c1L f1+c242,

( 3 )  L 1 = 1 ,  ( 4 )  L f 0  i f  f , ( 5 ) ( d L f ) * =0 .
aw

One of Sario's important results is the following existence theorem

for principal functions :  Let a harmonic function s  be given on W.
Then there exists a harmonic function p  on R  satisfying p—s
—L(p— s) on  W  if and only i f  ( d s ) * = 0 .  The function p  is
uniquely determined up to an additive constant.

He constructed two normal operators L o an d  (P )L 1 . Using the
above existence theorem for these operators he gave elegant proofs
to some classical theorems and  obtained some results which have
been applied to the theory of conformal mapping by many authors
( [6] , [9] , [10] , e t c ) .  However neither Dirichlet operator H w  ( [3]
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o r [4] ) nor Neumann operator NW  (§11) is normal in general, and
so the existence of the Green function or the Neumann function is
not derived by a direct application of the above existence theorem.
O n  th e  other hand , B . R od in  [11] showed that L o-  or ( P ) L 1 -
principal functions give the reproducing kernels for some subspaces
of T'h (= th e  space of harmonic differentials on  R  with finite Diri-
chlet norm), while he remarked that th e  reproducing kernel for
the subspace T's of Schottky differentials do not seem to be obtained
in  terms of these principal functions.

Thus, in  this paper, we modify conditions (1)—(5) and introduce
an operator L : C 8 W )--->H (W ) which is defined by the following
conditions

( 1 * )  L f = f  o n  a W,

(2 * )  D ,( 4 ) <0 0 ,

(3 * )  Dw (L f , L g)=S a w f (dL g)*  for all f , gEC '(O W ).

Here Dw ( L f )  (resp. Dw (L f , L g ))  denotes the D irich let integral
(resp. mixed Dirichlet integral) over W . We shall call such an
operator L  re g u lar (§ 2 ). Although normal operators are not always
regular, Hw  and N w  as well as L o an d  (P)L , are regular operators.

A large part of this paper is devoted to the establishment of
correspondence between regular operators a n d  subspaces of the
Banach space HD, the space of Dirichlet finite harmonic functions

u  o n  R  with th e  norm u 1H R= VDR (u)+ Iu(a0) I . Using th is
correspondence, the existence theorem of principal functions for a
regular operator is proved by a  method of orthogonal decomposi-
tion (§ 7 ). Also a condition that a  regular operator be normal is
given by a  property of the corresponding subspace (§§4, 8). From
these results, we shall see that th e  reproducing kernels for T's
cannot be always expressed in  terms of normal operators but they
are expressed in  terms of a regular operator (§§9, 11).

The author acknowledges that many ideas of the present paper
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came out through the discussions with Professor M. Yoshida (cf.
[14]). T h e  author also wishes to express h is  gratitudes to
Professor Y. Kusunoki for his encouragement and many remarks.

§ 1 .  Preliminaries

Given an open Riemann surface R , we denote by lS the collec-
tion of open sets W of R  such that for each W, R—W is connected
and compact and W and its exterior have the same non-empty
relative boundary in common which consists o f  a  finite number of
mutually disjoint simple analytic closed curves. For each WE 0,
we denote by a W the relative boundary of W and set W= WU6 W.
We suppose that the orientation of aW  is  positive with respect to
W .  We assume that functions defined on subsets of R  are always
real-valued. As for the differentials we shall use the notations and
terminology used in  Chapter V  o f  L. Ahlfors and L. Sario [1],
but we restrict ourselves to real differentials. The classes r  r_ , _ h ,
r„ r,,, • • •  are Hilbert spaces with the inner product (a) )1, - 2 ,  R

(01 4 .  Also we refer to C. Constantinescu and A. Cornea [4]

for the Dirichlet functions and Dirichlet potentials and use the
same notations e.g., D, HD, D o , C ,7 , dD ,dH D ,••.. T h e  following
propositions are well-known:

Proposition 1 (See [1] , V, 10A ) L et r ,  be a  closed linear
subspace o f  r,. Then r=r 1 +r, 0 + r+ 1 1  where r ;  i s  the
orthogonal complement of  r 1 with respect to r„.

Proposition 2  (Royden decomposition) (See [4], Satz 7.6) I f
R  is hyperbolic, then D =H D +D o  o n  R. Moreover, le t u„ u2 e HD
an d  fol, 1 .0 2 D ,  such that ui+ foi=u2+ fo, quasi-everywhere on
som e W EB. Then u i =u , on R.

Proposition 3  (See [1] , II ,  13B) L e t {u„}  be a  sequence in
HD satisfying limildu„—du„,11R=0 and let { u„(a)}  converge at least
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at one Point a in R. Then there exists a function u in HD such that
1imildun—duli,=0 and {u„} converges locally uniformly to u on R.

Proposition 4  (S e e  [4], Hilfssatz 7.8) Suppose tha t R  is
hyperbolic. Le t {fo n }  be a sequence in Do such that ildfo„,i—dfonlIR
<1/2n. Then {f0„} converges to an  f0 eD 0 quasi-everywhere on
R and limi[dfo ,,— dfo R = 0 .

Finally we explain the meaning of notation 
13(i).

 Let w be a differen-

tial of class C 1 . Then, if for any exhaustion {.Q„} of R limw  exists
n - > c o  aL.

then  w e w rite w=lim w where f3 stands for the ideal boundaryL.
of R  and 12„ is  a  relatively compact region in  R  whose boundary
consists o f a finite number o f ana lytic  cu rves. On using Green's
formula we obtain the fo llow ing fact: L e t  f  C 1 (  tiv)n D ( W) and
0)* Er1(147). Then fa)* exists and f0 )*= (d f,0 ))„,—  f0 )*.

aw

§2. Regular operators

Let W E B . L e t  C'(8 W ) be the family o f  real-analytic func-
tions f  on a W . W e denote by H( W ) th e  family of restrictions u
to  W of harmonic functions on open sets containing W.

Definition W e  sa y  th a t  an operator L : C'°( W )->H(W ) is
regular (with respect to W ), if  it satisfies the following conditions

(1) L f =  f  on 8 W,

(2) Itc/Lf w  < 00 ,

(3) (dLf,dLg) w =  f ( d L g ) *  for any f, g C (a W ).

On account of the equality obtained at the end of §1, condition (3)
is equivalent to

(3') (L f ) (d L g )* -0  for any f, gEC'(OW ).
3
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We see from Green's formula that a  regular operator is linear:

L (c , f i +c , f 2 )=c iiii+ c2 4 2 .

Definition A  regular operator is called canonical, if  L 1= 1 on
W . A  regular operator is called positive, if f O  o n  & W  implies
L f  0 on W.

Condition (3 ) implies that lic/L111?4, = (dL 1)* and (dL 1, dL f) waw
= (d L f )*  for any f  E C '( a W ) .  It follows that L  is canonical

if  any only if
o
(dL1)*= O. Moreover in  this case ( d L f ) * =0  for

any f E C '(0  W).

Rem ark In  c a se  L  is not canonical, l e t  L '=L (f — c 1 ) +c f

where c ( d L f ) *  ( d L 1 ) * .  Then L ' is canonical.
3 a

Uniqueness theorem L e t  L  b e  a  regular operator w ith
respect t o  W . L e t  u E H D  satisf y  th e  equation u— L u on W .
Then u  is  a constan t. I f , in addition, L  is not canonical, then
the constant m ust be zero.

P ro o f  Since R — W  is compact, we have by Green's formula

uw() du)*= u (d u )* . It follows from u = L u  on W
a(
R_ aw

that WW1= jj du ii2R_w+ IldLua=
aw

u ( d u ) * + u ( d L u ) * =0 .  Hence
 3 w

U  is a constant c  on R .  If L  is not canonical, c =L c  implies c= O.

§ 3 .  Subspaces A  o f HD, regular operators V,
and consistent sysems

If a  given Riemann surface R  is parabolic, conditions (1 ), (2 )
in  §2 imply condition (3), and  moreover, for each We U , all the
regular operators become identical. Hence hereafter we always
assume that R  is hyperbolic. Let ao E R  be fixed. T he space HD
is a  Banach space with respect to the n o rm  ttil!R=IldullR+ u(ao)i.
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Let a subspace A 1) o f  Banach space HD be given, that i s ,  A  is a
closed linear subset of H D . L et W E T 3 . For any fEC''(a W ), let

M1-= Alf =  {g E A +D o ; g = f  quasi-everywhere on OW } .

Denote by A= A 1 the set of restrictions of the differentials dg(EdM f )
t o  W . T h e n , A f  i s  a  non-empty subset o f  th e  Hilbert space
dD (W )=T ,(W ).

Lem m a 1  A f  i s  convex and complete.

P ro o f  The convexity is clear. To show the completenss, let {041
be any sequence in A f  which satisfies Ilco„—a)„,il w - 0  as  m, n--->00. We
can find  u A, fo„ E D o  such that u„+fo „ E M f ,  d(u„+ fo„) = co„ on W.
Moreover we can require u„ +fo „=1111,-1-17 on R— W  for all n, where H i

f" - r

is the harmonic function on R— W  with the boundary values f  on
(R— W) ( =  — SW ). For, when f o„ does not satisfy u„+f0 „=1-1; - -"7

on R— W, we consider the function g o„ which is f o„ on Wand is
on R— W. T h e n  g0„ED0, u„+g0„eM 1 , d(u„+go„)=0), and u„+ go.

=.11; - w . Since limild(u„,+fo,„)—d(u„+fo.)IIR=limlico„,—(0„11w=0, we
II->oo 711,11—>co

can choose a  subsequence {un k + f„ ,} which satisfies Ild(u„
k , i

 + fOnk

—d(u„„+fo „„)G<1/2". Hence we have J d u , 1 —du„ k ijR < 1 / 2 "  and
df o >,  + 1 —  dfo„,j1, G 1/2", because d H D id D o . It follows from Proposi-

tion 4  that {fo.,} converges quasi-everywhere on  R  to  a Dirichlet
potential f o and limlidfo„„ —dfolIR= O. Since u„ fk +  

O P ,k —  M - FY on R— W
for all k, {u„,}  converges at least at one point in R— W . It follows
from Proposition 3  that {u„,} converges locally uniformly on  R  to
a n  HD-function u. Hence Emil' u„„— ulil R = 0  and  u +f o = f  quasi-

everywhere on a W . By the closedness of A  we have u E A . We con-
clude that u + f o Mf  a n d  limild(u+fo) — (0.1!w= O. Consequently A f

is complete.
Under these preliminaries we shall construct a  regular operator

1 ) I f  A =H D , then most of the proofs in  this section coincide with those in
Chapter 1 5  (pp. 154-166) o f C . Constantinescu and A. Cornea [4]. A lso  see  M.
Ohtsuka [8].
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L;',, for a given subspace A  and W  E U . By a well-known theorem
in the theory of Hilbert space, Lemma 1  implies that there exists
a unique element cof  EAf  such that Ilcof  =inf {licoll w ; w EAf } . More-
over (of  m ust be a  harmonic differential on  W  and ( o f , (o) w  =0 for
all wEilo and therefore II w - wf a= ilcoll.W-11(of rv for all w EAf  . Since
(of  E Af  and  cof  is harmonic on W, there exists a  function F  in  Mf

which satisfies dF= (of  a n d  is harmonic o n  W . Since F = f  quasi-
everywhere o n  a W , the restriction  F ,  o f  F  t o  W  is uniquely
determined. Moreover F , assumes continuously f  on  a W,2 ) i.e., for
any C Ea W, lim F i (z )= f (C ). Therefore if  we denote by UT f ( =L f )

z.w
th e  function which is F , on  W  and f  on  a W, then L f E H (W )
nHD(W). We have thus an operator Lev :  C0(ôW )---.11(W ) which
satisfies conditions (1 ), (2 ) in  §2. It furthermore satisfies condition
(3 )  i n  §2 . In  fa c t , le t  f ,  g E C '( a W )  and consider a  function

f o  Ci7(R) n M f . It follows from d(L f  -  E A ° th a t  (d(L f  - f0)
dLg) w = O. By Green's form ula we have 0= (L f -f o)(dL g)*orow
= ( L f ) ( d L g ) * .  Consequently, u ,  i s  a  regular operator with

respect to  W . We shall call 1 4  the regular operator induced by
A  f o r W . The system _CA= {U} w E 9 3 i has the following property:

Proposition 5  If  W ,, W 2EV .B  such that W 1 D W2 , then f or
any fEC .(aW ,), U2(-14 1f ) = U 1f  on W2 •

P ro o f We write simply 14 1 - L 1 a n d  Lg,2 =L 2 . Consider the
function g  on  W, which is L2(L1 f) on W 2  and is L , f  on -W1- W2 •

Then dgEA f ( W ,), and hence I J d g 1 jJ d L 1 f I 1
 o r  lidL2(L1f)11W2

fi - 2,dLifIlw2. It follows from d L ,f  ( W that L if - L ,( L i f )  on W2.

Definition F o r each W E U  suppose a regular operator Lw
with respect to  W is given. Then the system 2= { L w } w E ws  is said
to be consistent i f ,  f o r  any W1, W2E1B such that W i  D  W 2  L w , f

2) This fact can be proved by making use of Lemma 3 o f M . Ohtsuka [8].
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—Lw,(Lw]./c )  on W , for any f c - (awi)•
Proposition 5  shows that the system _EA induced by A  is con-

sistent.

Definition Suppose a consistent system ...C= { 1, } w E gx is given.
L et u  be a  harmonic function defined near the ideal boundary 5'.
Precisely speaking, there is a compact subset K  of R  such that u is
defined and is harmonic on R— K . Then we say that u has ..f-behavior
on j ,  if  u—L w u  on W  for any W E U  such that VV. cR— K.

We note that u has ...C-behavior on j ,  i f  u = L u  for some WEB
such that W c R -K . In  fac t, le t W , be any s e t  in  QB such that

c R - K .  Choose W2 EQB sa c h  that W r1 W iD  W 2. Then the
consistency of 2  implies that, on W2 , u= L w u= L w ,(L w u)= L w y  and
L w ,u=L ,,(L w y ) .  By making use of condition ( 3 )  in  §2 w e have

(u—L w i u)(d(u— L w y ) ) * =  L w 2 (u—L w y )(dL w ,
3

(u— Lw  y))* = O .  It follows that u = Lw,u on W 1 .

§ 4 .  Canonical and positive operators

We shall give a  necessary and sufficient condition in order that
th e  regular operator Lg] induced by A  should be canonical or
positive. Let u E H D  and write u V 0 inf {v E HP; max (u, 0 )  on
R }  . It is well-known that u V OE HD, ild(uV 0)!IRSilduili, and u V 0
is th e  harmonic p art o f th e  Royden decomposition o f  max(u, 0).
Moreover, let { Q }  b e  a n  exhaustion o f  R  such that D„ i s  a
relatively compact and open subset in  R  and 812„ consists of a finite
number o f  analytic curves. T h e n  {Hiçr]7,x(.,,o)} converges locally
uniformly on R  to u V 0 and lim!IdHa,(..2)— d (uV 0) II 1?„ = 0  (see [4]

n -3.co

p. 6 1 ) .  We say that a  subspace A  of H D  forms a  vector lattice,
if  u EA implies u \/O A  (see [4] , p. 16).

Theorem 1 I f  a  subspace A  contains 1, then L TA,, is canonical
f o r any W EB. Conversely i f  L.(1

4,  is canonical f o r some W EU,
then A D 1 . I f  a  subspace A  form s a  vector lattice, then I 4  is
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positive for a n y  W E T P . I f  a  subspace A  does not form a
vector lattice, then there exists W 0 E G  such  tha t L ',44, is  n o t
positive for any WEU which is contained in W o .

P r o o f  If A  contains 1, then the construction of / .4  implies
L 1 = 1 o n  W . Conversely, fo r som e W E V  suppose th a t  L1 =1
o n  W . Then we find u i  EA, foED0 such that u1+f0=1 on  W . It
follows from Proposition 2  that u 1 = 1 on R, proving AD1.

Suppose th a t  A  form s a  vecto r la ttice . Let WEQB and let
fE c-(aw ) such  that f  O. W e can  ch o o se  uf E A  and f o ED°
such that L ilf=  uf + f o o n  W .  Consider the function g o w h ich  is
equal to .H 1;_ ( „f v o )  o n  W and H ;Z f v o )  o n  R - W .  H ere irfv_(.f vo)
denotes the Dirichlet solution on W  w ith  the boundary values

f  — (u\ I 0) on OW and 0  on the ideal boundary (3 o f  R .  Then
go E Do . Hence by our assumption we have uf  V0+ go EMr( W )•
On the other hand, the function u1 V 0+ g0 o n  W  is  eq u a l to
(uf+fo) U0=inf {v EHP( W );v max(0,u f + f o )  on W } .  In fact,
let {..(2,} be an exhaustion o f R .  Then, because o f th e fact that
f 0  on OW , we can prove that both  u1\/0+ g0 a n d  (u 1 + f 0 ) U0
are equal to the lim it of the Dirichlet solutions in Wnt2„ for the
boundary function equal to f  on OW and to max (u 1 , 0 ) on 8S2„ (cf.
[8] ). It fo llo w s fro m  II  d (uf  fo)II w I I  d ((u f f  U 0 )  f w  that
lid(u1V0+g0)liw Ad(u1+f0)liw=lid.Uf lj w . By m inim um  property
of L f  we infer that LTI.f=u1V0+ go, or Lklf=(uf+fo)U0 on W.
Hence L f >  0  on W , proving that U  is positive for any W EU
under the hypothesis that A  forms a vector lattice.

If the last assertion were not true, there would exist a sequence

{ W,} in B  such  that W .  D W.+1, f l  W„ =  ç and U ,  i s  positive. If
» =1

we write D„= R — W„, then {.Q„} is an exhaustion of R  such that A,
is  compact and as2„--OW„. Let u be any function o f  A  and let
u+=max(u, 0) on  R. For the s a k e  o f  convenience we write

3 )  This condition for the positiveness was suggested by Professor F -Y . Maeda.



178 Hiroshi Y amaguchi

14.= L „. First we shall show Ildulikv„ ildL„u'il w „ fo r a ll n .  Since
L„u+ is non-negative o n  -I f  and vanishes on a W„ fl {u< O}, we have
(dL„u+)*= (aL„u+ /an)ds 5 0  on aW„ n {u<o} where a/an denotes
differentiation in the direction of the exterior normal with respect
to  W„ . It follows from condition (3) in  §2 that

(dL„u+, dL„u) w „-1 u(dL „u+)*— u(dL„u+)*+ u(d.L„u+)Ow,,w . f 1 1 . 4 . . o ) aw„nfu<o)

>" u(dL „u+)* u+ (dL„u+)*-11dL„u+B,..—  ow .(-1[„ 01 Ow,,

By m aking u s e  o f  Schwarz's inequality we h a v e  II dL„u+ il w .
IldL„uji w  „I  (dL„u+ , dL„u),„1;.lidL„u+111., o r  11 dL„u! w „
Since u E ( WO, the definition of L „u implies II dull lidL„ull
Hence we see that jj dull w „._>._ dL„u+11 w .  fo r a ll n. Next we find
u„ E A  and fo,, E Do such that L„u+ = u„+ fo „ on W„ and  u„ +fo„ =
on S2„ (see the proof of Lemma 1). F or m >n , with th e  help of
triangle inequality, we obtain

lid(u+ f o ) — d(u„+ fo„)II 2R
W M7 —  dHfl„+!Idig7 — If dL „,u+ — dL„u+II;1

2r,.
— dH4„+ (11dH,f711 (4 _,.+IidL„u+11,„,_ 0 „) 2

+ (ildL,„u+Il w .+11dL„u+li w .,) 2

— d HM1„ + (11(111„2 o -  „ + f d u  f w „)2 +

O n the other hand, since {1-g7} co n verges locally uniformly
o n  R  t o  uV  0 , limild — d (uV 0)lip„= 0  a n d  u„ +fo„= i l f 7  on

12„ , it fo l lo w s  th a t  lim II d (u V 0) — d (u „ + 0  „)  ER =  O.H e n c e

d (uV 0) — du .I! R = limll d f °nil R =  0, because d HD id D o . It follows

from Proposition 4  that there exists a  subsequence {ico„,} in  Do

which converges to  zero quasi-everywhere o n  R .  T h is, together
with lim(u„ k „+ fOn k (z )= (uV  0)(z ) o n  R ,  implies that {u „ } con-

verges to u V 0 quasi-everywhere on R .  Since lim d (uV 0)— R

=0, we have b y  Proposition 3 lim uVO—u„ R = O. Hence uV 0
k . . .

A .  In other words, the subspace A  must form a  vector lattice,
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which is a contradiction to our hypothesis. The theorem is com-
pletely proved.

§ 5 .  Lemmas

Let j  b e  a com pact bordered Riemann surface with contours
(2) : U  (S 2 )  .  W e orient j3(2) positively with respect to 2,

and let ,9(12) consist o f q  contours (3,,9 q .  Consider to r ( S )
where S is an open set (with respect to .6.)  which contains q closed
ring domains { S 1 } 1  such that a s i D i g i  and g,n:971-0 fo r  i * j .  We
denote by cy, the other contour of S, and orient it negatively with
respect t o  S i :  aSi = Using th is notation w e  have the
following elementary lemma:

Lemma 2  There exists a n  0)E r ! ( 2 )  such that cù= 0) on

Û Si i f  an d  only i f 0)=0.A(0)

P ro o f  For the proof it is essential that 2 is connected. The
"only if" part is clear from the closedness of co. To  p rove  the "if"

part, suppose that 0)= 0 .  We write 0). Then a1=0.t=1BO)

We fix a closed disk i  in  12—S , and orient its contour 8=04 positively
with respect to J. For each i ,  we can easily construct a  closed of

class C ' differential co, on ii—z1 such that to, =  ( 0 , - 1  and to1 = 0
f 5 a,

for any j * i .  If we consider th e  closed differential 6 =  a ,o ),  on
i 1

th e n  6 = E  a, S' 0)1 = E a1 = 0 .  Hence there exists a  function
5 1=1 5 i= 1

g  of class C ' on , - 4  such that 6=dg on Z i —z1, where 4 ,  is  an
open disk containing a We are thus able to extend g  to being
kept of class C ' .  I f  w e s e t  6=dg  on and 6  on 2— J, then

6  / -1(,.(2) and 6 =a 1 f o r  each i. Because o f  t h e  fact that

(CO — îs) = 0 , we find a  function f ,  of class C ' on Si such that df,0,
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=0)-6 on S , .  Obviously, there exists a  function f  on .S2- -  o f  class

C2 such that f= f ,  on each S , .  If we set 0)= d f+ 6  on  ,.(2—  , then co

is one of the required differentials.

We return to a  hyperbolic Riemann surface R .  L et A  be a
linear subset of H D . Then we have

Lemma 3  I f  A  is closed in  HD, then dA is closed in r ' , .

Conversely, suppose that dA  is closed in T h e n ,  i f  either

AD1 or :4- 1D1, then A  is closed in  HD!)

P ro o f  It is clear from Proposition 3 that, if A l, then A  is
closed if and only if  dA is closed. Suppose that A  is closed and
A1. F irst w e sha ll show that, if  a is a n  arbitrarily fixed point
i n  R , then there exists a  p o s it iv e  number 2  A, such that

I u (a) /1.11 dull R  fo r  any u E A .  I f  such a  2,, did  not exist,
then we find a  sequence {u„} i n  A  such that u„(a) =1 a n d

du„ JIR O. It follows from  Proposition 3 tha t Ii 11 M - 1  Ill R  0,
and hence A 1. T h is  is  a contradiction. Secondly, le t u,,EA  and
{dun }  form a Cauchy sequence. Then the above inequality implies

that lim IH tt„ —  11.111 c = H ill (I u„(a 0 ) —u>„(a0)1+IIdu„—du.110
, n 1 ,1 1 — > o o , fl-*

4) There exists a  linear non-closed subset A  such that d A  is closed. In fact,
let R  be a Riemann surface such that the dimension of rh e  is infinite. First, take
a sequence fu n )  in  HD which satisfies un(ao) = 0  for a l l  n  and  (dun . du nz)R = 0  if

and = 1  i f  m = n .  Consider the space 1 2 = 4(= {Ed ); t i  is  rea l and 2 E !< ° 2'}
and w rite 110/2—(2 V " .  Then {E idui: {E/} l 2 }  is a  closed subspace in re, and
Proposition 3 guarantees that, for any 1= (Ed El', .SE iui(z) certainly is a harmonic
function on R .  Next, consider a  n o n - c o n t in u o u s  linear functional f  on I ' and set
A = f f  CO+ ( c l i p ) .  Then  it is  c lear that A  is linear and d A  is
closed. I f  w e suppose AB1, then there exists E*0 in  12 such that 1 = f  -  E/u/(z )
o n  R. Considering D irich let in tegrals, we h ave  0 =11d(EE1ui)irR=R11 2 ,  or
w hich  is a contradiction. Hence ./I191. On the other hand, since f  is not con-
tinuous at 0 ,  there exists a  sequence (Ow} in 1 2  such that lim iV n ) ili2= 0  and

lim f (E( n ) ) = 1 .  Then  w e have l im  f  (On ) ) + / M ) Ui(Z) 11 = 11MIO n ) 1112 = O. H ence
11—>e. 11, C .

closure o f A  in H D  contains 1. Consequently, A  is not closed.
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(2.0+1)Ifdu„ — du,„11,— O. O n account o f th e  closedness o f  A , we
find u in A  such that lim  I u„ — u  R = 0, and hence limjj dun — dull R

= 0 . T h u s dA is closed in T ',,.

Finally suppose that dA is closed and A- 1 )1 .  I f  we denote by
C the family of constant functions, then d (A + C ) (= d A ) is closed
and A + CB 1. The fact mentioned above implies A + C  is closed,
and hence A + C D A  W e  have thus dA—d(A+C)DdA - DdA, or

dA=dil". It follows from ;t1- 1 that A—A, i.e., A  is closed.

Corollary 1 L e t  A  be a  subspace o f  HD which does not
contain 1 and write <ui,u,>=(dui,duOR fo r  any u„ u 2 E A . Then
A  becomes a H ilbert space with respect to  the inner product
<  ,  > .  Moreover th e  linear functional Z : u --> u (a ) is con-
tinuous.

Corollary 2  Suppose that A and B  are subspaces o f  HD
such that dA is orthogonal to d B .  Then A + B  is closed.

P ro o f  Since dA i s  othogonal to dB, d (A + B ) is closed (see
for exam ple [1] , V, 7 G ) .  F irst suppose that A  or B  contains 1.
Then the above lemma implies that A +B  is c losed . N ext suppose

that neither A  nor B contains 1. Then A + B  does not contain 1.
For, if A + B  contained 1, then there would exist u„EA and v, EB
such that urn u ,  + y ,  — 1  I I R=  0. We have thus lim (u, (a 0) + y” (a0))
= 1 and 0 = lim du„ + (lidu„111+11dv„111), because dA_LdB.

S in ce  A131 a n d  B13, 1, it f o l lo w s  f r o m  2 du JR >: I u„ (ao)
A1,3oll CIO R>-: I V  (ao) th at lim u„ (a0 ) =lim v„(ao ) =0, which contradicts

lim (u„(a0) + u,(ao )) = 1. Consequently A+B $, 1. W e see from
n . 0 0

the above lemma that A + B  is closed in  HD.

§ 6 .  A  characterization o f L f

Proposition 6  L e t  W E  U .  L e t  fo E C 1 (R) f l  Do and w
E /- 1 ( W ) .  Then fow=0.
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P r o o f  Consider a  function F  in C 1 (R) which is 1 outside of
a compact set in R  and is 0  on  a (relatively compact) open set D
which contains R — W  and  whose boundary consists o f  a  finite
number o f  closed analytic curves. Then F f o E Do n C l( R )  and
F f o = 0 on Q .  T h ere fo re  the restriction  of F f o t o  R  S2 is a
Dirichlet potential on R —S2 (see fo r example [13] , Lemma 1). It
follows from dD 0 (R -2)1r,* (R — S 2) that (d (Ff 0 ), (0*),_,= O. B y

making u s e  o f  Green's form ula w e  h a v e  thus 0=  ( F f 0 ) ( 0
(3-a

— (Ff 0 ) (o = f o w . q.e.d.

Let A  be a  subspace o f H D . Since d A  is  a  subspace of T ' ,

(Lemma 3), we have the following decompsition : r,= d A+ (dA ) 1 .
For each WEU, we consider the following subset of /1( W) :

ZA ( W)= {coEr( W); Luco= 0 for any uEA } .

Since (dA ) i  + TA is orthogonal to  d A  (Proposition 1 ), to*E(dA ) 1

± M r  implies that 0=  (du, (0*) 5 = — tu o  fo r  any u E A , and
hence co EXA( W). That is, {co  W ;  G (dA ) 1 *+r,orl P i } cSA( W),
where co W denotes the restriction of co  to  W . I f  A  contains 1,
the opposite inclusion relation is  valid. I n  f a c t ,  l e t  co be any

differential in  ZA ( W ) .  S in ce  A 1 , w e  have Ç w= —  1w=0. It
,J aw

follows from Lemma 2 that there exists co E1 -1 (R )  such that Ç=

o n  W . F o r  any u e A , we obtain (du, 0)*),== =
a

uw=0.
•

Since rf  = r + rt= (d  A) + (d A) 1  + 11, it follows that co* ( (dA )i
+rt )  n ri ,  and hence CO E  (d .i4 ) 1* ± r,on p l .  We state this fact as

Rem ark If A 1 , th e n  . 'A ( W )
=  {COI W ; C O  (dA) i * +r, 0 n ri} .

The following characterization of L,1 f  will be used frequently.

Theorem 2 5 ) L e t  A  b e  a s u b sp a c e  o f  H D . Let W E  and

5 ) This formulation is  due to Professor M . Yoshida (see [ 1 4 ] ) .  The author's
original one was much more complicated, though they are essentially the same. On
account of this formulation the author could make the following argument simpler.
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f E c-(aw ). The function u =1 4  f  satisfies the following con-
ditions:

(a) u = f  on aw,
(b) u =v +f o o n  W  for some v E A  and f0ED0,
(c) (du)* ELA (W ).

Conversely, a  function u  with properties ( a ) ,  ( b ) ,  ( c )  must be
equal to L f .

P ro o f  In this proof we write simply U r— L . From th e  con-
struction of L f  we see that u = L f  satisfies ( a ) ,  ( b ) .  It further
satisfies ( c ) .  In fact, it is clear that ( d L f ) * E r ( r ) .  Let w  be

any function i n  A .  Take g o E C ( R )  such that g o = w  on W .
T h en  w— go E  M . S in c e  d L f  is orthogonal t o  A ,  w e  have

thus 0 =  (d(w— go), dL f)w = ( w — g o ) ( d L f ) * = o w (dL f )* . Hence

(dLf)*EEA( W ) .  In order to prove the converse, suppose that u
o+aw

satisfies ( a ) ,  ( b ) ,  ( c ) .  Conditions (a), ( b )  imply u(= v + fo) E Q.B1

Hence it is enough to show that lidLfli w  lid u ji w . There exists
E A, fo i  E Do n C i(R ) such that Lew f =v i + f o i  o n  W . By condition

( c )  w e have
a
v (d u )* = v , (d u )* = 0 . T h is , w ith  Proposition 6,

3

implies that
o
u (du)* (L f ) (du)* = 0 . Hence (dL f , du) , =

(L f ) (du)* f ( du)* u(du)* = lid uirw  . We concludeaw0+bw a
frO M S C h W a T Z 'S il le g l ia l i t y th a t a l l i w

i awl 

C o ro lla ry  Suppose that A and B  are subspaces o f HD such
that dA _L dB . L e t  W E U  and f E C '( a W ) .  Then there exist
fAEc-(aw) and uB E B  such that L'4,4"f =14 f B +u B  on W.

P ro o f  Corollary 2  to Lemma 3  guarantees that A +B  induces
the regular operator .1 4 + . We find UAEA, u n E B  and f oE Do such
that U v+Bf =  UA + UB +fo on W . Let u be any function in A .  Because

of dA _LdB, we have 0 =  (du, duB ) , A u ( d u B ) * .  This, together with
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(c )  in  Theorem 2, implies OJ u(d(uA +f0)) * , that is ,  (d(uA +fo)) *

G S A (W ) .  It follows from Theorem 2  that L 4(uA +fo)=uA +f0 on
W . I f  w e se t f A  uA +f o on  OW , then fA EC-(0 W )  and  U " f =
L .(ly fA+ UB •

Let L  be regular operator with respect t o  W E U .  Now we
are going to find a  subspace A  of H D  which induces L  for W, i.e.,
L i il= L. L et f G c - ( & W ) . W e extend  L f  onto R — W  to  b e  a
Dirichlet function F  on R  and denote by uri  the harmonic part of F
in the Royden decomposition, which is uniquely determined by L f  on
account of Proposition 2 .  Consider the following subfamily of HD:

a(L)—  fuLi; fECw(OW ))

and denote by A L  the closure of s-)T(L) in  H D . With these prepara-
tions we prove

Lam m a 4 L e t  L  b e  a  re g u lar o p e rato r w ith  respect to
W E B . T h e n  the subspace A L induces L  for W .

P ro o f  Let fE  C (a W ) .  We shall prove L L  f =L f  by apply-
ing Theorem 2  to  A = A L . I t  is  c le a r  th a t  L f  satisfies (a ) , (b).
L e t dg ( =w )  be any function in 2 1 ( L ) .  Then w e find from  the
definition of w a  Dirichlet potential g o such  that w + g o = L g on W.
Condition ( 3 ')  i n  § 2 , together w ith Proposition 6 ,  implies that

w (dL f )*=
a  

( L g ) ( d L f ) * J  g o ( d L f ) * = 0 ,  an d  h en ce  th a ta
(dw, dLf)w=

8 w
w (dL f  )* for an y  w a ( L ) .  Next let w be any

function in  AL . Then there exists a  sequence {w„} in  W (L ) such
th a t lim  w„—w I H R = O. I t  fo llo w s  th a t  limlidw„—dulw<

—dwlf,= 0 and {w„} converges to w uniformly on 3 W . W e have thus

(dw , dL f) w =lim  (dw „, dL f),— w„(dLf)*= w (dL f)*,
n-->eo aW

and h e n c e  w(dLf )*= 0, proving (dLf ) * G E A
L (  W).

3
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§ 7 .  Existence theorem for principal functions

Let L  be a  regular operator with respect to  W E  U . Let s be
a  harmonic function o n  W  except fo r isolated singularities not
accumulating to th e  boundary W . W e investigate  the existence
and the uniqueness o f  function p  harmonic on  R  except for the
singularities of s  which satisfies the following equation :

p— s=L (P— s) on W .

Theorem 3 "  ( I )  I f  L  is canonical, th e  necessary and

sufficient condition for the existence of p  is that (ds)*=0.aw
The function p  is uniquely determined up to an additive con-
stant.

( I I )  I f  L  is not canonical, then fo r  any s the function p
exists and is uniquely determined.

P ro o f  We denote by {a,} the set of singular points of s . The
necessity in  ( I )  is im m ediately proved. To prove th e  uniqueness
in (I) or (II), suppose that both p ,  and p ,  satisfy  p— s= z (p— s)
o n  W . Then p,—  p,c H D (R ) and p1-p2=L(p1-p2) o n  W . By
virtue of uniqueness theorem in  §2, we see that p i = P H -con st. if  L
is canonical, and p i= p ,  if  L  is not 'Canonical.

T h e  sufficiency in ( I ) : Suppose a g iv e n  s satisfies

the condition( d 5 ) *  = . . W e  e x te n d  s o n  R — W  soaw
that w e  o b t a i n  s C 2 (R — W ) .  Lem m a 2, together w ith

aw
(ds)* =  0  an d  th e  fac t th a t R —  W  is connected, implies that

(ds)* is also extendible to a  closed differential 6 on R —  W, that is,
6 E r (R — W )  and  6 = (d s )*  on  W—  {a,}. Then since d + 6 *  is

identically zero on W— {a, } ,  it  is  square integrable o n  R .  Namely,

6 ) The existence and the uniqueness o f  p  for Lo-operator a re  well-known (see
[1 ], III, 3A ). Using this fact, we can easily prove Theorem 3  (see § 1 1 ) . Here we
shall prove Theorem 3 by a  method of orthogonal decomposition, which is different
from the one used in M . N akai and L. S a r io  [7 ] .  In  this connection confer with
B. Rodin and L. Sario C12).
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c rs+6 * e .r. Now we take th e  subspace A L =A  inducing L  for W
(Lemma 4 )  and consider the orthogonal decomposition:

r=d (A +D 0 )+((d A ) 1 H- r ) •

We use this to obtain

cl/ Ns+6*— dF+0) o n  R,

where F E  A + D o  a n d  w G  (d A)i + 1'70 . O n rewriting the equation
in the form

crs—dF = —6* + (0 o n  R— {a1},

we find that the differential on the left is exact (and hence closed)
and the differential on the r ig h t  is  coclosed o n  any region which
does not contain any a1 . Therefore the above differential is harmonic
on R— {a,} (W eyl's lem m a). In particular, we may assume that F
is  of class C 2 o n  R  and w is  of class C 1 o n  R .  If we set p=s— F
o n  R— JA L  the function p  is harmonic on R— {a1}. L e t  u s  prove
L(p —  s) = p s on W . Since s=s  on W, it is enough to prove L F= F
on W . It is clear that F  satisfies conditions (a), ( b )  in  Theorem 2
for f  = F .  Since 6= (ds)* on W , w e have, on W , (dF)* = (crs +6*

0)) *  (ds)* — 6 — 0)* = — w.. It follows from co*E (d A) 1 *  + ,o n r
a n d  th e  rem ark i n  § 6  t h a t  (dF)*IW  G  EA (W ). Consequently
Theorem 2  shows L F =  F  on W , or L F = F o n  W . Hence p  is
one of the required functions.

T h e  ex isten ce  in  (II) : For given  L  consider th e  canonical
operator L ' which is defined in the remark in  § 2 .  Also for a given

consider th e  function s'=s— cL1 o n  W  w here c =  ( d s ) * /aw
(dL 1)* . Then we can apply ( I )  to these L ' and s ',  and have a

aw

harmonic function p ' o n  R  su ch  th a t p' —  = — .3') on W .
Precisely speaking, p'— (s — Lc) = L (p' — (s — c) —c 1 ) +c 1 o n  W where

(dL(p' — s'))* (dL 1)* . If we set p = —  c, on R , then p
aTV 8w

1S harmonic on R— {a,} and p—s—L(P— s) on W .
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p  will be called the Principal f unction associated with s  for L.

§ 8 .  Uniqueness fo r  A  which induces a  given L

Lemma 5  L et A  be any  subspace o f  H D  an d  W  be any  set

in  U . T h e n  '.2.1(L )= A .

P ro o f  First we shall show that, for arbitrary two points a and
b  in  R—  W , there exists a  function u ,5 =  u , 0 in  a (L )  ( c  A ) such

that (du, du„ h) R= u ( a ) — u ( b )  for any uc A . Let A (resp . . 1 )  be a
closed disk in R—  W  with center at a  (resp. b) and let il:11:21;= 0. We
set W1 =  WU da U J b .  We apply Theorem 3 to  W=  W 1 , L =1 4 ,  and
s= log 1/Iz— al on 4 , =  —log 1/ z on Ab and = 0  o n  W . Then

(ds)*= 0, and hence we can solve th e  equation p—s—L(p— s)

on W1 . Thus there exists a  harmonic function Ga,b (z; A ) = GA (z)
=G (z )  on R— {a, b} su ch  th a t G(z) —log 1/ lz— a l  and G(z) +log
1/ I z — bj are harmonic on 4  and 4  respectively and that L„,G = G on
W.7 ) H ence w e find  vE '.21(U )  and f o Do su ch  th at G =v +f o on
W . Now we consider a  special case: A = {0 } and write G,,,(z; {0} )
= G° (z ). Then G° =0+ g o = go on  W where g o is  a certain Dirichlet
potential o n  R .  Set b = 1/27r (G —  G°). Since tt, b H D (R )  and
u„0=1/27r(((v+ f 0) — g o )  on  W, it follows from  Proposition 2  that
u„, 0 = (1/27r)v, proving u”,5EsA(L11). Let u be any function in  A . By

(c ) in  Theorem 2 we have
a
t t ( d G ) * =  u(dU,G)* =0 . According

3

to Proposition 6 we also have
a

G° (du)*
a

g o (du)* =0 . Computing

Cauchy's principal values, we have thus (du, dG),,=27r(u(a)— u(b))
and (du, dG°) R = O. Consequently, (du, du a,b) R  =  (a) — u(b ), proving
the assertion.

Next we shall show d['21(L )] = dA . We write simply '1(.L,1',')

7 )  It is  an immediate consequence of the defin tion  o f regular operators that La'1
is composed of H 4 . .  H 4 " and U  on da, dr, and W  respectively where 1-14 ,f ,  for instance,
is defined by M a .  Hence l i a ao-zogiitc-a(z)— G(z)—log 1/1 z—al and 1-Pba,10011c-b1(z)

G ( z ) + lo g  1/1z—b I on 4,, and do.
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= A '.  Let u  be any function of A  such that du is  orthogonal to
d A '.  Then since d u ,,,E d 2 I(L )c  d A ' f o r  an y  a,bE R — W , we
h av e  0=  (du, du ,)R =u(a) — u(b). Hence u  i s  a  co n stan t o n  a
non-empty open set R —  W, o r  o n  R .  Namely d u = 0 .  W e have
thus (d A') 1  (d A ) = { O} . O n  t h e  other hand , dA Dd A ' , because

A D a ( L ) .  Since dA  and dA ' are closed (Lemma 3 ) ,  it follows

that dA =dA ' + (dA ') ± n (d A )= d A '. Finally le t  u  be any function

in  A .  Then d A =d A ' implies that there is a  function s u c h

that dv =du, that is , v= u +c  where c  is a constan t. If  A 1 ,  then

Li,1 is canonical (Theorem 1 ,)  and hence ça(LIAv ) D 1 . Consequently

A '  it. I f  A 191, then c= u —  v (E  A ) must be O. Hence A' Dv — it.
Therefore A = A'.

Rem ark In the above proof we do not assum e A  1  o r  191.
Now suppose t h a t  A 1 .  F ix  a point a in  R  and let W E B  such

that ITITI9a. Since L'.1 is not canonical, we u s e  ( I I )  in  Theorem 3,
by a  similar method to that in the construction of G ,( z ; A ),  to
obtain a  harmonic function G „(z; A) = G, (z) o n  R —  {a }  which has

th e  singularity log 1 / i z — a j a t  a an d  has L G ,=G , o n  W . T h e
same reasoning as in  th e  above proof implies that u:=  ua =
EÇA(L,A,) and, for any uE A , (du, d u ,) ,=u ( a ) .  Using th e  termino-

logy in  Corollary 2  in  §5, we have thus T,u= <u, u„> for any uG A.

Theorem 4  L e t L  b e  a  re g u lar o p e rato r w ith  respect to
W E .  T h e n  t h e re  e x i s t s  a  unique subspace o f  HD w hich
induces L  for W .

P ro o f  T he ex istence was shown i n  Lemma 4. I n  order to
prove th e  uniqueness, l e t  A  be any subspace such that L = L .
Then, it follows from Lemma 5  that A =9T(1.4)=9Jt(L)=A L, which

is defined i n  §6. Hence A  is uniquely determined by L  and
coincides with A ,.

For a given regular operator L  with respect to  W , we denote

in the sequel by A (L ) the subspace inducing L  fo r  W, i.e., L =L .
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Consider the following subset of HD:

A L = { u HD; (dLf )* = 0  for all f  G C.(8W )}  .

With these notations we have

Corollary 1 AL= A L = A (L).

P ro o f  It  is  c le a r  th a t A L is closed i n  H D .  Hence it is

sufficient to prove that AL induces L  fo r  W . F o r  th e  sake of con-

venience we write U L  =L 1 an d  141,L=L2 . L et u  be any function of
A L . Then we see from L 2 =L  (Lemma 4 )  a n d  ( c )  i n  Theorem 2

that, for any uE  A L ,
(3

u(dL f )* u(dL, f )* = 0  for all f  E C 'O W ) .

Hence ALD A L  . I f  f  is any function i n  C '( W ) , w e  h ave  thus

f !! w SI! dL2f w = . On the other hand , w e find  ue AL

and f o G Do such that L i f = u + f „  on W.
a
u (d L f)*= 0 , together

w ith  Proposition 6 ,  implies
a
(L i f ) ( d L f ) * = 0 .  It follows that

(dL if , dL f . ) wj a , f ( d 1j ) *  =IJd L f Ij, and hence ljd-Lif ilw.

Consequently L i f  L f  on  W.

I n  § 3  w e  h a v e  seen that a  subspace A  o f  H D  induces a
consistent system SA= {L,}  H ere w e sha ll s ta te  th e  con-
verse as

Corollary 2 L e t  _X= {L iv } , , g y  b e  a n y  consistent system.
T hen there ex ists a unique subspace A  such that ...EA =

P ro o f  The uniqueness is clear from Theorem 4. Let us prove
the existence. For each W E U , consider the subspace A ( L ) .  Let
W1, W 2 be any s e t  in  U. such that WI  D  W 2 .  We write simply
L w i =L i  a n d  L , 2 =1, 2 . T hen , since L z (L if )=L if  o n  W2 f o r  any

f E  C' (a ,  we easily obtain AL' D ALz D  ( L 2 )  D  (L i). Because

of ALL= 24, 1 =VI(L i ) (Corollary 1 ) ,  w e  h a v e  A (L i ) = A L I =  AL'
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=A (L 2). It fo llow s that a ll th e  A (L w ) coincide an d  hence we

denote it by A .  T h en , fo r any W EU, .L4= LV o=  L .  That is,
_EA _

F ix  Wo in  U. Consider the following families:

{L} =the family of regular operators with respect to  Wo ,

{A} =the family of subspaces of HD,

{1'} =the family of consistent systems of regular operators.

On account of Theorem 4 we have an onto and one-to-one mapping

ço: {A} — “L }  such that w(A )=14 4, 0 . By Corollary 2 we also obtain

an onto an d  one-to-one mapping {A} such that qr(A)
= _CA . Denote by .Y)  t h e  projection: {1 1  {L} , i.e., 2 (J')= L ,,
where ...t= { L w } w .u . Then we obtain g ) =Çoolvi, and  hence 2  is

onto an d  o n e  to  one. Otherwise stated, f o r  a  giv en regular
operator L  w ith respect to W o th e re  e x is ts  a unique consistent
sy stem  { 1,} ,, E a n  s u c h  th a t  1 , 0 — L . Summarizing th e  result, we

have the following commutative diagram:

{A}

{ { L }
cp

L et L  be a  regular operator with respect to  W  a n d  le t  a  be
an  arbitrary point i n  W .  Then we have the following

Proposition 7  T here ex ists a  signed m easure 14= which

satisfies f d p , = L f ( a )  fo r  all fEC 'O W ). H ence w e can ex tendaw
the dom ain o f L  f ro m  C 'O W )  to  C (W ) , w h e re  C (W )  is  the
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family of continuous functions on W .

P r o o f  W e choose a  p o in t  b  i n  R — W  a n d  consider the
subspace A ( L ) .  I n  th e  proof o f  Lemma 5  w e constructed  a
harmonic function G,,,,(z; A (L ))=-G(z ) o n  R — {a, b} w h ich  h as
positive and negative logarithmic singularities at a and b respectively

an d  h a s  _CA( L) -behavior on 9  ( s e e  §3). I f  w e  s e t  G- ,(z; L , W )
(z ) G  (z ) — LG (z) on  W , then the function  G  is a  harmonic

function W— {a }  w hich  has a positive logarithmic singularity at
a, assumes continuously 0 on 8 W  and ...CA ( L) -behavior on There-
fore, computing (dLf, d'a)w a s  Cauchy's principal value, w e  have

Lf (a) — — (1/27u) f (d 5 )* .  Hence the required measure [I, existsaw

and 4,-- — (1 /27r)(i/an)ds.

§ 9 .  Reproducing kernels

Let T', be any subspace of r,=r,,(R ) and r  be a  1-chain of R.

Then there exists a unique element co;, --- coy  in such that (co, coy ) , CO
7

for a ll w . The differential co7 is called  th e  reproducing kernel
associated with y  fo r P .  ( s e e  [1 ] , [2 ] , [11 ] o r  [14] ). B. Rodin
expressed th e  kernels fo r  several known subspaces in  term s of
principal functions for L , and (P )L i . But the situation is different
for the kernel for r s a s  he could not treat. Here we shall express
th e  kernel fo r any subspace I ' ,  such that o r  1-"D r,,, in
terms of principal functions fo r regular operators. The proof can
be achieved, under our existence theorem, by a  method similar to
B . R od in  [11] . Since PsD rho , th is  w ill  g iv e  u s  a n  answer to
Rodin's question ( [111 , p. 989, R em ark). W e m ay assum e t h a t  r
is 1-simplex contained in  a  parametric disk J= { I z  I < 1 }  and write
r "  a b .

The case where Let A ' A =  {uE  H D ; d uE r,}. Then
A  is  a  subspace of HD containing 1. Thus A  induces a consistent
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system  ...EA of canonical operators. By exactly th e  same reasoning
as in  the proof of Lemma 5 w e have

w y=  (1/2n)(dG— dG°)

w here G  (resp. Go )  i s  a  harm onic f unction on R —  {a, b }  which
has logarithm ic  singu laritie s  w ith  coefficients +1 , — 1  a t  a, b
respectively and has 1 ." - (resp. ...r °1-)  behavior on

The case w here  I" ,D rho : Consider the orthogonal comple-
m en t r!- of . r , D T  implies c rl*  .  I f  w e w rite B
= { uC  HD; duEr;L* } , then B  also induces the canonical system .,.E 3

=  { L }  Ty. W e set s=arg(z— a) / (z — b) on A — y and =0  on W
such that  W f l = ç b  a n d  R —  W  i s  a  d isk . T a k in g  R —  r  t o  b e  a
g iv en  R iem ann surface, w e  chocse th e  regu lar operator L  with
respect to WU (A — y ) such that for any f  C - ((aW )u  (0A )), .L.f is
L f  o n  W  and i s  the restriction to —y of the D irich let solution
H .  A p p ly in g  ( I )  i n  Theorem 3, w e  h a v e  a  harmonic function
p  o n  R — r  sa tisfy in g  p— s=L(p—  s )  o n  W U (d — y). T h a t  is,
p= Lft p o n  W  an d  p (z) = arg(z —a)/ (z — b) + u ( z )  on A  — r  where
u is  a  harmonic function on A. S in c e  r,—  (d B )* ,  condition (b )  in

Theorem 2, together with the remark in §6, implies 0 =  (L,Lvp)0)= p o )
3

for all co e F,, and hence (0), (dp)*)„— (w, (dp)*)„_,— (arg(z — a)/cy)
(z— b))a )=- 27rS co, w here indicates the integration carried arround

Y CY)

S in ce  G° = g o o n  W  f o r  so m e  g o E  Do n C l (R ) , it fo llo w s
fro m  Proposition 6  that (co , dG °)R  0  a s  a  C au ch y 's  principal

v a lu e . Hence (w , 1/2n((dP)*± dG 0 ))R = .  O n  th e  o th er hand,

(dp)* + dG° e  i . I n  f a c t ,  obviously (dP)7* + dG° T' .  We see from
the remark in §6 and (c ) in Theorem 2 that there exists w ,EF, and (or°

E  r „  r  such that (dP) * = (dET'v)* w, + w,, o n  W . W e have thus
(d p )*  dG° — 04+ (0,0 +d g 0 on W. On rewriting the equation in the form

(dp)*+dG ° - 0), - 0)„+dg o o n  W,

we find that the differential on R  on the left belongs to F h b e c au se
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R — W is simply connected. Since the differential on R  on the right

belongs to dDo=r, o , it follows from Proposition 2 that (dP)*+dG °

— 0),=0  on R, proving (dP)* + dG° E  .  Hence

co-y =1/27r((dP)* +dG'),

where d p  is  a harmonic differential on R— {a, b } such that p  is
single valued on R— r , has .SB-behavior on 19 and has the follow-
ing form near r : P=arg(z — a)/(z — b) +u  where u is  a harmonic
function on 4.

' 1 0 .  Convergence theorem

Let S  b e  a  subset o f  H D . W e denote by 1.3- ] th e  smallest

subspace of H D containing S.

Theorem 5  ( I )  L e t {A„} be a sequence o f  subspaces o f  HD
c.>

such that n[uAki=u(nAk), which we denote by A . Th en , fo r
21 = 1 k  =n )1 = 1  k = ,1

any W E U  and f C ' ' ( a W ) ,  we have —dI4f!fw=0.

(II) L e t  {s2„} be a  sequence o f  regions in  R  such that
-

Z 4 - 1  S2, and  U s2„= R. Suppose that A.  (resp. A )  is  a  subspace
n =1

o f H D  (.9„) (resp. H D (R )) which satisfies the following condi-
tions: (cy) F o r  each u S A , th e re  e x is ts  u„E A„ such that
lim  u „ — u  „ = 0 .  ( )  I f  {u„,}, u„,EA„, is  a sequence such that„->ce
sup ildu„,11 Q , < D 0  a n d  {u,,} converges t o  u  locally uniformly
o n  R ,  then u  belongs to  A. T h e n ,  f o r  a n y  W E  a n d  f

we have limJdL f—dI4 f jjw„=0 where W„— wns2„.
-

P r o o f  (I ) I f  we se t .13n= LU A d , then B„DB„+ ,  and n B„= A.
k = n n=1

W e w rite  s im ly  L ,P=L „ and = L .  W e can  find  u„EB „ and

fo.E Do such that L„ f = u„+ fo„ o n  W  and u„+f 0 „=1 /1 . ' on R —  W.
Since B, D  B,, + 1  D  A , we have liclL„ f —  dL„Fi f lic1L.+1f --lid -LJN-

0  a n d  oc > lidL f  IIT, f 11,v . Hence 0= lim dLn f —  dL„, f
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=lim  J  d(u„ + fo,,) — d (u„-hi + f 4.1)II1 = lim (II du„ — du.+1II 2R + J df 0„
—  dfo „+,111). Therefore using Propositions 3, 4 by the same method as
in  th e  proof o f  Lemma 1 , we see that there exist subsequences
{u„,}, {f0„„} and uE HD, such that urn J u.k R =  iimÎfdfo„, —  dfolIR

k—>o= k—>co

= 0  an d  {f 0„,} converges to  f o quasi-everywhere o n  R .  It follows
that uE B„, fo r  a ll k , i .e ., uE A .  Consequently, u + f 0 M c M k .

This implies that

lim !Id L f— dL„,f g=lim(IIdL f v  IIdL„„f V, <lima d (u + fo )11,1,
k—>c. k->c›. k-->Do

IldL„kf11)=1im f(Jldu112.— Ildu, I2R)+ (11df0111— Ildfo„,111)} =0.
k—>c.

Since {B„} decreases, we h ave  th u s lim —  dLf1,.fg = O . On
71— )c a

th e  other h an d , if  we se t C„- -- n A _  w e  have sim ilarly limIldL4',f
k  = n

— (114' f =  O. It follows from C„c A„c /3„ that limildLg,f —  d14,̂ f II,
0.

(II) W e  w r ite  s im p ly  L =  L „ ,  L = L  an d  R —  W = G . We
can  fin d  u„GA„ ,  f o „ E Do (s2„) such  that u„+ f o „ =  L„f on W . a n d
= H  o n  G. O b serve  that II dL„ f dL,;)!, d TPX.11„.
 ! I d MO <00 where HT"  denotes the Dirichlet solution on
W, whose boundary values are f  on a W  and 0 on the ideal boundary
,G(S2,) o f  2 „ .  We h ave  If du,,II 2,+  Ild fo „111,, = Ildu„+ d fo „111„= IldL„f

+ JJdHJJ 5 M1+ d MII 2G (= < 00 . Hence we see that {II
is bounded. This implies that a subsequence {f o „k}  converges locally
uniformly o n  W . In  fac t, because of the fact that f0,= H :  on W„
an d  th a t  il d f 0 n l iw „ M 2  it is enough to show that, fo r a  fixed point
a  in  W , { fo ,(a )}  is  bounded . S ince th e  harmonic measure col: '
(fo r  D „ ) has fin ite  energy , f0„E Do(S20) y ie ld s  ( s e e  [ 4 ] ,  p. 79)

(d fo „ , dp'!=v "),,, = 27r
ac 

fo.dw"» =27r111
.4:(a) = 27r fo „(a). {II dp-T '

is bounded, because limildP"'T" 0,„ = 2r lim v"doZ".--- 27r lirni-i g
wo% (a)

ac

—27rlig
wir?,(a)— IldYTPR <  co where g "  and  g'„? are  Green's functions

with pole a t a on S2, and R  respectively. It follows from Schwarz's
inequality that {f 0„(a)}  is bounded.
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Now, since ficIL„,flj w „, M , and  L„, f= f on aw fo r  a l l  k , we
can find a  subsequence {L„, ) f} (w h ic h  w e  d e n o te  b y  {L „ f})

w h ich  converges locally un iform ly o n  a n  o p e n  s e t  containing

W . Since u„= L,f—fo „ on  TV,„ w e conclude that {m } converges
locally un iform ly to  u  o n  R .  In particular, { f ° , }  {L, f — 74,}
converges t o  f o e  c- (a w ) uniformly o n  8 G ,  a n d  hence from

f =  Hijo", on W .  i t  converges to  H Ij o un ifo rm ly o n  W . Because
of II dttvi  M 2 ,  condition ( )  implies uE A . If we extend IPL to
G  b y  H;.o ,  which we denote by g o , then  u+  g0 M .  Hence we
h a v e  II d(u + g o ) — dLfil?4,= ild (u+  g 0)111 — IldLf O. S i n c e  {L„ f}
converges to  u+ g o un ifo rm ly on  every com pact set K  on W, it
fo llow s from  Fatou's le m m a  th a t  II d  ( u  g o ) 11 w l im  j dL.f  .

Moreover lim(dL„f, d (u+  g 0 ) ) 14,=11d(u+ ROO?, r. In fact,

1(.911, f ,  d (u +  go)) w. — Ild (u+  go)% 1_1(dL ,f, d (u+  go))w ,-K  I
+ild(u+ go)II?v_K+ (dL„ f — d(u + go), d(u+ gO)K1
<11dL,f jid(u+ go)11w-K+Ild(u+ go)ljwild(u+ g o ) l w ,+ lie lL „ f
—d(u+ g o )I lidd (u+  g0)1 M1(211d(u+ g o ) I I W - K  ildL„f —d(u+ g0)110 •

Since suplid(u+ go)11K-11d(u+ go)l! w and lim d L„f — d(u+ go )IIK = 0 ,
/CCTV

this inequality yields the above relation.
O n  th e  o ther h an d , it i s  c l e a r  f r o m  condition ( a )  that

lirn ildL,J11 11dLf Ilw • W e have thus lid (u+go ) jIw =lim ildL„fil iv ,

= Il d f 11w). Consequently, limildL„f — d(u+ go )liw,= 0 and u + f,

is  e q u a l to  L f  o n  W , which is independent o f  th e  choice of
subsequence {L,f } . It follows that lim dL„ f — dLf O.

§ 1 1 .  Examples

Example 1 (L o -  and (P )L i -operators) I f  w e  tak e  H D  (resp.
(P )H M ) for A  in §3, then it contains 1  and forms a  vector lattice.
It follows from Theorem 1  th a t  H D  (resp. (P ) H M ) induces a
canonical and positive operator Lff,D (resp. LfP"m) fo r each W
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By virtue of Oikawa's characterization for Low in  [9] , we have

L r = L o w  an d  LV ) ""= (P)Liw

F o r  th e  definition o f  L o w  a n d  ( P ) L ,  refer to Chapter I I I  o f

L . Ahlfors and L. Sario [1 ]. In case P  is  the canonical partition

( [1], I ,  38A) also see Y. Kusunoki [5].

R em ark  Let us prove ( I )  i n  Theorem 3  by m aking use of

the fact that there exists p '  on R  which satisfies p'— s=Low(p'— s)
(see footnote 6  on  p age  185). Consider th e  subspace A= AL
(Lemm 4) and set B = { uE HD ; due- (dA ) 1  nr „ , }  . Then A  + B
= HD and d A _LdB . It follows from the corollary to Theorem 2 and

L r = L o w  th a t th ere  ex ist gE C '(6  W ) and uE B  such  that p'— s
=  g +  u  on  W . Therefore p= p'— u is one of the required functions.

Example 2  (L rn"*-operator) We consider the following sub-
sp ace : HD fl HD* = {u E  HD; u  h a s  a  s in g le  valued conjugate
harmonic function on R } . T h e n  HD F1HD* contains 1  bu t there
exist surfaces for which HD n H D * does not form a vector lattice.
O n  such  surfaces, L r n " "  is canonical fo r  each  W EU, but for

sufficiently sm all W EB it is not positive (Theorem 1 ) .  Since
= d (HD F1HD*), w e see from  the case where r., D r ,,o  in  §9 that
the reprcducing kernel for T's can be expressed in terms o f 1/,',,DnH D *

principal functions.

Example 3  (D irichlet operator H w )  W e  ta k e  { 0 }  fo r  A.
Then we have positive but not canonical operator L V .  Obviously
each a  is equal to the Dirichlet operator H w  (see  [3]).

Example 4  (Neumann operator N W ) We assume that a given
Riemann surface R  i s  a  region in  th e plane whose boundary /3
consists o f  a  fin te number o f  clo sed  analytic  Jordan curves.
Consider the following subset of H D :

97,= {uE H(RU t9) ; ouds =0}
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and write its closure i n  HD by N .  Then N  is a  subspace of HD
which neither contains 1  nor forms a  vector lattice. Hence Lii r is

not canonical o r p o sitive . We say that L,N, is the Neumann operator
with respect to  W , and denote it by N W . N ; ( = u )  is characterized

by the following properties: u  i s  a  harm onic function on W U

such that u= f  o n  8 W , u d s=0  an d  au/au = const. on 0 .  Now, let

aE R  and let A  be  a  disk with center at a  an d  4 1 1 2  b e  th e  con-

centric disk with radius one-half of A . W e  w r ite  W= R —  (4 —  4 1 1 2 )
and W 1 = W— if, and  set s=log 11! z —  a l  on 4 1 1 2 ,  = 0  o n  W1 . On
applying ( I I )  in  Theorem 5  with L = Nw , w e  h av e  th e  harmonic

function N (a, z )  on R —  {a}  such that N (a, z) = log 1/1 z — a I +u(z )

on 4 1 12
—  {a} where u is a  harmonic function on 4 1 /2 ,

a

N (a,C)ds < =0

and 8N (a, C )/a n = c o n s t. on Consequently, N (a, z )  is what is

called the Neumann function with pole at a  (see  [2]).

Example 5  F ix  a  p o in t a  i n  R  an d  consider th e  following

subspace of HD:

{uE HD; u(a) =0} .

Similarly we see that L ;° is not canonical or positive. In particular,

le t  R = { z ; z i<1 }  and a =0. T h e n , since u (C )d s  =27ru ( 0 )  for
41=1

any uE H{ Iz 1<1}  , we can prove N= N .  Hence in  this case
coincides with the Neumann operator.

L e t {S2„} b e  a  canonical exhaustion of R  (s ee  [1 ], I , 2 9 A ) .  If
we s e t  A „= HD (s2„) (resp. (P)HM (s2„), (HD n HD*)(S2„), {0} and
N (1 2 „))  and A =H D  (resp. (P)HM , HDF1HD*, {0} and N „), then
it is clear that they satisfy conditions (a ) ,  of (I I ) in  Theorem 5.

Suppose that R  is a  hyperbolic Riem ann surface. F ix  Wo U.
O n applying Corollary 1  in  §8 t o  L = Hw . an d  L= L o w ,„ we have

th e  following two simple facts: i )  If uE HD and u (d 1 1 )*  =
for all f E C '(8 W ) , then u =- 0. i i )  The space HD is identical with



198 Hiroshi Y amaguchi

the closure of the set {the harm onic part of the' Royden decomposi-

tio n  of L o w  f  ;  f  C. ( w 0 ) }  •
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