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Introduction. Let R be a commutative ring with a unit element.
In  [10], Lazard has shown that there is a unique (up to isomorphism
over R ) maximal ring extension M (R ) of R  such that M (R ) is  R-
flat and the canonical injection j  of R  into M (R ) is an epimorphism
in  th e  category of commutative rings with units, that is , if  f  and g
a re  ring-homomorphisms o f  M (R ) into a commutative ring R ' with
a unit element such that f i  = g j, then f =  g  (we always assume that
a  u n it element is mapped to a unit element). M (R ) is also charac-
terized by the  property that if  S  is  an overring of R  such that S  is
R-flat a n d  th e  canonical injection of R  into S  is  an  epimorphism,
then S  is isomorphic to a  subring of M (R ) which is R-flat.

On the other hand, a maximal quotient ring Q (R ) is defined for
a n  arbitrary (not necessarily com m utative) ring R  as a  m axim al
rational extension (the definition of a  rational extension is stated in
§1) o f  R  in  an  in jec tive  envelope* )  o f  R  a s  a n  R-module and is
unique u p  to isomorphism over R .  In  the case where R  is commu-
ta tive , Q(R ) is also com m utative and contains the total quotient
r in g  T (R ) of R  (se e  [5 ] o r  [8]).

Bourbaki has given a  general method to construct "rings of

*) An injective envelope of an R-module M  is an injective R-module which is
an essential extension of M  (see Def. 2 in §1), and is unique u p  to  isomorphism.
If an R-module N  is an essential extension of M, then there is an injective envelope
of M  which contains N.
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quotients", which we call Bourbaki-Gabriel rings of quotients, of an
arbitrary ring in several exercises (see Chap. I I  in  [3]).

In this paper, first (in §1) we shall study some relations between
Q (R ), M (R ) and T (R ) of a commutative ring R .  In §2, using the
results in §1, we shall show that if f:R.—.1?' is  a flat epimorphism
of commutative rings, that is, R ' is R-flat and f  is an epimorphism,
then R ' is isomorphic to a Bourbaki-Gabriel ring of quotients of R.

Throughout this paper, a ring will mean a commutative ring
with a unit element.

The author wishes to express his hearty thanks to Prof. M. Nagata
and T. Nishimura for their kind advices.

§ 1 .  First, we recall some definitions and well-known results.

Definition 1 .  Let R  be a ring and let M c N  be R-modules.
Then N  is called a rational extension of M, or M  is rational in
N  if for every pair x, y  o f N  with y*O, there is an r  in R such
that rxE M  and ry *O . I f  a  ring R ' contains R, w e say  that R'
i s  a  rational extension of R , or R  is rational in R ' i f  R ' i s  a
rational extension of R  as R-modules.

Definition 2. Under the same notations as above, N  is called
an essential extension o f  M  i f  fo r  any  non-zero submodule M' of
N, we have M r1M '*0 . For R and we have the same definition.

From the above definitions, it follows immediately

Corollary. I f  N  is  a rational extension of M , then N  is  an
essential extension of M.

Theorem 1 .  Let R, R' be rings such that R cR ' and let f
the canonical injection of R in R '.  Then f  is  a f lat epimorphism
if and only if  fo r  every xER', (R: x)R' =R', where (R: x) is, as
before, the set of rE R  such that rxER.

Pro o f . First we shall show that the condition is sufficient.
L e t  {x,} and {r,} be finite subsets o f  R ' and R  respectively,
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such that E r i x i = 0 .  Since (R  : x ).12/=R ' fo r  every i, w e have

( f l (R : x ; ))Ri ' = R'
 

Hence there are finite subsets {a1 } and {y i }  of

n(R : x;) and R '  respectively, such that a .  y = 1. Setting

c; ; =a ; x i ,  w e have x i c j i y ;  and cif = 0  fo r every i  and j,
which shows that R ' is R-flat.

To prove that f  is an epimorphism, it is sufficient to show that
for every x  in R ', x 0 1 = 1 0 x  in  R 'q R ' by [ 1 3 ] .  Since (R  : x )R '

=R ',  w e have a relation E bi z i =1  with bi E ( R : x )  and z i ER'.
Then  x= E xb z ; = E hi; x z ,  w ith  bi x E R  and s o  w e  have x 0 1

x®Eb, z i
t= E bi x e) z  =10E x l z i = 1 0 x .  Thus the condition is

sufficient.

Next, we shall show that the condition is necessary. Since R ' is R-
flat and since R 'O R '=R ' by [13], regarding R  and xR  as R-submodules

of R ', we have (R  : x )R ' = (R : xR)OR' = R ' : xROR' = R ' : xR/ = R '
R I R I

Thus the proof is complete.

Corollary. Under the same notations as above, i f  f  is a flat
epimorPhism, then R ' is  a  rational extension o f  R . Furtherm ore
we have a canonical injection of  R ' in  Q(R).

Pro o f . Let x , y  be in R ' such that y Since (R  : x )R ' =R ',
(R  : x)y*O , which implies that there is an r  in R  such that rx  is
in R  and ry and so R ' is a rational extension of R .  By the
corollary to Definition 2 , R ' is  an essential extension of R  and,
therefore, R ' is  contained in  an injective envelope E ' of R  and so
in a maximal quotient ring Q ' of R  isomorphic to Q ( R ) .  Then it
is clear that the isomorphism of Q ' onto Q (R ) maps R ' into Q(R)
isomorphically.

From the above corollary, we may assume that M (R ) is contained
in  Q ( R ) .  Since the canonical injection of R  in to T (R )  (=total
quotient ring of R )  is clearly a flat epimorphism, we may also assume
that T (R )  is contained in  M ( R ) .  Thus we have the following
inclusion relation: R c  T (R )c  M (R )c  Q (R ) . In  general, these in-



208 Tomoharu Akiba

clusions are proper. So some questions arise concerning the above
inclusion relations.

W hat are the conditions so that (1 ) M (R )=T (R ), (2 )  Q(R)
=T (R ), (3 )  M (R )=Q (R ), and (4 )  Q(R ) is R-flat?

For (1 ),  several sufficient conditions are given by Lazard in [10].

For (2 ), we have the following result due to Small.

Proposition 1  (Sm all). L et R  be a ring  such that the set of
annihilator ideals* )  i n  R  satisfies the m axim um  condition, then
Q (R) = T (R) .

Proo f . Since T (R )  is characterized in  Q (R ) as the set of
elements x  such that (R : x )  contains non-zero divisors, and since
for any y in Q(R ), (R  : y ) is a dense ideal" )  o f R , it is sufficient
to show that any dense ideal of R  contains non-zero divisors. It is
clear that any maximal annihilator ideal of R  is a prime ideal. On

the other hand since A nn(A nn(a)) a for every annihilator ideal a,
the set of annihilator ideals of R  satisfies the minimum condition,

too and from that it follows immediately that maximal annihilator

ideals are finite, say, 1111, 1112, •.•, 111— Suppose that a dense ideal a

consists entirely o f zero  divisors. Th en  it is  easy  to  see  th a t
a c U m2U • • • Um, , and, therefore a c m, for some i  by the well-
known property of prime ideals. Since m 1 i s  an annihilator ideal,

there is an a e R  ( a 0 )  such that am , - 0  and so aa = 0, which is
a contradiction.

Corollary. I f  R  is  an  integral domain or Noetherian, then
Q (R )=M (R )=T (R ).

Proposition 2. If  Q(R ) is semi-simple A rtinian, Q(R)=T(R).

P ro o f .  By [14] , for every essential ideal a (this means that a
is an ideal in R  such that R  is  an essential extension of a as an

*) An ideal a in R  is said to be an annihilator ideal i f  a---Ann(b) fo r some
ideal b in R, where Ann(b)---{rER : rb=0}.

**) An ideal a in R is called a dense ideal if Ann(a)=0.
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R-module) we have aQ (R )=Q (R ). Since any dense ideal is essential
and since fo r every x E Q (R ) , (R  : x )  i s  a dense ideal, w e have
(R  : x )Q (R )=Q (R ) . Then by Theorem 1, the canonical injection
of R  into Q (R ) i s  a flat epimorphism and w e have Q (R )=M (R ).
The following easy lemma, then, completes the proof of the pro-
position.

Lemma 1 .  I f  M (R )  is  semi-local, then M (R )=T (R ).

Pro o f . I t is sufficient to show that for every X E  M (R ), (R  : x )
contains non-zero divisors. Suppose th a t  (R  : x ) does not contain
an y  non-zero divisors fo r some xE M ( R ) .  Then (R  : x )M (R ) is
contained in the union of a ll maximal ideals of M (R ) . Since M (R)
is  semi-local, it im plies that (R : x )M (R ) is contained in a maximal
ideal, which is a contradiction to the fact (R  : x )M (R )= M (R ).

For (3), we do not have any results except the ones which are
contained in  (2). On the other hand, it is c lear that if (2 ) or (3 )
is  valid, then so is (4).

Proposition 3. I f  R  is  a  semi-hereditary ring , then Q (R ) is
R-flat, and  in  this case, we have M (R )=T (R ).

Pro o f . Flatness o f Q (R ) i s  due to  Sandomierski (see  [15]).
The later assertion follows from the following lemma since in this
case, T (R ) is  a von Neumann regular ring.

Lemma 2 .  L et R  be a ring  such that every finitely generated
ideal is principal, then M (R )=T (R ).

Pro o f . Let x  be an arbitrary element of M (R ) . Then we have
a relation E ai x i —1 for some a ; E  (R  : x ) and x i E M ( R ) . Since the

ideal generated by a s  is  principal, there is an r  ( R  :  x )  such that
ci,=b ,r with b ,E R  for every i, and then  rE b 1 x ,=1 , which shows
th at (R  : x ) contains a non-zero divisor, say, r  and M (R )=T (R ).

R em ark . in  [11], Nagata has g iven  an example of a ring R
such that w. gl. dimR = 1  and T ( R ) = R .  For the R , Q (R ) is not
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R -flat and therefore Q  (R ) M (R ) . Indeed, if Q (R) is R-flat then
Q (R ) is  a  semi-hereditary ring by [1 5 ] , which is a contradiction
(see [4] ).

§ 2 .  A set ,ci• o f ideals in a ring R  (in  our case, commutative
with a unit) is called a TI-set o f R  (l'en sem b le  toP o lo g isa n t et
id em poten t in  [3 ] ) if the following conditions are satisfied:

1) If an ideal a contains a bE 5z. ,  then a is in 5?"*.

2) 'A is closed under finite intersection.

3 )  If b E  and a is an ideal such that (a : b)=  frE R  : rbE
for every bE b, then a E , (i .

Let be a TI-set of R .  Then the set 5A R of rE R  such that
A n n (r) is in j is clearly an ideal in R .  The inductive limit Rz-5 of
the modules HomR (a, RiciVR) for aE ,̀1" i can be turned naturally into
a commutative ring with a canonical homomorphism o f R  into
with the kernel V .  Following to Lambek, we call R3 a Bourbaki-
Gabriel ring of quotients of R  with respect to (see [ 9 ] ) .  The
following two propositions are well-known.

Proposition 4 .  Let S  be a multiplicatively closed subset of R
and let .cz"  be the set of ideals a in R  such that a r l S o .  Then
is a  TI-set of R  and R3=R 5 (see  [3 ]).

Proposition 5. Let be the set of dense ideals o f R. Then
is a  TI-set of R  and R3= Q (R ) (see [5 ] , [9 ]) .

The following theorem is a slight generalization of Proposition 4.

Theorem 2 .* )  Let f  be a flat eP imorphism  of R  in R' and let
be the set of ideals a in R  such that aR' =R'. Then is a TI-

set and R3=R'.

P ro o f. First we take account of the following two remarks;

*) After completed this paper, the author found that th e similar result was
obtained by J. P . O livier. too (see Sém inaire D'algèbre Commutative d ir ig é  par
P. Samuel, 1967/1968).
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i )  If f  is a flat epimorphism, the canonical injection f (R ) —R' is also
a flat epimorphism. ii) f .

Since it is trivial that satisfies the condition (1) and (2), we
shall show that satisfies (3). Assume that bEc? and  a  is an ideal
such that (a : b) for every bE b. Then there are finite subsets
{b,} and {x,}  of b and R ' respectively, such that E f ( b 1)x ,=1.

By our assumption that (a : b)E' for every bE b, we have a
relation E f (b 11)x 11 =1  w ith  b E  :  b,) and x R ' for every

Then f (b ,)= E f (b,)f (b,,)x, i = Ef (b,b, j )x,,E aR' , because b,b,, E
for every i  and j ,  which shows that aR '=R ', that is, aE

Case 1: Assume that f  is injective. Let x  be an element. of R'.
Then by Theorem 1 in §1, (R : x )R '=.1?' and ( R : x ) E F .  The map

: r H rx  for r E  (R  : x ) is clearly an R-homomorphism of (R  : x )
into R , that is, ÇoEHorn,((R : x ) , R ) . I f  we denote by the same v.,
the canonical image of v., in .1? , gives a ring homomorphism
v of R ' in to  R . W e shall show that v. is an isomorphism. It is
clear that v is injective. Let be an element of R3 and let ae
be such that is represented as an element of HomR(a, R ) .  Since
aR '=R ', there are a, E a and x, E R ' such that E a,x ,= 1. Then we

have an (i1 (R  x 1 ))E 5i_ a n d  r  r( E a ,x , ) =E a ,( rx , )  fo r  every

rE R .
I f  r E an On (R  : x ,)), v (r)=Ev (ai)rx i= rZ  )2(ai) xi = r x  with

x = E v ( a , ) x ,  which shows that 72=q)., on an (n  ( R : x i) ) ,  hence

ço(x)=72. Thus, in this case, the proof is complete.

Case 2: In order to prove the theorem in the general case, we
shall begin with the following lemma.

Lemma 3. I f  2EH0mR(a, R /M ?) for an  a E X  then 2 = 0  on
ar-15

t1W.

P ro o f .  Since al?' = R ', we can take a,E a and x ,E R ' so that
Ef(a1)x1 -- - 1. On the other hand, for every rEafl R , w e have
2(ra i ) = a 1 2(r)— rA (a 1) = 0 . Therefore if sE R  is such that s  modulo
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,ciV2 = A (r) , a, sR .  Then f  (s) = E f  (s)f (a,) x1 =E  f  (a, s) 0  since
a, sE  R = K er f  by the above remark, which implies that sE K erf
= R  and A(r) =O.

Since the canonical injection of f  (R ) into R ' is  an injective and
flat epimorphism, by the proof in Case 1, we have R' = f  (R )&  where
,c? '  is  the set of ideals a' in f  (R ) such that a' R' = R'

From Lemma 3 , it follows that every element of. R3 can be re-
presented by an element o f  HomR (a, R / R )  fo r  a  suitable aE
which contains -1( R .  For such a, taking account of the fact that
f (R) = R A V ?, w e  s e e  t h a t  t h e r e  i s  an  isomorphism between
HomR (a, R /5

?". I?) and Homj  (R ) (  f  (a), f  (R ))  with f  (a )  E 5
1V .  Then it is

clear that Rz-5 = f (R)zi , = R' . Thus the proof is complete.
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