J. Math. Kyoto Univ. 9-3 (1969) 439-448

Flatness of an extension of a commutative ring

Dedicated Professor K. Asano for his sixtieth birthday

By

Masayoshi NAGATA

(Received September 3, 1969)

Throughout the present paper, we mean by a ring a commutative ring with identity and by a module a unitary one. Let R be a ring and let A be a homomorphic image of the polynomial ring R[X] of a set of variables X with kernel I. The main purpose of the present paper is to discuss some topics related to the following

Theorem 1. Assume that I is the principal ideal generated by $f(X) = a_0 X^{(0)} + a_1 X^{(1)} + \dots + a_n X^{(n)}$ $(a_i \in R; X^{(i)} \text{ monomials, } X^{(i)} \neq X^{(i)}$ if $i \neq j$). Let J be the ideal $\sum a_i R$ generated by the coefficients a_i of f(X). Then A is R-flat if and only if J is a direct summand of R (i.e., J = eR with an element $e \in R$ such that $e^2 = e$).

1. Preliminary results.

Besides very well known elementary facts on flatness, we use the following two results:

Lemma 1.1. Assume that R and R* are noetherian rings such that R* is an R-module. Let ϕ be the homomorphism from R into R* such that $\phi a = a \cdot 1$ (in R*). Let \mathfrak{M}^* be the set of maximal ideals of R* and let \mathfrak{M} be the set of prime ideals \mathfrak{m} of R such that $\mathfrak{m} = \phi^{-1}(\mathfrak{m}^*)$ with $\mathfrak{m}^* \in \mathfrak{M}^*$. Then R* is a flat R-module if

and only if the following is true: If q is a primary ideal with prime divisor $\mathfrak{m} \in \mathfrak{M}$ and if b is an element of R such that $q: bR = \mathfrak{m}$, then $qR^*: bR^* = \mathfrak{m}R^*$.

Lemma 1.2. Let R be a ring and let M be an R-module. Let \mathfrak{S} be a set of multiplicatively closed subsets S of R such that $0 \notin S$. Assume that for every maximal ideal \mathfrak{m} of R, there is an $S \in \mathfrak{S}$ such that $\mathfrak{m} \cap S$ is empty. Then M is R-flat if and only if $M \otimes R_s$ is R_s -flat for every $S \in \mathfrak{S}^{.1}$

As for Lemma 1.1, see $[L]^{2}$ (18.7). Though Lemma 1.2 is also well known, we give an explicit proof: The only if part is obvious and we prove the if part. Assume that $\phi: A \rightarrow B$ is an injection with respect to *R*-modules *A*, *B*. Let *K* be the kernel of $\phi \otimes id.: A \otimes M \rightarrow B \otimes M$. By our assumption, $K \otimes R_s = 0$ for every $S \in \mathfrak{S}$. Assume for a moment that $K \neq 0$ and let *k* be a non-zero element of *K*. We consider the natural injection $i: kR \rightarrow K$. By our assumption on \mathfrak{S} , there is an $S \in \mathfrak{S}$ such that $kR_s \neq 0$. Since R_s is *R*-flat, we see that $0 \neq kR_s \subseteq K \otimes R_s = 0$, which is a contradiction. Thus K=0 and *M* is *R*-flat.

2. The only if part of Theorem 1.

We prove first the following

Proposition 2.1. Let (R, \mathfrak{m}) be a quasi-local ring and let I be an ideal of the polynomial ring R[X] of a set of variables X. If B=R[X]/I is R-flat and if $I\subseteq\mathfrak{m}[X]$, then I=0.

Proof. Assume that $I \neq 0$. Let $f(X) = \sum c_{(i)} X^{(i)}$ $(X^{(i)}$ being monimials in X, $X^{(i)} \neq X^{(i)}$ if $i \neq j$) be a non-zero element of I. There is an ideal J^* of R such that $\sum c_{(i)} \mathfrak{m} \subseteq J^* \subset \sum c_{(i)} R$ and such that $\sum c_{(i)} R/J^* \cong R/\mathfrak{m}$. Then B/J^*B is R/J^* -flat. Therefore observing B/J^*B and R/J^* instead of B and R, we may assume that

¹⁾ M is a faithfully flat R-module if and only if $M \otimes R_S$ is a faithfully flat R_S -module for every S.

²⁾ By [L], we refer to M. Nagata, Local rings, John Wiley, 1962.

f(X) = cg(X) with a polynomial g(X) one of whose coefficients is 1. Denoting the residue classes of X by x, we have cg(x)=0, whence $g(x) \in 0$: $cB = (0:cR)B = \mathfrak{m}B$. This shows that there is an element h(X) of $\mathfrak{m}[X]$ such that g(x) = h(x), that is, $g(X) - h(X) \in I$. Since 1 appears as a coefficient in g(X) and since $h(X) \in \mathfrak{m}[X]$, we see that $I \ni g(X) - h(X) \in \mathfrak{m}[X]$, which is a contradiction, and Proposition 2.1 is proved.

Now, in view of Lemma 1.2, we have the following result which include the only if part of Theorem 1:

Theorem 2. Let R be a ring and let I be an ideal of the polynomial ring R[X] of a set of variables X. Let J be the ideal generated by coefficients of elements of I. If R[X]/I is R-flat, then J is a direct summand of R.

3. The if part of Theorem 1.

A proof of the part was given by D. Mumford,³⁾ and we are to give a generalization of it. For the purpose, we introduce a symbol ϕ and a modified notion of a regular sequence as follows:

1) When a is an ideal of R, we denote by ϕ_{α} the natural homomorphisms $R[X] \rightarrow (R/\alpha)[X]$.

2) A regular sequence⁴⁾ in a ring S is a sequence f_1, \dots, f_n of elements of S such that $(\sum_{i \neq \alpha} f_i S) : f_\alpha S = \sum_{i \leq \alpha} f_i S$ for every $\alpha = 1, 2, \dots, n$.

Now our generalization of the if part of Theorem 1 can be stated as follows:

Theorem 3. Let \mathfrak{M}' be the set of maximal ideals \mathfrak{m}' of R[X] such that $\mathfrak{m}' \supseteq I$, and let \mathfrak{M} be the set of prime ideals \mathfrak{p} for which there is an $\mathfrak{m}' \in \mathfrak{M}'$ such that $\mathfrak{p} = \mathfrak{m}' \cap R$. A = R[X]/I is R-flat if there is a basis f_1, \dots, f_n for I such that a permutation of $\phi_{\mathfrak{p}}f_1, \dots$,

³⁾ D. Mumford, Introduction to algebraic geometry, Harvard Univ. Lect. Notes, 1967.

⁴⁾ Under usual definition, one requires one more condition that $\sum_{i \leq n} f_i S \neq S$.

 $\phi_{\mathbf{p}}f_{\mathbf{n}}$ from a regular sequence in $(R_{\mathbf{p}}/\mathfrak{p}R_{\mathbf{p}})[X]$ for each $\mathfrak{p}\in\mathfrak{M}$.

In order to prove Theorem 3, we need the following preliminary results:

Lemma 3.1. Let α be an ideal of R and let f_1, \dots, f_n be elements of R[X]. Assume that $h \in \alpha[X] \cap \sum f_i R[X]$. If $\phi_{\alpha} f_1$, $\dots, \phi_{\alpha} f_n$ from a regular sequence in $\phi_{\alpha} R[X]$, then h is expressed as $\sum f_i g_i$ with $g_i \in \alpha[X]$, i.e., $\alpha[X] \cap \sum f_i R[X] = \alpha(\sum f_i R[X])$.

Lemma 3.2. Assume that R is noetherian and that $f_1, \dots, f_n \in R[X]$. If $\phi_{\mathfrak{p}}f_1, \dots, \phi_{\mathfrak{p}}f_n$ from a regular sequence in $\phi_{\mathfrak{p}}R[X]$ for every prime ideal \mathfrak{p} of R, then $\phi_{\mathfrak{a}}f_1, \dots, \phi_{\mathfrak{a}}f_n$ form a regular sequence in $\phi_{\mathfrak{a}}R[X]$ for an arbitrary ideal \mathfrak{a} of R.

Lemma 3.3. Assume that R is a (noetherian) local ring with maximal ideal in. If I is generated by elements f_1, \dots, f_n such that $\phi_{n1}f_1, \dots, \phi_{n1}f_n$ form a regular sequence in $\phi_{n1}R[X]$, then for every in-primary ideal q, we have $q[X] \cap I = qI$.

Proof of Lemma 3.1. Since $h \in \sum f_i R[X]$, $h = \sum f_i g'_i$ with $g'_i \in R[X]$. Then $\sum \phi_{\alpha} f_i g'_i = 0$ and therefore $\phi_{\alpha} g'_n \in \ldots = \phi_{\alpha} f_i R[X] : \phi_{\alpha} f_n$ $= \sum_{i < n} \phi_{\alpha} f_i R[X]$. Thus there are $k_i \in R[X]$ such that $g_n = g'_n$ $- \sum_{i < n} f_i k_i \in \mathfrak{a}[X]$. Then $h = \sum_{i < n} f_i (g'_i + f_n k_i) + f_n g_n$. Since $h - f_n g_n$ $\in \mathfrak{a}[X] \cap \sum_{i < n} f_i R[X]$, we have the required result by induction on n.

Proof of Lemma 3.2. Using induction argument on n, we assume that the assertion is true for such sequence consisting of n-1 elements. Consider the set \mathfrak{R} of ideals \mathfrak{b} of R such that $\phi_{\mathfrak{b}}f_1, \dots, \phi_{\mathfrak{b}}f_n$ do not form a regular sequence. We want to show that \mathfrak{B} is empty. Assume the contrary. Then, taking a maximal member \mathfrak{b}_0 of \mathfrak{B} and considering R/\mathfrak{b}_0 instead of R, we may assume that \mathfrak{B} consists only of the zero ideal. By our assumption, the zero ideal is not prime and there is a non-unit a of R such that 0: aR is a prime ideal, say \mathfrak{p} . $hf_n = \sum_{i < n} f_i g_i$ with $g_i \in R[X]$. Since $\phi_{aR} f_1, \dots, \phi_{aR} f_n$ form a regular sequence (by our assumption that \mathfrak{B} consists only of the zero

442

ideal), we have that $\phi_{aR}h \in \sum_{i < n} \phi_{aR}f_iR[X]$, i.e., there is an $h_0 = \sum_{i < n} f_i g'_i (g'_i \in R[X])$ such that $h - h_0 = ah'$ with $h' \in R[X]$. We apply Lemma 3.1 to $ah'f_n$ and we see that $ah'f_n = \sum_{i < n} af_i g''_i$ with $g''_i \in R[X]$. Then $\phi_p(h'f_n - \sum_{i < n} f_i g''_i) = 0$ because $\mathfrak{p} = 0 : aR$, and, since $\phi_p f_1, \dots, \phi_p f_n$ form a regular sequence, we see that $\phi_p h' = \sum_{i < n} \phi_p f_i g^*_i$ with $g^*_i \in R[X]$. Then $ah' = a \sum f_i g^*_i$ and we see that $h = h_0 + ah' \in \sum_{i < n} f_i R[X]$. This completes the proof of Lemma 3.2.

Proof of Lemma 3.3. By virtue of Lemma 3.2, we see that $\phi_q f_1, \dots, \phi_q f_n$ form a regular sequence, hence the assertion follow from Lemma 3.1.

Now we go back to the proof of Theorem 3. At the first step, we consider the case where R is noetherian and then we shall observe the general case:

(1) Noetherian case.

We assume that R is noetherian. We use symbols \mathfrak{M}^* , \mathfrak{M} , ϕ and \mathfrak{M}' as in Lemma 1.1 (for the case $A=R^*$) and in Theorem 3 (note that \mathfrak{M} is common). A is R-flat if and only if A_{m^*} is R-flat for every $\mathfrak{m}^* \in \mathfrak{M}^*$, as is obvious by the definition of flatness. Thus, in view of Lemma 1.2, we have only to show that if $\mathfrak{m}^* \in \mathfrak{M}^*$ and if $\mathfrak{m} = \phi^{-1}(\mathfrak{m}^*)$, then $A_{\mathfrak{m}^*}$ is $R_{\mathfrak{m}}$ -flat. Considering $R_{\mathfrak{m}}$ instead of R, we may assume that R is a local ring with maximal ideal \mathfrak{m} . Let \mathfrak{m}' be the maximal ideal of R[X] such that $\mathfrak{m}^* = \mathfrak{m}'/I$, and we observe the triple R, $A_{\mathfrak{m}^*}$, $R[X]_{\mathfrak{m}'}$. Let \mathfrak{q} be an \mathfrak{m} -primary ideal and let $b \in R$ be such that $q: b = \mathfrak{m}$. By Lemma 1.1, we have only to show that $qA_{m^*}: b=mA_{m^*}$. Then considering things modulo q, we may assume that q=0. Assume now that $qA_{m^*}: b \neq \mathfrak{m}A_{m_*}$. Then there is an element y of A which is not in $\mathfrak{m}A_{\mathfrak{m}*}$ such that $by \in \mathfrak{q}A$. Let h be a representative of y in R[X]. Then $bh \in I$, whence $bh \in bR[X] \cap I = bI$ by virtue of Lemma 3.3. Thus $bh = bh_1$, $h_1 \in I$. Then $b(h-h_1)=0$, hence $h-h_1\in\mathfrak{m}[X]$ and on the other hand $h-h_1$ represents y. This means that $y \in \mathfrak{m}A$, which is a contradiction. Thus $\mathfrak{q}A_{\mathfrak{m}^*}: b = \mathfrak{m}A_{\mathfrak{m}^*}$, and we settle the case.

Masayoshi Nagata

(2) General case.

Let R_0 be a finitely generated subring of R containing all coefficients of f_1, \dots, f_n . Then the condition in Theorem 3 holds good for $R_0[X]$ and $I_0 = \sum f_i R_0[X]$.⁵⁾ Then by the noetherian case proved above, $A_0 = R_0[X]/I_0$ is R_0 -flat. Obviously A is identified with $A_0 \bigotimes_{R_0} R$ and therefore A is R-flat.

Thus the proof of Theorem 3 is completed.

4. Some remarks on generators of I.

We maintain the meanings of R, X, I, ϕ as before. But we are to treat the case where R is noetherian and X is a finite set.

Main remark we are to give here is the following

Theorem 4. Let α be an ideal of R and set $S = \{g \in R[X] | \phi_{\alpha}g = 1\}$. Assume that (1) R is noetherian, (2) X is a finite set (3) f_1, \dots, f_n are elements of I such that $\phi_{\alpha}f_1, \dots, \phi_{\alpha}f_n$ generates $\phi_{\alpha}I$ and (4) A = R[X]/I is R-flat. Then

$$\sum f_i R[X]_s = IR[X]_s$$
.

In other words, there is an element s of S such that $sI \subseteq \sum f_i R[X]$.

Proof. Let \mathfrak{B} be the set of ideals b of R such that $\mathfrak{b}\subseteq\mathfrak{a}$ and $\phi_{\mathfrak{b}}(\sum f_{i}R[X]_{s}) \neq \phi_{\mathfrak{b}}(IR[X]_{s})$ (here $\phi_{\mathfrak{b}}$ is naturally entended to $R[X]_{s} \rightarrow \phi_{\mathfrak{b}}R[X]_{\phi\mathfrak{b}s}$). We want to show that \mathfrak{B} is empty. Assume the contrary, and let \mathfrak{c} be a maximal member of \mathfrak{B} . Then considering $\phi_{\mathfrak{c}}$, we may assume that \mathfrak{B} consists only of $\{0\}$. Since $\mathfrak{a} \notin \mathfrak{B}, \mathfrak{a} \neq 0$. Let d be a non-zero element of \mathfrak{a} . Since $\phi_{dR}(IR[X]_{s}) = \phi_{dR}(\sum f_{i}R[X]_{s})$, we see that for an arbitrary element h of I, there is an element s of S such that $sh \in \sum f_{i}R[X] + dR[X]$, i.e., sh = f' + dg with $f' \in \sum f_{i}R[X]$ and $g \in R[X]$. Then $dg \in I$, and $d(g \mod I) = 0$. Therefore $(g \mod I) \in (0: dR)A$ (by the flatness). This means

444

⁵⁾ Note the following obvious fact: Let g_1, \dots, g_n be elements of a polynomial is K[X] over a field K and let K' be an extension field of K. Then g_1, \dots, g_n form a regular sequence in K[X] if and only if they do in K'[X].

that there is an element g' of (0:dR)[X] which represents $(g \mod I)$. That is, $g-g' \in I$ and $g' \in (0:dR)[X]$. Then $dg = d(g-g') \in dI$. Thus we have $IR[X]_s \subseteq \sum f_i R[X]_s + dIR[X]_s$. Since d is in the Jacobson radical of $R[X]_s$, we have the required equality. Thus \mathfrak{B} must be empty, and our proof is completed.

Corollary 4.1. Under the assumptions $(1) \sim (4)$ in Theorem 4, if a is nilpotent, then $\sum f_i R[X] = I$.

Corollary 4.2. Under the assumptions $(1) \sim (4)$ in Theorem 4, if R is a local ring with maximal ideal \mathfrak{m} and if the radical of $\sum f_i R[X]$ contains \mathfrak{m} , then $\sum f_i R[X] = I$.

At the rest of the present article, we consider the case where X consists only of one element x. In the case, if A = R[x]/I is R-flat, then I is "nearly" principal as we can state as follows:

Corollary 4.3. Assume that (1) R is a (noetherian) local ring with maximal ideal in, (2) $X = \{x\}$ and (3) A = R[x]/I is R-flat. Then:

(i) There is an element f of I such that, for a suitable element $s \in R[x]$ such that $\phi_{in}s=1$, $sI \subseteq fR[x]$.

(ii) If M is a maximal ideal of R[x] containing I, then $IR[x]_{M}$ is principal.

(iii) If I contains a monic polynomial f, such that $\phi_{\mathfrak{m}}f$ generates $\phi_{\mathfrak{m}}I$, then I=fR[X].

(iv)⁶⁾ Consider the radical $\sqrt{0}$. If $R/\sqrt{0}$ is normal, then I is principal.

Proof. Except for (iv), the assertions follows from Theorem 4 and Corollary 4.2. As for (iv), by virtue of Corollary 4.1, we may assume that R is normal. In this case, if $s \in R[X]$ and if $\phi_{\rm m} s = 1$, then s is a product of prime elements (for, if $s = a_0 x^n + \cdots + a_{n-1} x + 1$, then factorization of s corresponds to factorization of the monic poly-

⁶⁾ The writer owes the main part of this result to Professor Paul Monsky.

nomial $x^n + a_{n-1}x^{n-1} + \dots + a_0$). Therefore we see that *I* is principal by (i). This completes the proof.

We add two examples. Example 1 shows that in (iv) it is important that R is local.⁷⁾ Example 2 shows that normality is important in (iv).

Example 1. Let *D* be a Dedekind domain with ideals a and b such that i) there are non-zero elements *c* and *d* such that ca = db and ii) a+b=D. Then the ideal *I* of D[x] generated by $\left\{ax+\frac{ca}{d} \mid a \in a\right\}$ is not principal while A=D[x]/I is *R*-flat.

Proof. That I is not pincipal is obvious. Flatness of A follows from Theorem 1 applied to $D_{\rm m}$ for an arbitrary maximal ideal ${\rm m}$.

Example 2. Let K be a field and let z be a transcendental element over K. Set $R = K[z^2, z^3]_P$ with maximal ideal P generated by z^2 and z^3 . Let ψ be the homomorphism $R[x] \rightarrow R[1/z]$ such that $\psi f(x) = f(1/z)$. Then the kernel I of ψ is not principal, while R[1/z] is R-flat.

Proof is easy observing that R[1/z] is the field of quotients of R.

5. Supplementary remarks on regular sequences.

We give at first a remark that what we really proved at Lemma 3.1 is the following fact:⁸⁾

Proposition 5.1. Let α be an ideal of R and let f_1, \dots, f_n be elements of R. If $\phi_{\alpha}f_1, \dots, \phi_{\alpha}f_n$ form a regular sequence in $\phi_{\alpha}R$, then $\alpha \cap \sum f_i R = \alpha(\sum f_i R)$.

The following fact is obvious because of our definition of regularity:

Proposition 5.2. If f_1, \dots, f_n form a regular sequence in R, then they do the same in any over-ring which is a flat R-module.

446

⁷⁾ A generalization to semi-local case is easy.

⁸⁾ This and Lemma 3.1 are equivalent to each other.

Now we observe relationship between regularity of f_1, \dots, f_n and that of $\phi_{\alpha} f_1, \dots, \phi_{\alpha} f_n$ in some sense.

Remark 5.3. Any one of regularity of f_1, \dots, f_n in R and regularity of $\phi_{\alpha} f_1, \dots, \phi_{\alpha} f_n$ in $\phi_{\alpha} R$ does not imply the other.

This is shown easily by examples.

Observe Lemma 3.2 as a result of contrary direction to this remark. We are to add some more remarks of similar direction.

Proposition 5.4. Assume that R is the direct sum of subrings R_1, \dots, R_s with identities e_1, \dots, e_s respectively. Then a sequence f_1, \dots, f_n is a regular sequence in R if and only if $e_{\alpha}f_1, \dots, e_{\alpha}f_n$ form a regular sequence in $R_{\alpha}=e_{\alpha}R$ for every $\alpha=1, \dots, s$.

Proof. Assume that f_1, \dots, f_n form a regular sequence. If he_{α} is an element of $(\sum_{i < t} f_i e_{\alpha} R_{\alpha}) : f_t e_{\alpha}$, then he_{α} is in $(\sum_{i < t} f_i R) : f_t = \sum_{i < t} f_i R$. Thus $he_{\alpha} \in (\sum_{i < t} f_i R) \cap R_{\alpha} = \sum_{i < t} f_i e_{\alpha} R_{\alpha}$ and we see that $f_1 e_{\alpha}, \dots, f_n e_{\alpha}$ from a regular sequence in R_{α} for every $\alpha = 1, \dots, s$. Conversely, assume that $f_1 e_{\alpha}, \dots, f_n e_{\alpha}$ form a regular sequence in R_{α} for every α . Consider an arbitrary element h of $\sum_{i < t} f_i R : f_i$. $h = \sum_{\alpha} he_{\alpha}$ and obviously he_{α} is in $(\sum_{i < t} f_i e_{\alpha} R_{\alpha}) : f_t e_{\alpha}$ which is equal to $\sum_{i < t} f_i e_{\alpha} R_{\alpha}$. Therefore $h \in \sum_{\alpha} (\sum_{i < t} f_i e_{\alpha} R_{\alpha}) = \sum_{i < t} f_i R$. This completes our proof.

Proposition 5.5. Assume that R is noetherian and that $a(\neq R)$ is an ideal whose radical is the intersection of a finite number of maximal ideal, say $\mathfrak{m}_1, \dots, \mathfrak{m}_s$. Let f_1, \dots, f_n be elements of R[X]. Then the following three conditions are equivalent to each other.

(1) $\phi_{\alpha}f_{1}, \dots, \phi_{\alpha}f_{n}$ form a regular requesce in $\phi_{\alpha}R[X]$.

(2) $\phi_{\mathfrak{m}_{\alpha}}f_1, \dots, \phi_{\mathfrak{m}_{\alpha}}f_n$ form a regular requesce in $\phi_{\mathfrak{m}_{\alpha}}R[X]$ for every $\alpha = 1, \dots, s$.

(3) For any ideal $\mathfrak{b}(\neq R)$ which contants a power of $\bigcap_{\alpha}\mathfrak{m}_{\alpha}$, $\phi_{\mathfrak{b}}f_{\mathfrak{1}}, \dots, \phi_{\mathfrak{b}}f_{\mathfrak{n}}$ form a regular requence in $\phi_{\mathfrak{b}}R[X]$.

Proof. By virtue of Lemma 3.2, we have only to show that (1)

Masayoshi Nagata

implies (2). For the purpose, considering R/\mathfrak{a} instead of R, we may assume that $\mathfrak{a}=0$. Then R is an Artin ring, whence by virtue of of Proposition 5.4, we may assume that R is an Artin local ring with maximal ideal $\mathfrak{m}=\mathfrak{m}_1$. Reduction to the case where X is a finite set can be done easily. Set $T_t = \sum_{i < t} f_i R[X]$. $\phi_{\mathfrak{m}} T_t = \phi_{\mathfrak{m}} R[X]$ if and only if $T_t = R[X]$, and therefore we have only to observe the case where $T_n \neq R[X]$. Thus, that f_1, \dots, f_n form a regular requence implies that height $T_i = t$ for every $t = 1, 2, \dots, n$. Therefore height $\phi_{\mathfrak{m}} T_t = t$ for every t. Since $\phi_{\mathfrak{m}} R[X]$ is a polynomial ring over a field in a finite number of variables, $\phi_{\mathfrak{m}} R[X]$ is a Macaulay ring, and therefore we have that T_t is unmixed for every t. Thus $\phi_{\mathfrak{m}} f_1, \dots, \phi_{\mathfrak{m}} f_n$ form a regular requence. This completes the proof of Proposition 5.5.

Proposition 5.6. Let m be a maximal ideal of R and let f_1, \dots, f_n be elements of R[X]. Set $S = \{f \in R[X] | \phi_m f = 1\}$. If $\phi_m f_1, \dots, \phi_m f_n$ form a regular sequence in $\phi_m R[X]$ and if \mathfrak{p} is a prime ideal contained in m, then $\phi_{\mathfrak{p}} f_1, \dots, \phi_{\mathfrak{p}} f_n$ form a regular sequence in $\phi_m R[X]$.

Proof. We can reduce easily to the case where R is a ring of quotients of a finitely generated ring. Thus we may assume that R is a (noetherian) local ring. We may assume also that $\mathfrak{p}=0$, and that X is a finite set. Set $T_t = \sum_{i < t} f_i R[X]$. Therefore we consider the case where $T_n R[X]_s \neq R[x]_s$. That $\phi_{\mathfrak{m}} f_1, \dots, \phi_{\mathfrak{m}} f_n$ form a regular sequence implies that height $\phi_{\mathfrak{m}} T_t = t$ for every t. This implies that height $T_t R_{\mathfrak{p}}[X]_s \geq t$.⁹⁾ Since T_t is generated by t elements and since $R_{\mathfrak{p}}[X]_s$ is (locally) Macaulay ring, we see that $T_t R_{\mathfrak{p}}[X]_s$ is unmixed and therefore f_1, \dots, f_n from a regular sequence in $R_{\mathfrak{p}}[X]_s$. Thus the proof of Proposition 5.6 is completed.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

⁹⁾ See Theorem 1 in Nagata, *Finitely generated rings over a valuation ring*, J. Math. Kyoto Univ. vol. 5 no. 2 (1966), pp. 163-169.