Flatness of an extension of a commutative ring

Dedicated Professor K. Asano for his sixtieth birthday

By

Masayoshi Nagata

(Received September 3, 1969)

Throughout the present paper, we mean by a ring a commutative ring with identity and by a module a unitary one. Let R be a ring and let A be a homomorphic image of the polynomial ring $R[X]$ of a set of variables X with kernel I. The main purpose of the present paper is to discuss some topics related to the following

Theorem 1. Assume that I is the principal ideal generated by $f(X)=a_{0} X^{(0)}+a_{1} X^{(1)}+\cdots+a_{n} X^{(n)} \quad\left(a_{i} \in R ; X^{(i)}\right.$ monomials, $X^{(i)}$ $\neq X^{(j)}$ if $\left.i \neq j\right)$. Let J be the ideal $\sum a_{i} R$ generated by the coefficients a_{i} of $f(X)$. Then A is R-flat if and only if J is a direct summand of R (i.e., $J=e R$ with an element $e \in R$ such that $e^{2}=e$).

1. Preliminary results.

Besides very well known elementary facts on flatness, we use the following two results:

Lemma 1.1. Assume that R and R^{*} are noetherian rings such that R^{*} is an R-module. Let ϕ be the homomorphism from R into R^{*} such that $\phi a=a \cdot 1$ (in R^{*}). Let \mathfrak{M}^{*} be the set of maximal ideals of R^{*} and let \mathfrak{M} be the set of prime ideals \mathfrak{m} of R such that $\mathfrak{m}=\phi^{-1}\left(\mathrm{~m}^{*}\right)$ with $\mathrm{m}^{*} \in \mathfrak{M}^{*}$. Then R^{*} is a flat R-module if
and only if the following is true: If \mathfrak{q} is a primary ideal with prime divisor $\mathrm{m} \in \mathfrak{M}$ and if b is an element of R such that $\mathfrak{q}: b R$ $=\mathrm{m}$, then $\mathrm{q} R^{*}: b R^{*}=\mathrm{m} R^{*}$.

Lemma 1.2. Let R be a ring and let M be an R-module. Let \mathfrak{S} be a set of multiplicatively closed subsets S of R such that $0 \oplus S$. Assume that for every maximal ideal nt of R, there is an $S \in \mathbb{S}$ such that $\mathrm{m} \cap S$ is empty. Then M is R-flat if and only if $M \otimes R_{S}$ is $R_{S_{-}}$flat for every $S \in \mathbb{S}^{1{ }^{1)}}$

As for Lemma 1.1, see $[L],{ }^{2)}(18.7)$. Though Lemma 1.2 is also well known, we give an explicit proof: The only if part is obvious and we prove the if part. Assume that $\phi: A \rightarrow B$ is an injection with respect to R-modules A, B. Let K be the kernel of $\phi \otimes i d .: A \otimes M \rightarrow B \otimes M$. By our assumption, $K \otimes R_{s}=0$ for every $S \in \subseteq$. Assume for a moment that $K \neq 0$ and let k be a non-zero element of K. We consider the natural injection $i: k R \rightarrow K$. By our assumption on \mathfrak{S}, there is an $S \in \mathfrak{S}$ such that $k R_{s} \neq 0$. Since R_{s} is R-flat, we see that $0 \neq k R_{s} \subseteq K \otimes R_{s}=0$, which is a contradiction. Thus $K=0$ and M is R-flat.

2. The only if part of Theorem 1.

We prove first the following
Proposition 2.1. Let (R, \mathfrak{m}) be a quasi-local ring and let I be an ideal of the polynomial ring $R[X]$ of a set of variables X. If $B=R[X] / I$ is R-flat and if $I \subseteq m[X]$, then $I=0$.

Proof. Assume that $I \neq 0$. Let $f(X)=\sum c_{(i)} X^{(i)}$ ($X^{(i)}$ being monimials in $X, X^{(i)} \neq X^{(j)}$ if $i \neq j$) be a non-zero element of I. There is an ideal J^{*} of R such that $\sum c_{(i)} 1 \mathrm{mt} \subseteq J^{*} \subset \sum c_{(i)} R$ and such that $\sum c_{(i)} R / J^{*} \cong R / \mathrm{m}$. Then $B / J^{*} B$ is R / J^{*}-flat. Therefore observing $B / J^{*} B$ and R / J^{*} instead of B and R, we may assume that

[^0]$f(X)=c g(X)$ with a polynomial $g(X)$ one of whose coefficients is 1. Denoting the residue classes of X by x, we have $c g(x)=0$, whence $g(x) \in 0: c B=(0: c R) B=\mathfrak{m} B$. This shows that there is an element $h(X)$ of $\mathfrak{m}[X]$ such that $g(x)=h(x)$, that is, $g(X)$ $-h(X) \in I$. Since 1 appears as a coefficient in $g(X)$ and since $h(X) \in \mathfrak{m}[X]$, we see that $I \ni g(X)-h(X) \in \mathfrak{m}[X]$, which is a contradiction, and Proposition 2.1 is proved.

Now, in view of Lemma 1.2, we have the following result which include the only if part of Theorem 1:

Theorem 2. Let R be a ring and let I be an ideal of the polynomial ring $R[X]$ of a set of variables X. Let J be the ideal generated by coefficients of elements of I. If $R[X] / I$ is R-flat, then J is a direct summand of R.

3. The if part of Theorem 1.

A proof of the part was given by D. Mumford, ${ }^{3)}$ and we are to give a generalization of it. For the purpose, we introduce a symbol ϕ and a modified notion of a regular sequence as follows:

1) When a is an ideal of R, we denote by $\phi_{\mathfrak{a}}$ the natural homomorphisms $R[X] \rightarrow(R / a)[X]$.
2) A regular sequence ${ }^{4)}$ in a ring S is a sequence f_{1}, \cdots, f_{n} of elements of S such that $\left(\sum_{i \vee \alpha} f_{i} S\right): f_{\alpha} S=\sum_{i<\alpha} f_{i} S$ for every $\alpha=1,2$, \cdots, n.

Now our generalization of the if part of Theorem 1 can be stated as follows:

Theorem 3. Let $\mathfrak{M r}^{\prime}$ be the set of maximal ideals m^{\prime} of $R[X]$ such that $\mathrm{m}^{\prime} \supseteq I$, and let \mathfrak{M} be the set of prime ideals \mathfrak{p} for which there is an $\mathfrak{m}^{\prime} \in \mathfrak{M}^{\prime}$ such that $\mathfrak{p}=\mathfrak{m}^{\prime} \cap R . \quad A=R[X] / I$ is R-flat if there is a basis f_{1}, \cdots, f_{n} for I such that a permutation of $\phi_{p} f_{1}, \cdots$,

[^1]$\phi_{\mathfrak{p}} f_{n}$ from a regular sequence in $\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right)[X]$ for each $\mathfrak{p} \in \mathfrak{M}$.
In order to prove Theorem 3, we need the following preliminary results:

Lemma 3.1. Let \mathfrak{a} be an ideal of R and let f_{1}, \cdots, f_{n} be elements of $R[X]$. Assume that $h \in \mathfrak{a}[X] \cap \sum f_{i} R[X]$. If $\phi_{a} f_{1}$, $\cdots, \phi_{a} f_{n}$ from a regular sequence in $\phi_{a} R[X]$, then h is expressed as $\sum f_{i} g_{i}$ with $g_{i} \in a[X]$, i.e., $\mathfrak{a}[X] \cap \sum f_{i} R[X]=\mathfrak{a}\left(\sum f_{i} R[X]\right)$.

Lemma 3.2. Assume that R is noetherian and that f_{1}, \cdots, f_{n} $\in R[X]$. If $\phi_{p} f_{1}, \cdots, \phi_{p} f_{n}$ from a regular sequence in $\phi_{p} R[X]$ for every prime ideal \mathfrak{p} of R, then $\phi_{\mathfrak{a}} f_{1}, \cdots, \phi_{\mathfrak{a}} f_{n}$ form a regular sequence in $\phi_{\mathfrak{a}} R[X]$ for an arbitrary ideal a of R.

Lemma 3.3. Assume that R is a (noetherian) local ring with maximal ideal m. If I is generated by elements f_{1}, \cdots, f_{n} such that $\phi_{\mathrm{m}} f_{1}, \cdots, \phi_{\mathrm{m}} f_{n}$ form a regular sequence in $\phi_{\mathrm{m}} R[X]$, then for every m -primary ideal \mathfrak{q}, we have $\mathfrak{q}[X] \cap I=\mathfrak{q} I$.

Proof of Lemma 3.1. Since $h \in \sum f_{i} R[X], h=\sum f_{i} g_{i}^{\prime}$ with $g_{i}^{\prime} \in R[X]$. Then $\sum \phi_{\mathfrak{a}} f_{i} g_{i}^{\prime}=0$ and therefore $\phi_{\mathfrak{a}} g_{n}^{\prime} \in_{i<n} \phi_{\mathfrak{a}} f_{i} R[X]: \phi_{\mathfrak{a}} f_{n}$ $=\sum_{i<n} \phi_{\mathfrak{a}} f_{i} R[X]$. Thus there are $k_{i} \in R[X]$ such that $g_{n}=g_{n}^{\prime}$ $-\sum_{i<n} f_{i} k_{i} \in \mathfrak{a}[X]$. Then $h=\sum_{i<n} f_{i}\left(g_{i}^{\prime}+f_{n} k_{i}\right)+f_{n} g_{n}$. Since $h-f_{n} g_{n}$ $\in \mathfrak{a}[X] \cap \sum_{i<n} f_{i} R[X]$, we have the required result by induction on n.

Proof of Lemma 3.2. Using induction argument on n, we assume that the assertion is true for such sequence consisting of $n-1$ elements. Consider the set \mathfrak{F} of ideals \mathfrak{b} of R such that $\phi_{\mathfrak{b}} f_{1}, \cdots, \phi_{\mathfrak{b}} f_{n}$ do not form a regular sequence. We want to show that \mathfrak{B} is empty. Assume the contrary. Then, taking a maximal member \mathfrak{b}_{0} of \mathfrak{B} and considering R / \mathfrak{b}_{0} instead of R, we may assume that \mathfrak{B} consists only of the zero ideal. By our assumption, the zero ideal is not prime and there is a non-unit a of R such that $0: a R$ is a prime ideal, say p. $h f_{n}=\sum_{i<n} f_{i} g_{i}$ with $g_{i} \in R[X]$. Since $\phi_{a R} f_{1}, \cdots, \phi_{a R} f_{n}$ form a regular sequence (by our assumption that \mathfrak{B} consists only of the zero
ideal), we have that $\phi_{a R} h \in \sum_{i<n} \phi_{a R} f_{i} R[X]$, i.e., there is an h_{0} $=\sum_{i<n} f_{i} g_{i}^{\prime}\left(g_{i}^{\prime} \in R[X]\right)$ such that $h-h_{0}=a h^{\prime}$ with $h^{\prime} \in R[X]$. We apply Lemma 3.1 to $a h^{\prime} f_{n}$ and we see that $a h^{\prime} f_{n}=\sum_{i<n} a f_{i} g_{i}^{\prime \prime}$ with $g_{i}^{\prime \prime} \in R[X]$. Then $\phi_{p}\left(h^{\prime} f_{n}-\sum_{i<n} f_{i} g_{i}^{\prime \prime}\right)=0$ because $\mathfrak{p}=0: a R$, and, since $\phi_{p} f_{1}, \cdots, \phi_{p} f_{n}$ form a regular sequence, we see that $\phi_{p} h^{\prime}$ $=\sum_{i<n} \phi_{p} f_{i} g_{i}^{*}$ with $g_{i}^{*} \in R[X]$. Then $a h^{\prime}=a \sum f_{i} g_{i}^{*}$ and we see that $h=h_{0}+a h^{\prime} \in \sum_{i<n} f_{i} R[X]$. This completes the proof of Lemma 3.2.

Proof of Lemma 3.3. By virtue of Lemma 3.2, we see that $\phi_{q} f_{1}, \cdots, \phi_{q} f_{n}$ form a regular sequence, hence the assertion follow from Lemma 3.1.

Now we go back to the proof of Theorem 3. At the first step, we consider the case where R is noetherian and then we shall observe the general case:
(1) Noetherian case.

We assume that R is noetherian. We use symbols $\mathfrak{R}^{*}, \mathfrak{M}, \phi$ and \mathfrak{M}^{\prime} as in Lemma 1.1 (for the case $A=R^{*}$) and in Theorem 3 (note that \mathfrak{M} is common). A is R-flat if and only if $A_{\mathrm{m}^{*}}$ is R-flat for every $m^{*} \in \mathbb{M}^{*}$, as is obvious by the definition of flatness. Thus, in view of Lemma 1.2, we have only to show that if $\mathfrak{m}^{*} \in \mathfrak{M}^{*}$ and if $\mathrm{m}=\phi^{-1}\left(\mathrm{~m}^{*}\right)$, then $A_{\mathrm{m} *}$ is R_{m} flat. Considering R_{m} instead of R, we may assume that R is a local ring with maximal ideal m . Let m^{\prime} be the maximal ideal of $R[X]$ such that $\mathfrak{m}^{*}=\mathfrak{m}^{\prime} / I$, and we observe the triple $R, A_{\mathrm{m}^{*}}, R[X]_{\mathfrak{m}^{\prime}}$. Let \mathfrak{q} be an m-primary ideal and let $b \in R$ be such that $q: b=m$. By Lemma 1.1 , we have only to show that $\mathfrak{q} A_{\mathrm{m}^{*}}: b=\mathrm{m} A_{\mathrm{m}^{*}}$. Then considering things modulo \mathfrak{q}, we may assume that $\mathfrak{q}=0$. Assume now that $\mathfrak{q} A_{\mathfrak{m}^{*}}: b \neq \mathfrak{m t} A_{\mathfrak{m}_{*}}$. Then there is an element y of A which is not in $\mathfrak{n t} A_{\mathrm{m}^{*}}$ such that $b y \in \mathfrak{q} A$. Let h be a representative of y in $R[X]$. Then $b h \in I$, whence $b h \in b R[X] \cap I=b I$ by virtue of Lemma 3.3. Thus $b h=b h_{1}, h_{1} \in I$. Then $b\left(h-h_{1}\right)=0$, hence $h-h_{1} \in \mathfrak{m}[X]$ and on the other hand $h-h_{1}$ represents y. This means that $y \in \mathfrak{m} A$, which is a contradiction. Thus $\mathfrak{q} A_{\mathfrak{m}^{*}}: b=\mathfrak{m} A_{\mathrm{m}^{*}}$, and we settle the case.
(2) General case.

Let R_{0} be a finitely generated subring of R containing all coefficients of f_{1}, \cdots, f_{n}. Then the condition in Theorem 3 holds good for $R_{0}[X]$ and $I_{0}=\sum f_{i} R_{0}[X] . .^{5)}$ Then by the noetherian case proved above, $A_{0}=R_{0}[X] / I_{0}$ is R_{0}-flat. Obviously A is identified with $A_{0} \otimes_{R_{0}} R$ and therefore A is R-flat.

Thus the proof of Theorem 3 is completed.

4. Some remarks on generators of I.

We maintain the meanings of R, X, I, ϕ as before. But we are to treat the case where R is noetherian and X is a finite set.

Main remark we are to give here is the following
Theorem 4. Let a be an ideal of R and set $S=\left\{g \in R[X] \mid \phi_{a} g\right.$ $=1\}$. Assume that (1) R is noetherian, (2) X is a finite set (3) f_{1}, \cdots, f_{n} are elements of I such that $\phi_{\mathfrak{a}} f_{1}, \cdots, \phi_{\mathfrak{a}} f_{n}$ generates $\phi_{\mathfrak{a}} I$ and (4) $A=R[X] / I$ is R-flat. Then

$$
\sum_{i} f_{i} R[X]_{s}=I R[X]_{s}
$$

In other words, there is an element s of S such that $s I \subseteq \sum f_{i} R[X]$.
Proof. Let \mathfrak{B} be the set of ideals \mathfrak{b} of R such that $\mathfrak{b \subseteq a}$ and $\phi_{b}\left(\sum f_{i} R[X]_{s}\right) \neq \phi_{b}\left(I R[X]_{s}\right)$ (here ϕ_{b} is naturally entended to $R[X]_{s}$ $\left.\rightarrow \phi_{\mathfrak{b}} R[X]_{\phi_{b} \mathrm{~s}}\right)$. We want to show that \mathfrak{B} is empty. Assume the contrary, and let \mathfrak{c} be a maximal member of \mathfrak{s}. Then considering ϕ_{c}, we may assume that \mathfrak{B} consists only of $\{0\}$. Since $\mathfrak{a} \notin \mathfrak{R}, \mathfrak{a} \neq 0$. Let d be a non-zero element of a. Since $\phi_{d R}\left(I R[X]_{s}\right)=\phi_{d R}\left(\sum f_{i} R[X]_{s}\right)$, we see that for an arbitrary element h of I, there is an element s of S such that $s h \in \sum f_{i} R[X]+d R[X]$, i. e., $s h=f^{\prime}+d g$ with $f^{\prime} \in \sum f_{i} R[X]$ and $g \in R[X]$. Then $d g \in I$, and $d(g$ modulo $I)=0$. Therefore (g modulo $I) \in(0: d R) A$ (by the flatness). This means

[^2]that there is an element g^{\prime} of $(0: d R)[X]$ which represents (g modulo I). That is, $g-g^{\prime} \in I$ and $g^{\prime} \in(0: d R)[X]$. Then $d g$ $=d\left(g-g^{\prime}\right) \in d I$. Thus we have $I R[X]_{s} \subseteq \sum f_{i} R[X]_{s}+d I R[X]_{s}$. Since d is in the Jacobson radical of $R[X]_{s}$, we have the required equality. Thus \mathfrak{B} must be empty, and our proof is completed.

Corollary 4.1. Under the assumptions (1)~(4) in Theorem 4, if \mathfrak{a} is nilpotent, then $\sum f_{i} R[X]=I$.

Corollary 4.2. Under the assumptions (1)~(4) in Theorem 4, if R is a local ring with maximal ideal m and if the radical of $\sum f_{i} R[X]$ contains m, then $\sum f_{i} R[X]=I$.

At the rest of the present article, we consider the case where X consists only of one element x. In the case, if $A=R[x] / I$ is R-flat, then I is "nearly" principal as we can state as follows:

Corollary 4.3. Assume that (1) R is a (noetherian) local ring with maximal ideal m , (2) $X=\{x\}$ and (3) $A=R[x] / I$ is R-flat. Then:
(i) There is an element f of I such that, for a suitable element $s \in R[x]$ such that $\phi_{111} s=1, s I \subseteq f R[x]$.
(ii) If M is a maximal ideal of $R[x]$ containing I, then $\operatorname{IR}[x]_{M}$ is principal.
(iii) If I contains a monic polynomial f, such that $\phi_{\mathrm{m}} f$ generates $\phi_{\mathrm{m}} I$, then $I=f R[X]$.
(iv) ${ }^{6)}$ Consider the radical $\sqrt{0}$. If $R / \sqrt{0}$ is normal, then I is principal.

Proof. Except for (iv), the assertions follows from Theorem 4 and Corollary 4.2. As for (iv), by virtue of Corollary 4. 1, we may assume that R is normal. In this case, if $s \in R[X]$ and if $\phi_{\mathrm{ml}} s=1$, then s is a product of prime elements (for, if $s=a_{0} x^{n}+\cdots+a_{n-1} x+1$, then factorization of s corresponds to factorization of the monic poly-

[^3]nomial $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$). Therefore we see that I is principal by (i). This completes the proof.

We add two examples. Example 1 shows that in (iv) it is important that R is local. ${ }^{7}$ Example 2 shows that normality is important in (iv).

Example 1. Let D be a Dedekind domain with ideals \mathfrak{a} and \mathfrak{b} such that i) there are non-zero elements c and d such that $c \mathfrak{a}=d \mathfrak{b}$ and ii) $\mathfrak{a}+\mathfrak{b}=D$. Then the ideal I of $D[x]$ generated by $\left\{\left.a x+\frac{c a}{d} \right\rvert\, a \in \mathfrak{a}\right\}$ is not principal while $A=D[x] / I$ is R-flat.

Proof. That I is not pincipal is obvious. Flatness of A follows from Theorem 1 applied to $D_{\mathfrak{m}}$ for an arbitrary maximal ideal m .

Example 2. Let K be a field and let z be a transcendental element over K. Set $R=K\left[z^{2}, z^{3}\right]_{P}$ with maximal ideal P generated by z^{2} and z^{3}. Let ψ be the homomorphism $R[x] \rightarrow R[1 / z]$ such that $\psi_{f} f(x)=f(1 / z)$. Then the kernel I of ψ is not principal, while $R[1 / z]$ is R-flat.

Proof is easy observing that $R[1 / z]$ is the field of quotients of R.

5. Supplementary remarks on regular sequences.

We give at first a remark that what we really proved at Lemma 3.1 is the following fact: ${ }^{8)}$

Proposition 5.1. Let \mathfrak{a} be an ideal of R and let f_{1}, \cdots, f_{n} be elements of R. If $\phi_{\mathfrak{a}} f_{1}, \cdots, \phi_{\mathfrak{a}} f_{n}$ form a regular sequence in $\phi_{\mathfrak{a}} R$, then $\mathfrak{a} \cap \sum f_{i} R=\mathfrak{a}\left(\sum f_{i} R\right)$.

The following fact is obvious because of our definition of regularity:

Proposition 5.2. If f_{1}, \cdots, f_{n} form a regular sequence in R, then they do the same in any over-ring which is a flat R-module.
7) A generalization to semi-local case is easy.
8) This and Lemma 3.1 are equivalent to each other.

Now we observe relationship between regularity of f_{1}, \cdots, f_{n} and that of $\phi_{\mathfrak{a}} f_{1}, \cdots, \phi_{\mathfrak{a}} f_{n}$ in some sense.

Remark 5.3. Any one of regularity of f_{1}, \cdots, f_{n} in R and regularity of $\phi_{\mathfrak{a}} f_{1}, \cdots, \phi_{\mathfrak{a}} f_{n}$ in $\phi_{\mathfrak{a}} R$ does not imply the other.

This is shown easily by examples.
Observe Lemma 3.2 as a result of contrary direction to this remark. We are to add some more remarks of similar direction.

Proposition 5.4. Assume that R is the direct sum of subrings R_{1}, \cdots, R_{s} with identities e_{1}, \cdots, e_{s} respectively. Then a sequence f_{1}, \cdots, f_{n} is a regular sequence in R if and only if $e_{\alpha} f_{1}, \cdots, e_{\alpha} f_{n}$ form a regular sequence in $R_{\alpha}=e_{\alpha} R$ for every $\alpha=1, \cdots, s$.

Proof. Assume that f_{1}, \cdots, f_{n} form a regular sequence. If $h e_{\alpha}$ is an element of ($\sum_{i<t} f_{i} e_{\alpha} R_{\alpha}$): $f_{t} e_{\alpha}$, then $h e_{\alpha}$ is in $\left(\sum_{i<t} f_{i} R\right): f_{t}$ $=\sum_{i<t} f_{i} R$. Thus $h e_{\alpha} \in\left(\sum_{i<t} f_{i} R\right) \cap R_{\alpha}=\sum_{i<t} f_{i} e_{\alpha} R_{\alpha}$ and we see that $f_{1} e_{\alpha}, \cdots, f_{n} e_{\alpha}$ from a regular sequence in R_{α} for every $\alpha=1, \cdots, s$. Conversely, assume that $f_{1} e_{\alpha}, \cdots, f_{n} e_{\alpha}$ form a regular sequence in R_{α} for every α. Consider an arbitrary element h of $\sum_{i<t} f_{i} R: f_{t}$. $h=\sum_{\alpha} h e_{\alpha}$ and obviously $h e_{\alpha}$ is in ($\sum_{i<t} f_{i} e_{\alpha} R_{\alpha}$) : $f_{t} e_{\alpha}$ which is equal to $\quad \sum_{i<t} f_{i} e_{\alpha} R_{\alpha}$. Therefore $h \in \sum_{\alpha}\left(\sum_{i<t} f_{i} e_{\alpha} R_{\alpha}\right)=\sum_{i<t} f_{i} R$. This completes our proof.

Proposition 5.5. Assume that R is noetherian and that $\mathfrak{a}(\neq R)$ is an ideal whose radical is the intersection of a finite number of maximal ideal, say $\mathrm{m}_{1}, \cdots, \mathrm{nt}_{s}$. Let f_{1}, \cdots, f_{n} be elements of $R[X]$. Then the following three conditions are equivalent to each other.
(1) $\phi_{\mathfrak{a}} f_{1}, \cdots, \phi_{\mathfrak{a}} f_{n}$ form a regular requence in $\phi_{\mathfrak{a}} R[X]$.
(2) $\phi_{\mathrm{m}_{\alpha}} f_{1}, \cdots, \phi_{\mathrm{m}_{\alpha}} f_{n}$ form a regular requence in $\phi_{\mathrm{m}_{\alpha}} R[X]$ for every $\alpha=1, \cdots, s$.
(3) For any ideal $\mathfrak{b}(\neq R)$ which contans a power of $\cap_{\alpha} \mathrm{m}_{\alpha}$, $\phi_{\mathrm{b}} f_{1}, \cdots, \phi_{\mathrm{b}} f_{n}$ form a regular requence in $\phi_{\mathfrak{b}} R[X]$.

Proof. By virtue of Lemma 3.2, we have only to show that (1)
implies (2). For the purpose, considering R / \mathfrak{a} instead of R, we may assume that $\mathfrak{a}=0$. Then R is an Artin ring, whence by virtue of of Proposition 5.4, we may assume that R is an Artin local ring with maximal ideal $\mathfrak{n t}=\mathfrak{m}_{1}$. Reduction to the case where X is a finite set can be done easily. Set $T_{t}=\sum_{i<t} f_{i} R[X] . \quad \phi_{\mathfrak{m}} T_{t}=\phi_{\mathrm{m}} R[X]$ if and only if $T_{t}=R[X]$, and therefore we have only to observe the case where $T_{n} \neq R[X]$. Thus, that f_{1}, \cdots, f_{n} form a regular requence implies that height $T_{t}=t$ for every $t=1,2, \cdots, n$. Therefore height $\phi_{\mathfrak{m}} T_{t}=t$ for every t. Since $\phi_{\mathfrak{m}} R[X]$ is a polynomial ring over a field in a finite number of variables, $\phi_{\mathfrak{m}} R[X]$ is a Macaulay ring, and therefore we have that T_{t} is unmixed for every t. Thus $\phi_{\mathrm{m}} f_{1}, \cdots, \phi_{\mathrm{m}} f_{n}$ form a regular requence. This completes the proof of Proposition 5. 5.

Proposition 5.6. Let \mathfrak{m} be a maximal ideal of R and let f_{1}, \cdots, f_{n} be elements of $R[X]$. Set $\left.S=\left\{f \in R[X] \mid \phi_{m} f=1\right)\right\}$. If $\phi_{\mathfrak{m}} f_{1}, \cdots, \phi_{\mathfrak{m}} f_{n}$ form a regular sequence in $\phi_{\mathfrak{m}} R[X]$ and if \mathfrak{p} is a prime ideal contained in m, then $\phi_{p} f_{1}, \cdots, \phi_{p} f_{n}$ form a regular sequence in $\phi_{p} R_{p}[X]_{s}$.

Proof. We can reduce easily to the case where R is a ring of quotients of a finitely generated ring. Thus we may assume that R is a (noetherian) local ring. We may assume also that $\mathfrak{p}=0$, and that X is a finite set. Set $T_{t}=\sum_{i<t} f_{i} R[X]$. Therefore we consider the case where $T_{n} R[X]_{s} \neq R[x]_{s}$. That $\phi_{\mathrm{m}} f_{1}, \cdots, \phi_{\mathrm{m}} f_{n}$ form a regular sequence implies that height $\phi_{\mathrm{m}} T_{t}=t$ for every t. This implies that height $T_{t} R_{\mathfrak{p}}[X]_{s} \geq t .{ }^{9}$) Since T_{t} is generated by t elements and since $R_{\mathfrak{p}}[X]_{s}$ is (locally) Macaulay ring, we see that $T_{t} R_{\mathfrak{p}}[X]_{s}$ is unmixed and therefore f_{1}, \cdots, f_{n} from a regular sequence in $R_{\mathfrak{p}}[X]_{s}$. Thus the proof of Proposition 5.6 is completed.

Department of Mathematics Kyoto University

[^4]
[^0]: 1) M is a faithfully flat R-module if and only if $M \otimes R_{S}$ is a faithfully flat R_{s}-module for every S.
 2) By [L], we refer to M. Nagata, Local rings, John Wiley, 1962.
[^1]: 3) D. Mumford, Introduction to algebraic geometry, Harvard Univ. Lect. Notes, 1967.
 4) Under usual definition, one requires one more condition that $\sum_{i \leq n} f_{i} S \neq S$.
[^2]: 5) Note the following obvious fact: Let g_{1}, \cdots, g_{n} be elements of a polynomial is $K[X]$ over a field K and let K^{\prime} be an extension field of K. Then $g_{1} \cdots, g_{n}$ form a regular sequence in $K[X]$ if and only if they do in $K^{\prime}[X]$.
[^3]: 6) The writer owes the main part of this result to Professor Paul Monsky.
[^4]: 9) See Theorem 1 in Nagata, Finitely generated rings over a valuation ring, J. Math. Kyoto Univ. vol. 5 no. 2 (1966), pp. 163-169.
