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In Heerema’s [2] and J. Neggers’ [3], they discussed problems
on inducing of derivations of complete discrete valuation rings to
their residue fields (Theorem 1 and Theorem 2). On the other hand,
in the author’s [4] and A. Grothendieck’s [1], they developed general
theory of differential modules, using notions of m-adic free modules
or formally projective modules. Actually, it is inevitable to treat
modules which are not necessarily finitely generated, when we study
differential modules of local rings, especially of those of unequal
characteristic and they treated them as topological modules and intro-
duced above types of modules as extended notions of free or projective
modules. The author’s first intention in this paper is to reestablish
Heerema and Neggers’ theory in terms of differential modules. We
will find that in the course of proofs, we can describe it in a simpler
way, using our terminology. Secondly, we will discuss on the number
dx | x+ defined by Neggers, especially on the invariance of those numbers
with respect to the choice of prime elements and coefficient rings.
Then we will prove that the differential modules of complete discrete
valuation rings, satisfying conditions in Theorem 1, over their coeffi-
cient rings are independent of the choice of their coefficient rings.
In the appendix, we discuss relationship between lifting of derivations
and formally left inversibily of homomorphisms of completions of

differential modules.



426 Satoshi Suzuki

Throughout this paper, we denote by 2, the differential module
of a commutative ring R over a ring P, by dk» the canonical deri-
vation map of R into £, and by Derp(R, M) the module of deri-
vations of R into an R-module M over P. If P is a prime ring,

these are also denoted by 2, dr and Der(R, M), respectively.

We take this opportunity to thank Professor Paulo Ribenboim,
a conversation with whom has given a suggestion to start this work,
and Professor Masayoshi Nagata and Professor Tomoharu Akiba whose

advices have contributed to improve this work.

§1. Derivations of complete discrete valuation rings

Let R be a local ring with maximal ideal m. For a given deri-
vation @ in Der(R, R), we decompose it as 0=fod;, where f is an
R-homomorphism of £; to R. Then, by the commutative diagram:

l d R m
R/ﬂ'l _(L) .Q(R/m) ,
where vertical arrows are natural surjections, we see that 0 induces
a derivation & in Der(R/m, R/m), if and only if there exists an
R/m-homomorphism f’ of Q. to R/m such that & =f"od,., and

&) 2 L R

Lo

Qimy —> R/m

is a commutative diagram. Conversely, for a given derivation & in
Der(R/m, R/m) we decompose it as & =f'odu., with an R/m-
homomorphism f’. & is induced by a derivation in Der(R, R), if
and only if there exists an R-homomorphim f of 2; to R, satifying

the commutative diagram (1).

We assume here that R is an unramified regular local ring.
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Then R is a formally smooth algebra over its prime subring. The
canonical topology in £ is the me-adic topology and £ is a formally
projective R-module (Suzuki [4], II, Theorem 3 and Theorem 4 or
Grothendieck [1], Ow, (20.4.9)). In our case it is equivalent to
saying that the £./m'Q; are projective (hence, free) R/m’'-module
for all #=1,2, ---. Therefore, if we are given an R-homomorphism
h, of 2x to R/m, we can construct, inductively, homomorphisms #,
of £ to R/m" for all n=1,2, -+, such that

2r
hs/ N\
R/m** — R/m"

are commutative diagrams. Therefore, if we assume that R is com-
plete, taking the projective limit of {#.,} we obtain a homomorphism
f* of £ to R which induces %,. Therefore, if we are given a homo-
morphism f’ of &, to R/m, we obtain a homomorphism f satisfying
the commutative diagram (1). Hence, we get the following theorem
which is an extension of Heerema’s one ([2]).

Theorem 1. If R is a complete unramified regular local ring,
every derivation in Der(R/m, R/m) is induced by a derivation in
Der(R, R).

We go back to the case of general local rings. The natural sur-
jection: R—R/m induces a homomorphism:
(2 F : Hom,(2:, R)—Hom;(2:, R/m),
and the natural surjection: £;—>%2 ., induces a homomorphism:
(3 G : Hom:(2jmy, R/m)—Homg(2z, R/m).

Hence, taking (1) into account, an element f in Homg(£2;, K) induces
an element in Homgz(2kmy, R/m) if and only if F(f)&Image of G.
Conversely, an element f’ in Homg(2m, R/m) is induced by an
element in Homg(&2:, R), if and only if G(f’)&Image of F.

We remark here that if M is a complete R-module, we have
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Hom:(2:, M) =Hom;(2%, M), where £% is the completion of 2, be-
cause every homomorphism of m-adic modules are continuous. Assume
that R is formally smooth (over its prime ring). Let {a}.c; be
elements in R such that either the characteristic of R/m is 0 and
the classes of @ modulo m form a transfscedental base of R/m over
its prime field, or the characteristic of R/m equals p#0 and the
classes of @, form a p-independent base of R/m over (R/m)? then
the dra. have no linear relation (finite or infinite in the sense of
convergence in m-adic topology) in 2F with coefficients in the com-
pletion R* of R and we have

4 of= {éa;dka‘(,-) ;€ R* and lime;=0, ()1} (Suzuki [4]).

i>c0

Therefore, we have Hom,(2:, M )“:’HIML with M.= M.

§2. Neggers’ Theorem

We assume that R is a complete discrete valuation ring of
characteristic 0 with residue field of characteristic p+#0. Let P be
a coefficient ring of R. P is a complete unramifield discrete valuation
ring with prime element p. Let K and K* be quotient fields of R
and P, respectively. We remark that R and P are determined
uniquely by K and K*, respectively. Let # be a prime element of
R and f(U) be a minimal monic polynomial of # over P. Then,
we have R=P[U]/(f(U)) and
(5) 2¢=RQp2,DRAU/R((drf) (u) +f" (w)dU),
where dU is an independent element and (drf)(U) is a polynomial
in 2-[U] obtained from f(U), substituting its coefficients by their
images in £, by dr. We take a set of elements {a.}.; in P, such
as their residue classes form a p-independent base of P/pP(=R/m).

It is easy to see that the m-adic (hence, p-adic) completion
(RRp2:)* of RQp2r is a complete formally projective R-module, the
1Qdra., regarded as elements in (RQr2-)* are free and

(RR:2)* = {3 (1Qdra) | R and lima, =0, (1) =0, (D eI},

i=>»00
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Let (d» f)(u)=§]3,~(l®dpa‘(i)), with 8, R be an expression in
(RQr2p)*. Let v be the valuation of R.

Definition. (Neggers [3])"

(6) e e (u) =min v(8) —v(f*(w)).

We make aconvention that dx x«(#) = o0, if (dpf)(u) =0 in (RK»2s)*.
By (5), we see that

Q%=the completion of (RQr2)*PRIAU/R((dsf)(ut)
+f(w)dU).
Therefore, Homz(2x, R) is described in the following way. Since we
have Homz(RXR»2-PRAU, R)EHIRLXR with R.=R, Homg(2:, R)
can be regarded as a subset of IIR.X R, consisting of elements of

el
the form (c.; t).e; with
) 336 +f (W)t =0.

Then, every 4 in Hom:(2:, R) is identified with (¢.; £).c; if h(dra)
=¢. and h(dzu)=t. Or, equivalently, a derivation 9 in Der(R, R)
is determined uniquely, if we assign to (9a.; 0u).e; a set of values

satisfying
® 18,00+ f WU =0,

Theorem 2. (Neggers [3]) Let R be a complete discrete valu-
ation ring with maximal ideal m. Then, every derivation in

1) As a matter of fact, this is an alternative definition of Neggers’ 4 x* His
original definition is as follows. We choose u so that f(U) is an Eisenstein poly-
nomial. Assume that

FOD=U+p(ferUS +-+f0), fi€P.
Let a=R. Put A(a)=mai11 v¥(8(a)) with a€Der(P, P), where v* is the valuation
of P. Then dxx* is defined to be

min 1((A(fi) +De+1)—ov(f'(n)).

0si<e—
It is not difficult to show that two definitions thus we obtained coincide to each
other, when once # is chosen as above.
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Der (R, R) induces a derivation in Dev (R/m, R/m) if and only if
every derivation in Der(R/m, R/m) is induced from a derivation
in Der(R, R).

Proof. Our assertion is easily derived from Theorem 1, if R
is of equal characteristic. Hence, we assume that R is of unequal
charactristic. We use the same notaions and terminology as above.
By virtue of what we mentioned below (2) and (3), we have only
to prove that either Image(F) in (2) coincides with Image(G) in
(3) or there is no relation of inclusion between Image(F) and
Image(G). From the exact sequence:

0—m/m*+ pR—>(R/m) Qr 2> L2z ny—0,?
we can easily see that:
(R/m)Qr2x=D(R/m) 1Qdra) D(R/m) 1Qdru).”
It follows that Hom, (2, R/m)":“lI;II(R/m)LX (R/m) with (R/m).

=R/m, and in this expression we have:

Image(G) ={(¢;; 0)we:lC.E R/m}.
Also, we see that:

Image(F)={(¢; t)./|¢. and { are classes of c.= R and tE R,

satisfying (7)}.

In case 4k x(u)=1, if we give arbitrary values of ¢. in R, (7) is
solved and #=m, which means that Image(F)=Image(G). Next,
we consider the case where di «(#)<<0. If we put ¢=1, (7) can
be solved. Hence Image(F)<EImage(G). On the other hand, let 7
be an integer such that »(g;)= }Eiiélmv(ﬁi). Put ¢.=0 modulo m if
¢#¢(7) and ¢.5,=1 modulo m. Then (7) can not be solved unless

t==0 modulo m. Hence, Image(F) PImage(G). Q.E.D.

From what we discussed in the proof of Theorem 2, we have:

2) The exact sequence is proved, for instance, in E. Kunz, “Die Primidealteiler
der Differenten in algemeinen Ringen”, J. f. reine u. ang. Math. 204 (1960). How-
ever, in our case, the equality can be proved directly from (5). if we choose as
u one such that f(U) is an Eisenstein polynomial.
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Corollary 1. (Neggers [3]) Conditions in Theorem 2 are true
if and only if Ak x(u)=1, in case R is of unequal characteristic.

Since the description in Theorem 2 is independent of the choice

of K* and u#, we have:

Corollary 2. The property that A, w(u)=1 is independent
of the choice of K* and u.

§3. On AKI K*(u)

Corollary 1 to Theorem 2 gave a characterization of the fact
de xx(w)=1. We will make here further investigation on 4k, ().

Proposition 1. dg, () =1 if and only if there exists a prime
element w in R such that dg,(w)=1.

Proof. Assume that 4k «(#)>1. By the relation (8), it is
easy to see that AK,K*(u)=main v(6u), where @ runs over Der(R, R).
On the other hand, we have v(6b)=1 for 8= Der(R, R) and bem
by Theorem 2 and its corollary 1. Assume that i is an integer >0
such that v(87) =minv(B;). Put a=a,. Take 0€ Der(R, R) such
that 8a.=0 for t:/:‘x(;) and da.;,=1. Put w=au. Then we have
v(ow) =v(aou-+wuoda) =1, because v(adu)>1 and v(uoa)=1. Hence
Ag +(w)=1. By virtue of this fact and Theorem 2, we prove our

statement.

Proposition 2. Assume that Adc, () <0. Then dx w(u)=—7r
if and only if for a sufficiently large integer s and for every
0€ Der (R, R) such that v(0(b))=s for b= P, we have v(0a)=s—vr
for every a= R and there exists a derivation 8 with this property
széckh that minv(6a) =s—r.

Proof. First, by (8), we see that if v(6a.)>s, v(0u)=s-+ dx, (&)
and we can prove as before that if s=—4x (%), there is a @ satis-
fying, besides the above condition, that v(6#) =s+ 4k, x+(#). On the
other hand, every element in R is written as a polynomial g(u#) of
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u with coefficients in P. For a=Der(R,R), we have 0(g(n))
=(0g)(u)+g’'(u)ou, where (8g)(U) is meant by a polynomial
obtained from g(U) substituting its coefficients by their values by a.
Then, if v(8b)>s for b= P, we have v((0g) (#))>>s and v(g’'(u)oun)
>s+dx (). Hence, v(0(g(u))=s+dx,x«(#). Our proposition
follows from this easily.

Corollary. If dx «(u)=<0, the value of Ax x(u) is indepen-
dent of the choice of the prime element u.

However, even in case of 4x x(#)<0, the value of dx (%)
depends on the choice of K*, as we see it in the following example.

Example 1. Let Z be the ring of integers and let p be a prime
number. Let x be an independent variable over Z,;. Let P be the
p-adic completion of Z[x],r.;. Let # be a root of an Eisenstein
equation: U?+px=0. Put R=P[u]. Then the relation (8), in our
case, is pox+pu’'ou=0 and dx,x(#)=1—p. On the other hand,
put y=u-+x. We get another coefficient ring P’ of R such that P’
=the p-adic completion of Z[y],z,;. # is a root of an Eisenstein
equation: U?’—pU+py=0. The relation (8), in this case, is
poy+ (pur'—p)ou=0. Therefore A, x(u)=0.

There is a characterization of the property dx x(#)=0 as
follows.

Proposition 3. (Neggers [3]). 4k x(u)=0 if and only if every
derivation in Der (P, P) is lifted up o a derivation in Der(R, R).

This can be proved easily from the relation (8).

§4. Invariance of the differential modules

As is shown in the example below, an isomorphism, between two
coefficient rings of a complete discrete valuation ring R, can not
generally be extended to an automorphism of R, even in the case
dx xx(u)=1. We will show, however, that 2 , is independent of
the choice of K* in this case.
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Example 2. Let Z, x, P, u, y and P’ be as in Example 1,
except that # is a root of an Eisenstein equation: U®—px=0. Then
it is easy to see dx x*(#)=1. We have an isomorphism ¢ : P—P’
such that sx=y. ¢ cannot be extended to an automorphism of R,
for if there exists such an extension ¢/, (J/U)*=py=p(x+u) and
o is a root of an irreducible quadratic equation over R, hence not
in R.

Proposition 4. dx «(u)=0 if and only if the sequence:

sk

0—>(R®p9p)*i>s2t—>gk,p—>0

is exact and splits.

Remark. The above sequence is deduced from the natural exact

sequence:

4
R®PQP_)~QR'—)AQR/1’“—>O.
We note that since 2, is a finite module over a complete discrete

valuation ring R, £, itself is complete.

Proof. Exactness of the sequence: (REr2r)*—>Q2F—>L2rpr—>0 is
always true. With notations in (8), we have

=the completion of (RQr2p)* @RdU/R(ZB (1Rdraciy)
+ f'(w)dU).

Assume that dx x(#)=0. Then we can define a homomorphism
Y (R@pg}))*@RdU_)(R@p.gp)* in such a way that «r(a)=a for
as RQp2r and (dU)=— f( ) —+—L _(1Qdra.;y). It is obvious that
Jr induces a homomorphlsm Y* 1 25— (RRp2p)* and fr*op* =the
identical automorphism of (R r2-)*. Hence our sequence is a splitting
exact sequence. Assume that ¢* is left inversible and «* is a homo-
morphism: 2Ff—(RRr2,)* such that *op* =the identical automor-
phism of (RQr2:)*. * induces a homomorphism +r : (RXp2p)*
EBRdU—>(R®pQP)* Then, «[r(ZB (1Qdra;y) +f'()dU)=0. Hence,
ZB,(I@dpa«,)) +f(u)y(dU) = 0 From the property of (RQ,2,)%,
it follows that o(f'(u))<wv(B,) for ¢=1,2, ---. Hence, we have
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dx k(1) =0.

Remark: Proposition 4 can be proved as a consequence of
Proposition 3. We will learn it in Appendix in a more general form.

Theorem 3. Let R be a complete discvete wvaluation ring
satisfying the condition in Theovem 2. Then the Qupr ave deter-
mined independently of the choice of the coefficient rings P (up
to isomorphisms). Actually, in this case, the 2 are isomorphic
to the submodule of the completion 2F of 2x, comsisting of all the
torsion elements.

Proof. Since (RQr2r)* is a completion of a free module, it
has no trosion elements. Therefore our Theorem follows from Pro-

position 4 and the fact that £, is a trosion module.

Example 3 shows that in case dx;x+<<0, £ is not necessarily
determined uniquely, because in that example 24,=R/(u#**') but
Qrr=R/(u").

Appedix. Lifting of derivations

We assume that R is a commutative ring with identity and m
is an ideal in R. We consider m-adic topology in R and in R-
modules. Let M and N are R-modules.

Theoremd. Let (R,m) be a complete Zariski ring. Let S be
a commutative R-algebra, with structure homomorphism p, which
is a finite free R-module. Assume that 2: is a formally projective
(m-adic) R-module and 24 r is a torsion module. Then the follow-
ing two conditions arve equivalent.
(a) Every derivation in Der(R, R) can be extended to a devivation
in Der(S, S).
(b) The canonical exact sequence:

(4
S&r2r—> 25— 252

induces a splitting exact sequence:
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(P*
0—>(S®R.QR) *—>Q§—>.QS/R——>0,

where (SR2x)* and Q¥ are (m-adic) completions of SQrL: and
Qs, respectively.

Proof. We prove (b)=>(a). Let «* be a homomorphism :
28 —>(S®r2:)* such that «*op*=the identical automorphism of
(SRr2x)*. Let d=fodr be a derivation in Der(R, R). Since S is
complete, the homomrphism 1R f : S®Q2:—S induces a homomor-
phism (1Qf)* : (SQr2:)*—S and we have a commutative diagram:

4

R S
dR dS
.QR‘—)S®R~QR_L ~Qs
% (44
(S®s20)* %> ot
f N * ol ¥
AR H)* | AR * oy
R— 3
0

where « is the natural homomorphism. Therefore &= (1&Q) f)*oyo* o
odse Der(S,S) is an extension of 8. Next, we prove (a)=(b).
We prove it in two steps in the following way.

[1]. For a given S-homomorphism g* : (S&:2:)*—S there
exists an S-homomorphism Z2* : 0¥—S such that g*=/h%ocp*.

[2]. [1] leads to the left inversibility of ¢*.

Proof of [1]. Let S=Re,D --PRe, be a decomposition of S to
a direct sum of % copies of R. Let p;, : S—R be an R-homomorphism
which is the projection of S to the j-th copy of R (j=1,2, -, h).
Then nghlp,-(x)e,- for x€S. The R-homomorphisms p;og*: (S&p2:)*
—R induge R-homomorphisms g} : Q¥—R (j=1,2,---,h) and we
have g*(x)zéﬂ@g?)(x)e; for all x&(S5&.2:)*, because both
hand sides coincide to each other for elements in generators 1%
of (S®r2:)*. By (a), there exist S-homomorphisms A} : 2¥—S,
satifying commutative diagram:
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QF—> 0% or equivalently (SR @p)*—> 0% .
gt| |m 1®g1\, |/
0
R— S

h
Let %* be a homomorphisms: £f¥—S defined as h*(x)zgh}"(x)e;

for all x=2¥. Then we get a commutaive diagram:

(S@r2e)*—> 08
g*\ /I’L*

and we prove our assertion.

Proof of [2]. Since (S®:2:)* is a complete formally projective
module, it is a direct summand of an m-adic(=mS-adic) completion
N* of a free S-module N (Suzuki [5]). Let {a}.e; be a free base
of N. Then:

N*= (Saaw|aeS, (DeT and lima,~0}.
Hence (S®R.QR)*CIIE'IIS (8.:=S). Let ¢ :(SQRz2%)*—S be the
projection of 2% to the th component of .IEIIS' By [1], there exist
S-homomorphisms . : 2¥—S such that & =+rop*.

ll;lqu" is a map of £¥ into ll;IISl such that (Ll;llmlm) op* =the identical
automorphism of (S®:2:)*. Therefore, we have only to prove that
Image (IIy~) is contained in (S&®:2:)*. Since 2yr is a torsion
module, ‘Fc;r any element a< Q¥ there exists a non-zero divisor 7 of
S such that 7e€¢*((SQR:2:)*). Hence ’(LIEI,”"X")E(S@RQ”)*'
Hence if we prove that <211[") (a)e N*, then (E{«]rt) (@) (SK2)*,
because (SX)x2:)* is a direct summand of N* and 7 is not a zero-
divisor in N*. Since r(E{«pL)(a)EN*, we have an expansion:
7(T14.) (@) = Swac) where &S and lima,=0. Let f. be the cth
co;dinate of ’(El‘lh) (@) in EIS,, then it'_>f°:)llows that B.=0 if ¢#:(2)
i=1,2, -+, and lim7B.,=0. Since S is a Zariski ring, we conclude

i->oc0

limB.,,=0 (see, for instance, Zariski-Samuel [6], Ch. VIII Cor.1 to
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Theorem 13). Hence (IT+~) (@)= N*. Q.E.D.
=l
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