J. Math. Kyoto Univ.
10-1 (1970) 151-187

Certain numerical characters of
singularities
By

Heisuke HironNaka*

(Communicated by Prof. Nagata, Oct. 28, 1969)

§1. Introduction

Samuel introduced numerical function Hy, ,(=HY', defined in §3)
associated with each point x of a possibly singular noetherian scheme
X. For m>0, its values H x ,(m) coincides with corresponding values
of a polynomial Py , with rational coefficients, whose degree is equal
to dim, X. The coefficient in the highest degree term of Py, , is writ-
ten as e,(X)/d! with d=dim, X, where e,(X) denotes the multiplicity
of X at x as was so defined by Samuel. Many important works have
been done on this number e,(X) by Samuel, Nagata, Serre (with a
somewhat different approach) and some other prominent mathematicians,
but almost always the function Hy,, itself was treated only as a tool,
or a background object, for the study of the multiplicity. A significant
motivation that underwent this trend was the importance of the theory
of intersection numbers. From the point of view of the theory of singu-
larities for the sake of its own beauty, however, one discovers that the
function Hy , along with many other numerical characters of singu-
larities is a more natural and more useful object of study than just the
multiplicity or just the polynomial Px ,. For instance, Hx (1) —Hx,,(0)
is the dimension of Zariski tangent space of X at x (or the local
imbedding dimension of X about x) and is not given in general by the
polynomial Px ,. One also observes, by abundance of examples, that a
quadratic transformation or, more generally, a monoidal transformation

permissible to a given situation may exhibit some of its effects on a
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singularity in terms of changes in some values of Hy , even if no im-
provement of singularity is seen in terms of Py, We introduced
another kind of numerical character v¥(X,Z) when X is given as a
subscheme of a regular scheme Z, and proved its importance in the
resolution of singularities. Our study of the effects of permissible trans-
formations to the characters v}¥(X, Z) was one of the key steps to the
goal of resolution of singularities. This character v¥(X, Z) (as is seen
from the definition given in §3) differ from Hy . by the fact that
v¥(X, Z) reflects the multiplicative structure (or more exactly, its grad-
ed version) of the local ring Oy, while Hyx,, depends only on the
filtered module structure of the local ring (i.e., the module structure of
the associated graded algebra). These two characters Hy , and v¥(X, Z)
behave almost totally unrelatedly in general, but their close relation in
special cases are seen through the notion of normal flatness and through
permissible monoidal transformations. This was shown to some extent
in [27] and [3], and will be shown more clearly in this paper.

This work is entirely devoted to the proofs of the four theorems
stated in the beginning of §3. The first one of the four concerns
itself with Hy, , and is the main theorem of Bennett in [2]]. The proof
is substantially simplified. The second is the corresponding fact on
v¥(X,Z), and the third shows an important corelation between Hy .
and v¥(X, Z). The fourth theorem brings up to light a basic relation
between the group of translations which map Cx,, (=the tangential
cone of X at x) into itself and the set of infinitely near singular points
(having the same Samuel function) above x on the permissible monoidal

transforms of X.

§2. Notation

Let D be a closed subscheme of a scheme X, say noetherian.
Then Ix p denotes the ideal sheaf of D in the structure sheaf Oy of
X. There is a natural structure of graded Op-algebra in Pga-o[ (Ix,p)?
/(Ix,p)**'] which we denote by grp(X). We write Cxp for Spec

(grp(X)) and call it the normal cone of X along D, when it is com-
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bined with the projection Cx p—D. The fibre of the normal cone
above a point x € D will be denoted by Cx p, In particular, if D=
x, then we call Cx .(=Cx, . .) the tangential cone of X at x. Myx,,
denotes the maximal ideal of Oy, and k(x) does the residue field
Ox,./Mx, .. Let symm.(X)=symmyu)Mx, ./M%,,, the symmetric tensor
algebra over k(x), which is a naturally graded polynomial ring. We
write Ex , for Spec (symm,(X)), a vector space over k(x), and call it
Zariski tangent space of X at x. Cyx , is naturally imbedded in Ey, ,
as a cone through the origin (i.e., invariant under the non-zero scalar
multiplications). There exists the maximal additive group subscheme
Ax, . of Ex, . which leaves Cyx, , invariant, i.e., Cx .+ Ax,,=Cx, , in
the sense of the addition in Ex ,. Ax . is called the tangent additive
group of X at x. There also exists the maximal vector subspace T'x,,
of Ex,, which leaves Cyx,, invariant. In other words, Tx, . is the
maximal vector subspace of Ex , over k(x) contained in Ayx,,. We
call Tx, . the tangent vector space of X at x. We have Ty, ,CAx, .C
Cx,.CEx,,. Let Z be a regular scheme. Then for a point x of Z,
we have Tz ,=Az,.=Cz,=FEz, If D is a regular subscheme of Z,
then Czp is a locally trivial vector bundle over D. We then write
Nz p for Cz p and call it the normal bundle of Z along D. Let us next
consider the situation of ZOXDD> x, where Z and D are regular as

above. We then have a commutative diagram

0— TD.x_’ TZ,x_>NZ,D,x_’ 0
I V] V
Tp,:%Cx, 2 Cxp,y

where the upper horizontal sequence is the well-known exact sequence
of vector spaces over k(x). It is known that X is normally flat along
D at x if and only if a(Tp,.)C Tx . and B induces an isomorphism
Cx,:/a(Tp ) Cx p. (This is clearly equivalent to saying that a split-
ting of the upper exact sequence induces a left inverse of & by which
Cx,. becomes a product of Tp, and Cx,p,, For the equivalence of
this statement and the normal flatness, see [3], Ch II, Th 2.). If A4 is

a noetherian local ring and I an ideal in 4, then we write v,(f) for
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the maximum (if it exists, and oo if not) of those integers d with fé&
I’. For f€0;,, and M=Mx,,, we sometimes write v,(f) for vyu(f).
The expression ¢=(f mod I) will be used to mean that ¢ is the
residue class of f modulo I. A4 and I being as above, we let in;(f)
=(f mod I"*') with d=v,;(f). If H is an ideal we write in;(H) for
the homogeneous ideal in gr;(A) generated by those in;(f) with fe&H.
With M=M; ., we sometimes write in,(f) for iny(f). We have a
natural epimorphism of graded k(x)-algebras gr.(Z)— gr.(X). Its ker-
nel is denoted by in.(X, Z), or in,(X) for short. We know that
ing(X, Z)=iny(H) with M=M; , and H=1I; x . (=the ideal of X in
the local ring Oz,.). Let ZDD>x be as above, and let g: Z'—Z be
the blowing-up with center D, i.e., Z'=Proj(pow(P)) with P=1I;p.
Here pow(P) for an ideal P in O denotes the graded Oz-algebra ;- ,P°.
Therefore we have a canonical identity g '(D)=Proj(grp(Z)), i.e., the
associated projective bundle of the vector bundle Nz p over D. So
g '(x) is the associated projective space, say P°, of the vector space
Nz,p,x where s+ 1 is the codimension of D in Z at x. Let G be the
canonical image of the stalk grp(Z), into gr.(Z), so that P°=Proj(G)
and Nz, p,.=Spec(G). We have defined an additive group subscheme
Bps,,» of Spec(G), associated with each point x' of P*. (cf [4]) We
define the associated additive group B, . of the blowing-up at x'€
g“l(x) to be the additive group subscheme of 7'z, such that B, . D
Tp,y and B, /Tp =Bps,. U, denotes the ring of invariants of
Bg . in the polynomial ring gr.(Z). By the definition of B, ., U, .
is a graded k(x)-subalgebra of gr.(Z) and its homogeneous part of
degree d consists of those ¢ €G, such that the hypersurface F, in P°
defined by (¢)G has the multiplicity >d at x'.

§3. Effects of a permissible transformation

Let X be a noetherian scheme. We define Samuel functions H¥,, ¢

€Zy, of X at a point x as follows:

HS?Z;:("l) =ran kk(x)(Mg".x/M%Txl
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for every m € Z,, and then by induction on (€ Z,
m
HEPm)=2 HY (i)
i=o

so that HE (m)=H$P(m)—HY P (m—1).
If X is given as a closed subscheme of a regular scheme Z, then we

also define a sequence
Vt(X, Z)z(yl’ Vg’ ...... N ym,...)

by the following conditions

G 1<y <y, <-..... , where v; are either integers or oo, and (ii)
each integer v is repeated among the y; exactly ¢ times where ¢=
rank(in (X, Z2)./in(X, Z),_1gr.(Z)1).

Remark 1. A system of generators ¢=(¢i, ---, ¢») of a homo-
geneous ideal [ in a graded algebra is called a standard base of I, if
(i) ¢ is a minimal base of I,
(ii) each ¢; is homogeneous for every i, and
(ili) deg @1 <deg 2 <----.-<deg ¢n
One can prove that if ¢ is any standard base of in,(X, Z) in gr,(Z)
then v¥(X, Z)=(deg ¢1, deg @3, ---, deg @, o0, ---).
Now let us consider x € DCXCZ, where Z is a regular scheme,
X a closed subscheme of Z and D a closed regular subscheme of X
such that

(2.1) X is normally flat along D at the point x.

Our basic geometric object then is the following
reXciL 7

(2.2) iV e
x€eX<—5 Z

where g (resp. f) is the blowing-up with center D, { is the inclusion,
J is the canonical imbedding (i.e., the unique morphism which makes

the diagram commutative), and x’ is any point of f~'(x). Under these
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circumstances, we shall prove the following four theorems:

THEOREM 1. (Bennett) We have H¥'L(m)<<H$ ,(m) for all

m € Z,, where d is the dimension of the closure of x, i.e., tr.deg, k(x).

THEOREM 1II. We have vX (X', Z’) <v¥(X,Z) in the sense of

lexicographical ordering.

THEOREM 111. yX (X, Z)=v¥(X, Z) if and only if H¢'L=HY,
with the number d of TH I.

THEOREM 1IV. If the equality of TH III holds, then the tangen-

tial cone Cyx,, is invariant by the subgroup B, . of Tz ..

Remark 3. TH I has been proven by Bennett [ 2], Theorem (0).
The proof presented here basically follows Bennett’s approach but is
substantially simplified. Bennett also proved the if-part of TH III under
the assumption of k(x")=k(x), [2] Ch II Prop (3.4).

We will prove the following inequalities and analyse the case of

equality in each step. Note that THs I and II are included.
(4.1) HY2(m) < HEE S (m)
<HE:s (m)=HE (m)

for all m € Z,, where s=dim, D and we write Hc for H¢, if C is a

cone through the origin 0 in a vector space.
(4.2) vi(X',Z)<v¥X,Z) and
vE(f 1 (x), g1 (%) <v*(Cx,p,5 Nz,p,)=vi(X,2)
where v*(C, N) denotes v¥(C, N) if C is a cone through the origin 0

in a vector space NV.

Example (4.2) Let Z=Spec(k[u,v]) with u=C(uo, u1, uz) and v
=(v,, v2), which is an affine 5-space over a field k. Let X=Spec (k[ u, v]
/(hy, h2)k[u, v]) where hi=uoujus+ul+ov} and hr=uoui+ul+3.
Let x be the origin of the affine space, and let g: Z'—>Z be the



Certain numerical characters of singularities 157

blowing-up with center x. The induced blowing-up f: X'—X is the
same as before. Let uj=uo, ui=u;/uy and vi=wv;/u, for i=1, 2.
Let x’ be the origin of the affine space Spec(k[u’, v'])CZ. Let us
compare the numerical characters of X at x and X’ at x’. We claim

(i) (h1, hy) is a standard base of Iz x,. in Oz, and v}(X, Z)
=(3, 3, o0, ...).

(i) Let Al=ujuj+uf +v} and hy=us +ul’ +v5. Then (hi,hy)
is a standard base of Iz x/ . and v} (X,Z)=(2, 2, oo, ...).

(iii) Let @}(resp. #;) be the class of uj;(resp. v;) mod Iz g-1(z) s
=(u{)0z . Then I -1z s-1s),» has a standard base (h{, hj, a) where
Ri=ujuy+o], hy=uy +9; and a=asd; —ayv;. Hence v} (f'(x),
gl(x)=(2,2,3, o0, ...).

This example shows that we cannot in general expect any in-
equalities between v}(X’, Z’) and v}(f '(x), g '(x)). Accordingly, our
proof of (4.2) is not completely parallel to that of (4.1). (In proving
the claims of the above example, the key is the fact that in the case
of a complete intersection, say fi=f2=0, (f1, f2) is a standard base
at a point if their initial forms at the point are relatively prime.)

The normal flatness assumption (2.1) implies that Cx , is invariant
by Tp. and there exists a canonical isomorphism Cx ./ Tp = Cx,p,s
The exact sequence of vector spaces 0— Tp ,—> Tz ,—>Nz p .—>0 splits
over the base field k(x), and a splitting of this sequence induces an iso-
morphism Cx,,~> Tp % Cx,p,.. This implies the last equalities of (4.1)
and (4.2), for obviously HY,=H¢,  and vi(X, Z)=v*(Cx s Tz)-
It is thus enough to prove the first two inequalities of (4.1) and (4.2)
for THs I and II.

For a graded algebra G over a field K, we define HY by letting
H®(m)=rankgG,. For a local ring A, we write HY’ for H{’ with
G= gru(A4) where M denotes the maximal ideal of 4. In other words,

HY=H{), with the unique closed point y of ¥=Spec(4).

Proposition 5. (Bennett) Let A4 be a noetherian local ring with
maximal ideal M. Let zé M, B=A/z4 and N=MB. Then we have
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H¢*V(m)>H'(m) for all integers m >0 and ¢>1.

Proof. The equality for ¢t=1 and for all m is obviously enough.
Let A(m)=A/M™'' and B(m)=B/N"''. We have H{'(m)=length,
A(ln)=i lengthy z7A(m)/z"''4A(m). The multiplication by z’ in A
inducesj :1(;1 epimorphism 2,,;: A(m—j)/zA(m —j)—+sz (m)/z"" 4 (m).
Hence Hf,,”(m)gﬁ lengtha A(m —j)/zA(m—j) which is equal to H§ (m)
because A(m —j)]/=zOA(m —)=B(m—j).

Remark (5.1) This proof clearly shows that H@¥=HY’ (which
implies H$*V=H'¥ for all t>>0) if and only if all the 4, ; are bijec-

tive.

Remark (5.2) The first inequality of (4.1) follows from Prop 5.
In fact, the ideal of f'(D) in X' is invertible as Ox--module, so that
there exists wo€O0x,, with Iy 1 py . =uo0Ox/ . D being regular,
there are u; €0x ., 1<i<s, such that Mp ,=(uy, ---, u)Op . Then
Of-1(2y,»=0x+/(uo, U, ---, u)Ox+ . Apply Prop 5 repeatedly s+1
times and get the first inequality of (4.1).

Proposition 6. For A, B and z of Prop 5, the following condi-

tions are equivalent to one another:
(i) HE*P=HY for all integers ¢>0.

(ii) z is not a zero-divisor (and hence non-zero) in A and
M™*N\zA=zM" for all m>>0.

(iii) The image z of z in gry(A4), is not a zero-divisor in gry(4).
(iv) z is not a zero-divisor in gru(A4) and the natural homomor-

phism gry(A4)/z gru(A)— gra(B) is bijective.

Proof. 1If z is a zero-divisor in A, then there exists w& M, =0,
with wz/=0 for some j>0. We can choose w and j in such a way
that w¢ z4. Hence there exists an integer m>j such that w¢ z4-+
M™7*' If o is the image of w in A(m—j)/zA(m—j) then w==0
and 4, ;(w)=0. In view of (5.1), (i) implies that z is not a zero-
divisor in 4. We have
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Ker(An ) =41z 1A+ M"Y /z A+ M7+

where A: A— A is the multiplication by z’/. If z is not a zero-divisor
in 4, then for each m>j>0, Ker(1,,)=(0)&2A" (z"" "4+ M" ) =z4
+M"NS G AL MY N A= A4 M T P e MM N A=
DML M N zP P 4. The last equality for all j<<m with a fixed
m>>0, implies M"**Nz/A=z"M"7 "'+ M""'Nz'**4 for all (j,a), 0
<j<m and 1<a<m—j+1, and so in particular (for j+a=m+1)
M™ 1 N\zi A=z M™7+ for all J» 0<j<m. Conversely, this equality
clearly implies what was proven equivalent to Ker(4, ;) =0 for all j,
0<j<m. We have thus (i) &(ii). Let us now assume (ii). Let m
be an arbitrary integer >0 and ¢ an arbitrary element of gry(A)n
such that zp=0. Let f€ M™ be such that ¢ =(f mod M™*'). Then
zfEM™?*NzA=zM™"". Since z is not a zero-divisor in A4, f&€M"*},
ie., ¢=0. We have proven (ii)=>(iii). Now assume (iii). Let f be
any element of 4 with zf=0. If f==0, then j=yy(f)<oco and iny(f)
=(f mod M’/*')=£0. But z iny(f)=(zf mod M’"%)=0, contradictory
to (iii). Hence z is not a zero-divisor in A. Let f€zANM"*"
Write f=zg with g€ 4. Let j=vy(g). If j<m, then z iny(g)=
(f mod M’*%)=0, contradictory to (iii). Hence j>m, ie., f€zM”.
This shows (iii)&>(ii). Our proof of Prop. 4 will be complete if we
prove (ii)=>(iv). So assume (ii). Then gry(B);=N'/N’*'=M'/M’'**
+ (ANM) = M/ /M 4 M = (MY /M) 2 (M /M) = grag (A);/
z gru(A);-y for all j=>1. This means (iv). - Q.E.D.

If I is a homogeneous ideal in a naturally graded polynomial ring
S over a field K, then v*(I, S) denotes the sequence (deg ¢, deg @3,
..., deg @m, o0, ©0, ...) with any minimal base (@1, @2, ---, @m) of I
with homogeneous ¢; and with deg ¢;<deg @i, for all i>>1. If R
is a regular local ring with maximal ideal M, then y*(J, R) for an
ideal J in R denotes v*(iny(J), gru(R)) where iny(J) is the kernel
of the natural homomorphism gry(R)— gry(R/J). In other words,
v¥*(J, R)=v¥(Y, W) where y is the unique closed point of Y
=Spec (R/J) C W=Spec(R).
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Lemma 7. Let R be a regular local ring, M the maximal ideal
of R and v an element of M— M2 Let J be an ideal in R, A=R/J,
R=R/vR and A=A/vA. Then the equality H'=HY implies that a
standard base of iny(J) induces a standard base of inp,(f) and in par-
ticular v*(J, R)=v*(J, R), where J=JR and M= MR.

Proof. Let t=iny(v). Pick any standard base ¢=(¢i, ---, ¢m) oOf
iny(J) and let d;=deg ¢;. If @;=(¢; mod (¢)grn(J)), then @; is ho-
mogeneous and of degree d; unless @;=0. Moreover, by Prop 6, H 5—4“
=HY implies ingz(J)=(iny(J) mod (¢) grm(R)) and hence (21, -, @m)
grﬁ(R)=ian(j). It is therefore enough to prove that ¢ is a minimal
base. If not, there exist homogeneous ;€ gry(R) such that deg B3;=
d;i—d; and ¢;— ZB,@,—O Namely ¢;— ZB,(&,—M) with ¢ € gry(R).
By Prop 6, ¢ is not a zero-divisor in ng(R)/mM(]) Hence ¢ €iny(J),
i.e., there exist homogeneous «; of degrees d;—1—deg ¢; in gry(R)
such that ¢ =32 a;¢;. Then ¢;= Z(ﬁ’,+ta)¢,, contrary to the mini-

1<j
mality of ¢. Q.D.E.

Let us now proceed to prove the second inequality of (4.1) (and
hence TH. I). Let us choose a regular system of parameters (xo, x1,
ooy Xyy Y1y ooy ¥s) Of Oz . such that (xo, ---, 2,)O0z,:= Iz p,x, the ideal
of D in Oz, Let X;=iny(x;) and Y;=iny(y;), where M=Mz ., so
that gr.(Z)=K[X, Y] with X=(X,, ---, X,;) and Y=(Yy, -, ¥;) where
K=0;z./Mz,. By means of the canonical morphism Iz .—>Nzp, ., we
shall identify Nz p . with Spec(K[X]). The normal flatness assumption
(2.1) implies that in,(X, Z)=Igr.(Z) with I=in.(X,Z)NK[X]. We
have Cx,p,.=Spec(K[X]/I) and f '(x)=Proj(K[X]/I). The follow-
ing lemma proves the first inequality of (4.1) in the residually rational

case, i.e., the case for k(x')=k(x).

Lemma 8. Let I be a homogeneous ideal in a polynomial ring
K[X]. Let N=Spec(K[X]), C=Spec(K[X]/I), E=Proj(K[X]) and
F=Proj(K[X]/I). Let x’ be any K.rational point of F. Then we
have

() HEP (m)>HELY (m) for all t>>0 and all m>0,
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(i) v*(C, N)>vi(F, E), and
(iii) the equalities of (i) hold if and only if that of (ii) does.

Proof. Since x’ is K-rational, we may assume that Of .=
K[ T]rykcry where T=(Ty, ..., T,) with T;=X;/X,. Let I' be the
ideal of F in K[ T]. We have H¥,.(m)=length (Op, ./ M2 })=rankg
(K[LT)/(T)"™*K[T]+TI). For each m, let us define a homomorphism
of K-modules at,,: I,—I'+(T)" K[ T]/(T)™ K[ T] by letting a,(¢)
=(¢/X7? mod (T)"*'K[T7]). Since each ¢/X7? is a polynomial of
degree <m in T, «,, is injective. Therefore, by the above equalities, we
get HE .(m) <rankg (K[ T]/(T)"**K[ T])—rankg I, =rankg(K[ X ],)
—rankg I,=H® (m). This proves (i) for t=0 and hence for all ¢t >0.

To prove (ii) and (iii), let us consider the following condition:
* UNG)K[X]=I where G=K[X,, ---, X, ].

For simplicity, we write v*(resp. v*) for v*(C, N) (resp. v} (F, E)).
We shall prove that y* <y* = (*), that the equalities of (i)=(*) and
that (*)=both yv*=p* and the equalities of (i). Note that (ii) and
(iii) follow immediately from these implications. Let ¢=(@1, ---, @m)
be any standard base of I, and let p be the largest integer <m-1
such that ¢;€G for all i<p. Say p<m+1, and write @,=¢,+
Gp1 Xo+ +¢p_; Xj with ¢;€G and ¢,_;50. We want to prove that
if y*=p* or the equalities of (i) hold, then ¢, ;€I so that ¢, can
be replaced by ¢,—¢,_;Xj. If this is so, then by induction we see
that ¢ could be so chosen as to have p=m+1, ie., (*). In any case,
we have an isomorphism of graded K-algebras w: G~ gr.’(E), which
sends X; to the initial form of T;=X;/X,. Note that w(g;)=iny"(p;/X4)
for all i<p and w(¢,_;)=iny(¢,/Xi), where M'=Mz .’ and d;=
deg ¢;. We have (w(@), 0(¢p-;))gr«(E)iny(F, E), where w(p)=
(w(gp1)y -5 w(@p_1)). Now assume v* Ly*. Then w(p) extends to a
standard base of iny(F, E), and since degw(¢,_)=d,—j<dy, we
must have o (¢,-;) €(w (@) gr-(E), ie., ¢p_;€(@1, -+, ¢»-1)G. This
means that ¢, could be replaced by ¢,—¢,_;Xj. Next, if d<d, we
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have H(d)=rankg (K[X]/(¢, s ¢p-1) K[X D4 =aZjOI‘ankK G/ (o1, s
Pr-1C)a= L rank (g (B)/(0(9)) gre(E)a

= 5 rank (gre(E)/ (0 (@), 0 (9y-) grar (BN = Hibd)

Hence, if the equalities of (i) hold, then we must have w(¢,_;)€
(0 (@) gr(E), ie., once again ¢, ;€ (@1, ---, ¢»-1)G. We have thus
proved the first two of the claimed implications. Now, conversely, let

us assume (*). Then the above w gives rise to an isomorphism of
K[ x]-algebras from K[ X /I to

(grx'(E)/inx'(Fs E))[Xo]

from which y*=y* and the equalities of (i) clearly follow. Q.E.D.

We are now interested in the case in which k(x’) is a non-trivial
extension of k(x). Let & be an element of k(x’) which is not in k(x).
Let p€k(x)[U] be a monic irreducible polynomial for @. Let p€
Oz, U] be a polynomial such that deg p=deg p and that p=(p mod
Mz .[U]). (In particular, if & is transcendental over k(x), then p=0
and hence p=0.) We then have a diagram

Z——27
(9.1) g, &
PR
where Z=Spec(0z,.[U]/(p)0z,.[U)), j: Z—Z is the canonical mor-
phism, & is the blowing-up with center D——-j‘l(D) and j' is the unique
morphism which makes the diagram commutative. Let X be the generic
point of j'(x)=Spec(k(x)[&]) (which is either a line or a single
point). The k(x)-homomorphism from k(%) to k(x’), which makes U
correspond to &, gives a point %' of Z' such that Z(®%)=23% and j(&)
=x'. Let X=j‘1(X) and X' the strict transform of X by &, so that
& induces the blowing-up f: X’—>X with center D. Moreover, the fact

that j is flat implies that the diagram (9.1) is cartesian as well as the
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following
X X
(9.2) fi f
X i X

where i (resp. i) is induced by j (resp. j). Since p(U) remains ir-

reducible mod Mz, ,, ¢ induces isomorphisms

(9.3) Cz,:;Cx,:Qun k(%) and
C%.5:Cx,0,:Qrm k(%)

where the right hand side denotes the base field extensions. This implies
H}(?t');:]{f,}fx and H‘E”:H%ﬂ for all t>>0 where C=Cx 53z and C

=Cyx,p,». Therefore to prove
(9.4) H¢rom) <HY ,(m),
resp. H &30 <HE (n)

we can do it in two steps, first H;f Ym)<H }(};"); (m), resp. H }’ +&;’2 m)
SH%’)(m), where b=tr.degy;)k(X'), and then

(9.5) HEOm) <HGE (m)

(
resp. H(IT(&;-)FI;.:)(m)SHI‘Fb-*‘l)( )

Fro.z

Thus by proving (9.5) and applying it repeatedly (necessarily a finite
number of times), the proof of (9.4) can be reduced to the residually
rational case. In particular, will then follow the second inequality of
(9.4) (i.e., the same of (4.1)) and hence TH I

Let us now propose to prove (9.5). Let 4=0x’, (resp. Of-1(z) )
and B=03" ;" (resp. Oj-1%),;), so that (9.5) can be written as

(9.6) Hpe(m) <<HP(m) where e=d—b=tr.degg K(u)

with K=k(x).
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Case 1. Assume that # is transcendental over K. Then B=

A[VJm,vyarvy with a variable ¥ over 4. Then clearly the equality
holds in (9.6), where e=1.

Case 2. Assume that & is separable algebraic over K. Then p=
(p mod M[U]) has no multiple root, so that the extension 4— B
(which is a localization of A[U]/pA[U]) is unramified and hence
there exists an isomorphism gry(B)— gry(A4), where M (resp. N) is
the maximal ideal of A (resp. B). Again the equality holds in (9.6),

where e=0.

Case 3. Assume that # is purely inseparable over K. We then
have B=A[U]/pA[U]. Let us pick any element u € A4 such that &
=(u mod M), and let V=U—u. Write h(V) for p(U). Then we
have B=A[V]/hA[ V], where h=V* mod M[ V] with ¢=[K(@): K]
=deg h. Thus what we want is

Proposition 10. Let A be a noetherian local ring with maximal
ideal M, and let B=A[V]/hA[ V] where h=V?+ 2z, V"1 4. 4z, with
z; €M for all i, so that B is local. Then we have H¥ (m)>H$ (m)
for all n>1 and all m>0.

Proof. Let R=A[ V], R(m)=R/(M, V)"*'R and A(m)=A/M™**
for each m>>0. We have HY'(m)=length R(m)/hR(mn)

= glength {VIR(m)/V'R(m) NhR(m)+ Vi* R(m)}

The multiplication by zg in R induces a homomorphism (,;: R(m)—

R(m+j) because z, €M by assumption. We claim
() Buwi(V'Rm)NRR(m)+ V'*'R(m +j)
=zi*! V'R(m+j)+ VI 1R(m+ j)

In fact, let w€& V' R(m)NAR(m). We can write w=(§]d,~hVi mod
=0
(M, V)"*'R) where d;€ A. If a,;: A(n)>R(n+j) is the A-homomor-
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phism defined by a,j(¢ mod M**')=(aV’ mod (M, V)"**'R), a,; in-
duces an isomorphism A(n)SV/R(n+j)/V/"'R(n+j) and a direct
sum decomposition R(m)=@D? o In(an_j;). Therefore we VIR(m) im-
plies that

ds zq+ ds—l zq—1+ et dozq—sEO mod Mm—s+1

for all s<j, where zo=1 and z;=0 for i<0. Then by induction on
s, 0<s<j, we get d;z*'=0 mod M"*' for every s. Moreover, if we
write w—(}:e Vi mod (M, V)""'R) with e;E A4, then djz,+d;j_ 12,1
+ - +dozq ,]—ej mod M™7*' and hence d;zi*'=zle; mod M™*'.

This means
(S e VH=zi"1(d; V)
1=
mod {(M, V)"**' R+ Vi*1 R}

In other words, Bn;(w)€ zi*' V' R(m+j)+ V’**R(m+j). This proves
the first term of (%) is included in the second. The reverse inclusion
is clear because B3,;(V/hR(m)) generates the second term of (x) mod
Vj+1R(m+j). Now in view of the above equality for H®'(m), (%)
implies H‘l’(m)zz length{zZ V'R(m+j)+ V'*'R(m+ j)/z5** V' R(m + j)

+ V' R(m+ )}y = Zlength zh A(m)/z3*  A(m)=H P (m). Q.E.D.

Remark (10.1) To prove (4.1) (and hence TH. I), we need only
the second inequality of (9.5) for :>>1. Hence it is enough to have
the inequalities of Prop 10 for n>>2. This is substantially easier to
prove, than Prop 10. In fact, let S be the localization of A[ V] by the
maximal ideal (M, V) A[V]. As V is an indeterminate over A, we
get HP=HY. By Prop 5, HE(m)<HE,s(m) so that HP(m)
< HZ(m) for all m>0.

Problem (10.2) Does the inequality of Prop 10 hold in general

for every flat local extension 4 — B of noetherian local rings?

Proposition 11. Under the assumption of Prop 10, assume g>1.
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Then the following conditions are equivalent to one another:

(i) HP=HY for any one (and hence for all) n>0.

(ii) The class (z, mod M?) is not a zero-divisor in gry(4).

(iii) (2, mod M?) is not a zero-divisor in gry(A4) and generates
the kernel of the natural epimorphism gry,vyr(R)— gry(B) where R
=A[ V] and N is the maximal ideal of B.

Proof. As was shown in (10.1), we have HP(m)=H{ (m) <
H@,s(m)=Hg (m) for all m>0. Hence HP=H¥ if and only if
H{Y'=H¥,s. By Prop 6, this last equality holds if and only if (A mod
P?) is not a zero-divisor in grp(S) where P=(M, V) S, the maximal
ideal of S. As ¢>2 and z;€M for all i, we get (h mod P*)=(z,
mod P?). There exists a canonical isomorphism gru(ADLV]= gre(S)
which sends ¥V to inp(¥). This isomorphism maps (z, mod M?®) to
(z, mod P%). 1t is therefore clear that (z, mod P?) is not zero-divisor
in grp(S) if and only if (z, mod M?) is not a zero-divisor in gry(4).
We have thus proven (i) (ii). Furthermore we have a natural epimo-
rphism grp(S)— gry(B). If (ii) holds, then its kernel is generated by
(h mod P?) as was proven in Prop 6. This means (iii) by what was
shown above. Q.E.D.

Lemma 12, In addition to the assumption of Prop 10, assume
further that A=FE/I with a regular local ring E and an ideal [ in E.
Let g be any monic polynomial in E[ V] such that h=(g mod I[ V7)),
and let F=E[V]/gE[V]so that B=F/J with J=IF. If H{’=H’
for any one (and hence all) ¢>>0, then

(i) F is a regular local ring,

(i) v*(I, E)=v*(/J, F), and

(iii) a standard base of I induces a standard base of J.

Proof. Let P be the maximal ideal of E. We can then write g
=Vitw, Vi '+ 4w, with all w;€ P, 1<i<y. This implies that
F is local. By Prop 11, the assumption H{’=HY’ implies that (z, mod
M?) is not a zero-divisor in gru(A4). In particular z, is not in M?
and hence w, not in P% This implies that g is not in (P, V)?E[V]
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and hence F is regular. Now to prove (ii) and (iii), let T be the
localization of E[ V] with respect to (P, V)E[ V], and let L=(P, V) T,
the maximal ideal. V being an indeterminate, we have a natural
injection grp(E)—>gr (T) and in (IT)=inp(l)gr (T). This shows
that every standard base of I induces a standard base of IT and
v¥(IT, T)=v*(I, E). Let S=T/IT. Then clearly H{=HY and
hence HY=H{' by the assumption of Lemma. As B=S5/gS and
F=T/gT, it then follows by Lemma 7 that every standard base of
IT induces a standard base of J and v*(J, F)=y*(IT, T). There
follow (ii) and (iii). Q.E.D.

Remark (12.2) 1If the equality holds instead of the first (resp.
the second) inequality of (4.1), then the corresponding equality holds
for v¥s. (cf (4.2).)

Proof. Let (yi, .-, ys) be a system of elements in Oz, which
induces a regular system of parameters of Op ,. Let x, be a generator
of the principal ideal Iz 4-1(p).. Let R=0z ., Ry=R/xoR and R;
=R/(x0, y1, -+, y) R for 1<i<s. Let A=0x,+, Ag=A/x0A4 and 4;
=A/(x0, y1, -+, y:) A for 1<i<s. By Prop 5, if the equality holds
instead of the first inequality of (4.1), then HY'=H{) and H'=H{)
for all {>>0. Hence by applying Lemma 7 repeatedly (s+ 1) times, we
get v*(J, R)=v*(Jo, Ro) and v*(J;, R)=v*(Jis1, Riy1) for all i>>0,
where J=1Iz x., and J;=JR;. Thus v*(J, R)=v*(Js, R;) which is
the first corresponding equality for v*’s. Next assume the equality in
the place of the second inequality of (4.1). In the residually rational
case, (iii) of Lemma 8 proves the corresponding equality of (4.2). If
k(x)s=k(x), we repeat the technique of base extension of the type
(9.1) and (9.2). The given extension k(x)— k(x’) is attained by a finite
number of successive simple extensions either transcendental, separable
or purely inseparable, i.e., either case 1, case 2 or case 3 in the para-
graph of (9.6). Therefore, by Lemma 8 and Prop 10, the above assump-
tion implies that the second inequality of (9.5) can be replaced by an

equality. In the purely inseparable case, this implies vi(f '(x), g '(x))
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=v§,(f"1(?c), £7'(%)) by Lemma 12. In the other two cases, this equali-
ty is automatic due to the unramifiedness. Hence the question is

reduced to the residually rational case. Q.E.D.

We are now interested in proving the inequalities of (4.2) (and TH
II). This will be done not by the technique of successive base exten-
sions of the type (9.1), but by making use of certain special properties
of the additive subgroup B, , of the tangent space Tz, As a matter
of fact, TH IV will be simultaneously proven. (cf. §1.)

The basic assumptions (2.1) and (2.2) remain valid throughout.
We have defined two additive subgroups Ay , and B, of Tz, Let
gr+(Z, D) be the graded algebra of the fibre Nzp . of the normal
bundle Nz p—D at the point x € D. We shall identify gr.(Z, D) with
its image by the monomorphism gr.(Z, D)—> gr.(Z) associated with the
natural epimorphism of vector spaces Tz ,—>Nzp,.. Ip,. is the kernel
of this epimorphism and, by definition, is contained in B, .. Hence
the ring of invariants Uy .. of B, . in gr,(Z) is contained in gr.(Z,D).

To make it explicit, let us choose

(13.1) a regular system of parameters of Oz, ., say (%o, X1,---, %r, ¥1,

-y ¥s), such that (xo, %1, -+, %,) 0z, 2= 1Iz,p . and (x0)0z+,» = Iz/ g-1(Dy,x"-

Let K be the residue field of Oz, Let X;=iny(x;) and Y;=inyx(y,),
so that gr.(Z)=K[X,, X1, ---, X, Y1, -, Y] and gr.(Z, D)=K[ X,,
X1, -+, X, 1. Ug, is then the graded K-subalgebra of the polynomial
ring K[ X] whose homogeneous part of degree d is{¢p € K[ X Js|v.-(¢/
X#)>d}, where g '(x) is identified with Proj(K[X]) and x’ is viewed
as a point of Proj(K[ X ]). Then, after a suitable permutation on (x1,

.-, %,) (not involving x,), we may assume that
+1
(13.2) U,»=K[0y, Gs, ---, 6. where 0;= X%+ 3 c;; X% with 1< i <
j=i+1
e, ci; €K, X,;1=Xo and 1 <q¢q: <. <q..
If the characteristic p of K is positive, then all the g; are necessarily
powers of p. If p=0, then ¢;=1 for all i. (cf. [4].)

By the above assumption on x,, the point x’ belongs to the affine



Certain numerical charvacters of singularities 169

piece Spec (K[ T]) of Proj(K[X]), where T;=X;/X,, 1<i<r. Let
S be the localization of K[ T] at the point x’, and /N its maximal
ideal. Let S; be the localization of K[ T,_;.1, ---, T, ] dominated by
S, and NV; its maximal ideal, where 0 <i <le.

Lemma 14. We have a natural isomorphism So/No,= S/N.

Proof. Let t;=0;/X%. Then S;;; is a localization of S;[ T,_;]
by a prime ideal containing N; and t,_;. Since t,_; is a purely in-
separable polynomial in T,_;, such a prime ideal is maximal and unique.
Hence we have an isomorphism from S;[ T._;1/(Ni, te—i) Si[ Te-i] to
Siv1/(N;y Te_i) Siv1.  Call this ring Q;,1. Since S/N;,1 S is regular, a
regular system of parameters w of S;,; extends to a regular system of
parameters (0, z) of S. Then S=S§/(z)S is unramified and flat over
S;.1. Hence N% ,CN*NS;i;1CN*SNS; .1 =N%,;SNSi;1=N%q, so
that N¥,;=N*NS;.1. This implies vy, (t.-;)=vn(r._;) which is deg
Oe—i=¢.-; because 0, ;€ U,,. On the other hand, ranks, v, (Qis1)
=deg T,—i=¢,-;. Therefore the residue field of Q;,; should be a trivial
extension of S;/N;. Q.E.D.

By this lemma, there exist §;€ S, for each i, 1 <i<e, such that
T;—B;€N. Let us fix a regular system of parameters o={(w;, ---,

w,r_,) of So, where r'=r—d=dim S. It follows that

(14.1) (w, z) is a regular system of parameters of S where z;=7T;

_Biy lgige'

Let E be the localization of Sy[r] dominated by S, where t;=0;/X},
1<i<<e. Let d=4{b=(b1, -, b,) €Z5|0<b;<gq;}. Let S;(resp. E) be
the completion of S;(resp. E). Then by the structure theorem of Cohen,

there exists and we fix once for all a subfield F of S, such that

(14.2) E=F[[w, c]], S=F[[w, z]] and S is a free E-module with a
free base {z°|b € 4}.

Let I be the homogeneous ideal of the cone Cx p ., in K[ X ], and
let I’ be the ideal of f~'(x) in K[ T, which is generated by ¢/X§ for
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all d€Z, and all ¢ € I, (=the homogeneous part of degree d of I).
By definition, Cx,, is invariant by B, ,  if and only if the ideal of Cyx, ,
in gr.(Z) is generated by elements of U, ,. By the normal flatness
assumption (2.1), the ideal of Cx . in gr.(Z) is generated by the ideal
of Cxp,» in gr.(Z, D)=K[X]. It follows that

(14.3) Cyx,, is invariant by B, , if and only if there exists a standard

base of the ideal I consisting of elements in U ..

If ¢o=(¢1, -+, ¢m) is a standard base of I, then clearly I’ is gen-
erated by ¢=(¢1, -+, ¢n) with ¢;=¢;/ X%, where d;=degp;. We ask

if @ can be so chosen that ¢ is a standard base of I'.

Lemma 15. Let (¢1, -, ¢,) be a system of elements of U, .,
which is a standard base of the ideal it generates in the graded algebra
K[X]. Let ¢i=¢;/X$ with d;=deg ¢;, and let @;=iny(¢;) € gra(S)
= gr.(g '(x)). Then ({1, -, ¢s) is a standard base of the ideal it
generates in gry(S), and deg ¢;=d; for all i.

Proof. Let K" be an algebraically closed field containing K. Let

S” be any localization of K[ T] which dominates S, and let N” be
the maximal ideal of S”. Let U’ be the graded K'"-subalgebra of
K”[X7] such that its homogeneous part of degree d >0 is{p € K[ X ],
|vn (/X&) >d}. Clearly U’D U, ., and hence ¢; € U” for all i. Since
K" is algebraically closed, U’ is generated by its linear homogeneous
part. Hence we can find a free base (X§, X7, -, X2) of K’[X]; such
that X{=X, and U'=K"[ X/, X0s1, -, X]). (0<c<r) Let T/=X7/
0, 1<<i<r. We have an isomorphism of graded K"-algebras a: U”
SK'LT ..., T/] such that a(X?)=T% ¢c<i<r. We have T/€N"
for ¢<i<r, and hence (T7, ..., T}) extends to a regular system of
parameters of S”/. Hence we get a monomorphism of graded L-algebras
B: LLTY, ..., T7]—>gra-(S") such that B(T7)=inn-(T7) for ¢ <i<r,
where L=2S"/N" which is an extension of K’ in a natural way. By
assumption, (¢i, ---, ¢,) is a standard base of the ideal it generates in
K[ X7]. In short, we say that it has SB property in K[ X ]. Neither

coefficient field extensions nor adjunctions of extra indeterminates do
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affect this property. Therefore, (¢, ---, ¢,) has SB property in K[ X ]
and hence in U”. Since ¢;=a(¢;), (1, ---, ¢o) has SB property in
K'[T., ..., T/] and hence in L[ T%, .-, T/]. As ¢; is a homogeneous
polynomial of degree d; in T7j, ¢ <j<r, we see that B(¢;)=inn-(¢))
for every i. As gry-(S”) is a polynomial ring over Im(B), (¢7, ---, ¥l
has SB property in gry-(S”) where ¢;=iny-(¢;). We also see vy-(¢;)
=deg ¢/=d; for every i. The inclusion S— S” induces N?/N%*'—
N"¢/N"%*1 for every d>>0 and hence a homomorphism of graded alge-
bras A: grn(S)— gra-(S”’). For every ¢ €S, 2(iny(¢)) is either zero
or equal to iny~(¢). This second case holds if yy(¢)=vn-(¢). Since
0:€ Up,w, di <yn(¢)) v (Pi)=d; and hence vn(¢;)=vn-(¢;). Thus
we have A(¢;)=¢7 for all i. As A is a homomorphism of graded alge-
bras, it is then easy to see that if (@7, ..., ¢2) has SB property in
gra-(S”) then ({y, ---, §,) has the same in gry(S). Q.E.D.

In what follows, we will work with a fixed presentation of U, .,
as was given in (13.2). In particular, each ¢ € U, ,- will be viewed as
a polynomial in 6=(0y, ---, 0,). We define the leading exponent symbol
ex,(¢) for ¢ € U,,, to be the largest 4=(ay, ---, a,) €Z§, in the lexi-
cographical ordering, among those for which the coefficient of ¢4 in
the polynomial expression of ¢ is not zero. If H is an ideal in K[0 ],
we define ex,(H)={ex,(¢)|¢ €H}. Remark that if L is any field
containing K then ex,(H)=ex, (HL[0]).

Remark (16.1) In general, the field of (14.2) cannot be so chosen
as to contain the subfield K of S;. However, we have a monomorphism
¢o: K— F which, when followed by the natural homomorphism F—
So/Ny, yields the canonical homomorphism K—S;/N,. It extends to a
monomorphism ¢: K[t ]— F[r] defined by e(a)=c¢¢(a) for a € K and
e(rj)=rt; for all j. Note that if ¢ is a homogeneous polynomial of
degree d in K[ X ] and if ¢ € U, ,-, then ¢ =¢/X3€ K[t ] and we have

v (9 —e(9))>d where N=NS.

In fact, if ¢=2 c40® where c4€K and the summation extends to
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certain A€ Z, then ¢=> cat® and e(p)= X e(ca)c® The above
inequality then follows, because ¢—égy(c) € N for all ceK.

Remark (16.2) Let ¢=X¢(4, B, C)r*z80w° with ¢ (4, B, C) €
F, where the summation extends to all (4, B, C) with 4€Z;, BE 4
and CeZg'*e. We will write Ag for (a1q1, -, acq.) if A=(ay, -, a,).
Then we claim v#(¢)=ming gc{|4q|+|B|+]|C||¢ (4, B, C)+0},
where N=NS. (Note that v4(¢)=vn(¢) if ¢E€8S.) In fact, let v be
this minimum. Clearly v4(¢)>v because vn(r1)>gq; for all i. Let
(D, C) be the largest one, in the lexicographical ordering, among those
(Ag+ B, C) such that |Ag|+|B|+|C|=v and ¢(4, B,C)++*0. Write
¢=Xh(D,C)z°wC with h(D, C)€E€F, where the summation extends to
all (D, C) with D€ Z¢ and C€Z; . In view of (13.2) and (14.2), we
have t;—z% € So[[ 2141, ---, 2e J]=F[[, i1, -, ze]). Therefore h(D,
C)=2,¢(4, B, C) where },, dentes the summation for those (4, B)
with Ag+B=D. Notice, however, if B and B’ are in 4, then Ag+
B=A4'q+ B’ implies A=A" and B=B'. Hence 2, does not have any
more than one term ¢ (4, B, C), which is not zero by the choice of
(D, C). So h(D,C)=0 and, by (14.2), v3(p)<|D|+|C|=w.
Lemma 17. Let 9;€ K[ X ]s,N\U,» for 1<j<a'. Let ¢;=g¢;/
Xi. Let ¢t be an integer>0 and b,€ 8, 1<j<a’, such that v5(b;)>
t'"'—dj; for all j and VN(ZI) ¢;)>t". Then there exist ¢y € K[ X Jar)- —d,
MUy, and b,e N~ ak for a finite set of indices k, where d(k)€ Z,,
such thatZ crjp;=0 for all £ and l)N(b b7)>t"—d; for all j, where

k(ij/X‘é”" by In partlculaer” =

Proof. Write b;= ) b;(4', B, C)t* zB0® with b;(4’, B, C) € F and
Y extending to all (4’, B, C) such that A'€Zj, BEA4 and CEZ} .
By (16.2), the assumptions imply that b;(4’, B, C)=0 if [A'q|+ |B|+
|C|<t"”—d; and that

vi(Zsxbi(4'y B, €) giv4'z%0) > 1"

where 2 44 denotes the summation for all those (j, 4’, B, C) such that
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1<j<da' and |4'q|+ |B|+|C|=t"—d,;. Hence, by (16.1),
vi(Zaxbi(4', B, C)e(¢) e z%0¢) > 1"

But ¢(¢;) is of the form X ca-t?" where c4» €F and the summation
extends to those 4" € Z§ with | A”q| =d;. Hence, by (16.2), the above

inequality implies that
Zaxbi(4', B, O(¢)t¥ 2P0 =0
By (14.2), this implies
2 Bbi(A', B, C)e(p)t¥wC=0 for all B€ 4

where };‘® denotes the summation for all (j, 4’, C) with 1 <j<{a’ and
|A'q|+ |B|+|C|=t"—d;. Let{u}ier be a free base of F as ¢(K)-

module, and write
bj(A,, B, C):Z:tereo(bj(A/, B, C, t))u,
where b;(4’, B, C,t)€ K. Then, in view of the preceeding equality,

Zierw 5 Peo(b(4, B, C, 1)) e (¢t w0 =0

This implies Za: FYBCe(b(A, B, C,t)p;tA)=0 for all (B, C,t), where
T4
2980 is the summation for all "€ Z§ with |4'q|+ |B|+|C|=¢"—

d;. Hence
i{;Z VB0 bi(A, B, C, 1) ¢; =0

and so i’: $Y9BOp(A, B, C,t)p;04=0 for all (B, C,t). Let us write k
for (B,jZ',1 t) for short. Then let d(k)=t¢"—|B|—|C| and cz;=2,78©
b;j(4', B, C, t)d* and b,=u,z%w°. Note that cp;=b,=0 except for
finitely many k’s. Now the equalities Z,:ck,qo 0 are clear. Moreover,
since b;(4’, B, C, t)—e,(b;(4', B, C, t))EN for all (j, 4, B, C,t) by

(16.1), we get v5(b;—0b7)>t"—d; for every j. Q.E.D.
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Lemma 18. Let (¢, ---, ¢.) be a system of homogeneous elements
of K[X]. Let d;=deg ¢;, and ¢;=¢;/X§. Assume

6] vN(¢);)>d, i.e., p;€ U, . for all i<a, and

(1) wa(p,— Zb ¢;)>>t with an integer t>0 and b;€ S.

Then there exist ¢;€ K[ X ]s,-a, such that if ¢7=¢,— Zc](p, then
vn(@s/X8)>t. In particular,

(1) if t=d, then ¢, € U, ,» and

(2) if t>d, then qp,,::ic,-(pj

Proof. Each element ¢ €K[X] will be written in the form
Yo(A, BYa4Y® where Y=(X, -, X,), ¢(A4, BYEK[ X,11, -+, Xy41]
and the summation extends to all (4, B) with 4€Z¢ and Be€ 4.
(Recall X,,;=2X,.) The existence and uniqueness of such an expression
are due to (13.2). By a lexicographical descending induction, it can
be easily shown that there exist ¢;€K[X ], 4, such that ((aa—:gi
c;p;) (4, B)y=0 for all (4, B) with A€ A=ex,((¢1, - ¢a_1)K[0])).
Hence we shall assume that ¢,(4, B)=0 for all (4, B) with A€ A.
We claim that under this additional assumption, ¢,=¢, has the pro-
perty of Lemma 18. Let ¢.(4, B)=¢.(4, B)/X$4B with d(4, B)=
deg ¢.(A4, B), and write (o= 2.4 (A4, B)c*VE where V=(Ty, ..., T.)
and )4 symbolizes the summation for all (4, B) with 4€Z¢{— A and
Bed. With z of (14.1), we substitute z+ /8 for ¥ and obtain ¢,=
Sixg(A4, B)*z® with g(4,B)€ So. Here it should be noted that the
range of the summation is not affected. In view of (14.2), we can write
g(4,B)=} g(4, B, C)w® with g(4, B, C) € F, where the summation
extends to all CeZy~e. Let t'=vn(p,). Then by (ii), we have
vN(Zb ¢;)=>min(¢, t’). Therefore, by Lemma 17, we may assume
that vN(b,)Zmln(t t')—d; for all j. Let us write bj= 2 4xb;(4, B, C)
4280, where b;(4, B, C)EF and )4 denotes the summation for all
(4, B, C) with A€Z§ Bed and C€Z} ~°. Suppose t'<t. Then, in
view of (16.2), (ii) implies

yn(3'b; (A", B, C) piv* 2P0 — 31" g(4, B, C) c2zBwC) >’
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where 2.’ (resp. 2.”) denotes the summation for all (j, 4’, B, C) (resp.
all (4, B,C)) with 1<j<a and |4'q|+ |B|+|C|=t"—d; (resp. with
| Ag|+ |B|+|C|=¢). It then follows that

Z'bj(4, B, O)e(p) 'z — L g(4, B, C)r*zP0°=0

Pick any (B, C) for which there exists at least one 4 with |Aq|+
|B|+|C|=¢ and g(4, B, C)5=0. Then with this (B, C),

Z'*b,(4, B, C)e(p)c¥'=2"*g(4, B, C)z*

where '* (resp. 2.”*) denotes the summation for those (j, 4') (resp.
those 4) with 1 <j<ae and |4'q|+|B|+ |C|=t"—d; (resp. with | Aq|
4+ |B|+|C|=¢). This equality shows that there exists at least one
(4, B, C) with g(4, B, C)70 and A€ex,((e(¢1), -, e(¢a_1)) F[ 7))
=ex,((e(¢1), -, e(@a-1)) e(K[t)=ex,((¢1, - ¢a-1) K[0])=A4. Then
g(4, B)==0 and, since it is an Si-linear combination of certain ¢,(4,
B”) with the same A, there exists at least one (4, B”) with ¢,(4, B")
#0 and A€ 4. But ¢.,(4, B”)5=0 if and only if ¢,(4, B”)=0. This
contradicts the assumption we made on ¢, and hence proves ¢ >t.
This means that ¢,=¢, has the required property. Now (1) follows
the definition of U, .. As for (2), since ¢, is homogeneous of degree
day, vn(@l/X8)>d, is possible only if ¢,=0. (See Lemma 15 for
instance.) Q.E.D.

Recall that Nz p,.=spec(K[X]), I=the homogeneous ideal of
Cx,p.. in K[ X, Spec (K[ T])=an affine neighborhood of x' in g '(x)
and ['=the ideal of f~'(x) in K[ TJ. Therefore the following corol-
lary implies that if vi(f '(x), g '(x))=>v*(Cx,p,+Nz,p,:) then Cx,; is

invariant by the subgroup B, . of Tz ..

Corollary (18.1) If v*(/, K[X]), then there exists a standard
base of I consisting of elements in K[0] and moreover v*(I'S, S)

=y*(I, K[X]).

Proof. Let us pick any standard base (¢i, ---, ¢m) of I. Then I
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is generated by ¢;=¢;/X% with d;=deg ¢;, 1<{i<m. Let a be the
largest integer, >0 and < m+1, such that ¢; € U, =K[0] for all i<
a. If a=m+1, there is nothing to prove. Assume a <m. By Lemma
15, we have vy(¢;)=d; for all i<a and (¢i, -, ¢,-1) is a standard
base of the ideal it generates in S. In view of the assumption, this
shows v*(I'S, S);=v*(I, K[ X]); for all i<a, where v*( ); denotes the
i th number in the sequence v*( ), and moreover that (¢i, ---, ¢u_1)
extends to a standard base of I'S. Hence there exist b; € S such that
(o T by ) ZIHI'S, $)u=2v*(L, K[XD)o=deg ¢,=d,. Therefore

a—1
by Lemma 16, there exist ¢;€ K[ Xy, 4, such that ¢,— 2, c;0; € Ug .
i=1
This element of U, . can replace ¢, from the beginning. By repeating
this process, we get a standard base of I consisting of elements in

U,,,». Finally the asserted equality of the corollary follows by Lemma
15. Q.E.D.

The assumption (2.1) implies that there exists

(19.1) a standard base (fi, ---, fu) of Iz x . such that f;€(Izp )%
for all i, where d;=v.(f)=v¥(X, Z)..

Recall that we have chosen a regular system of parameters (x, y) of
Oz,. as is given in (13.1). For each f; of (19.1), we let gi=f;/x8.
It is known that (gi, ---, gu) generates the ideal Iz x- .. We are now
interested in the question when and how (g, ---, g») can be modified
to yield a standard base of Iz  x-,. In what follows, we will use the

following notation:
(19.2) R=0z,, M=Mz ., R'=0z , and M'=Mz .

The notation of the paragraphs of (13.1), (13.2), (14.1) and (14.2) will

be also used.

Lemma 20. Let ¢;=iny(f;), 1<i<m. Let a be an integer, 1
<a<m, and assume that for all i<a

i) vIX', 2)i=v¥(X, Z);

(i) ¢@i€ Uy, and
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(iii) there exist w; € (xo, ¥) (g1, ---» gi-1)0z+,» such that v, (g7)
=d; with g7= gi—wj.
Assume moreover

(v) v¥(X, Z)e>vi(X, Z),
Then we can find ’wae‘fi:lf,'(lz,p,x)d"_d" and w}, € (%o, Y(g1s > &a-1)027,x
such that T

(1) v.(f7)=d, and iny (f}) € U,,,» where f,= fo—w, and

(2) vu(gn)=d, with gi= go—(ws/x8*) —wj.
Moreover we have

(3 (X, 2)a=vi(X, Z)a

Proof. By (19.1) we have ;€ K[ X] for all i. Let ¢;=¢;/Xg
€S. We have S=R'/(xo, ) R" and ¢;=(g mod (xo, y)R’) for all i.
Then by (iii), ¢;=(g7 mod (xo, y) R") for all i<a. By Lemma 15,
(ii) implies that (¢, ..., ¢,_,) is a standard base of the ideal it gener-
ates in gry(S) where ¢;=inn(¢;). Therefore, by (i), (iii) and (iv),
(&7, - &a-1) with gi=iny(g7) is a standard base of the ideal it
generates in gr,-(Z"). Hence by (iv), there exist h; € R’ such that

a—1
(20.1) vu(ga— _;h; g =>d,
Let b;=(h; mod (xo, y) R"). It then follows that
a—1
(20.2) vy (fa— ;16: ¢i) >d,

Hence, by Lemma 18, there exist c,-EK[X:lda_dj such that ¢i=¢,—
a-1
2 ¢;9; € Ug . There exist C;€(Izp.)% % such that ¢;=(C; mod

i=1 a-1 a-1
M4+ Let w,= Y, C;f;, which belongs to Zf,-([z,p,,,)d"_d". With
i=1 i=1

this w,, (1) is clear. Next, to find w,, we replace f, by fi=f.—w,

and assume ¢, € U, . Under this assumption, we shall prove that

(20.3) we can choose h; of (20.1) from (xo, y)R'.
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Given h; of (20.1), define b; as before. Let d’'=minjcic,_1{vn(b;)+
d}. If d'>d,, then pick h;o € R’ such that yy.(h;))>d,—d; and b;
= (hio mod (xo, ¥)R’). Then (20.1) is not affected if we replace h; by
hi—h;o for all i. So (20.3) is valid. Now assume d'<d,. We shall
then find h;o in such a way that the replacement of h; by h;—h; in-
crease d’ without affecting (20.1). Write b;=Y. b;(4, B, C)t*z8w" with
b;(A, B, C) € F, where the summation is taken for all (4, B, C) with A4
€Z; BEd4 and C€Z} ¢ Since ¢, € Uy vn(¢pa) >>d, Hence (20.2)

implies
yw(Z 4bi(4, B, C) p;t*zB0°) > d’

where },, denotes the summation for all (i, 4, B,C)€ A={(i, 4, B, C) |
1<i<a,|Aq|+ |B|+[C|=d —d}. By (16.1) and (16.2), we get

S4bi(A4, B, C)e(¢p) t2zBwc=0
This implies that if A(B)={(i, 4,C)|(i, 4, B,C) € A}
Y ambi(4, B, C)e(¢p) 2 w=0 for all BE 4.
Let {u:}:er be a free base of F as ¢(K)-module, and write
bi(4, B, €)= ,ere(bi(4, B, C, 1)) u

with b;(4, B,C,t)€ K. Since all ¢;€ K[ 7] for i<a, we get

S bi(4, B, C,0) gitA0C=0 for all (B, 7)€ dxT.
This implies that if A(B, C)={(, 4)|(i, 4, B, C) € A}
(20.4) ) bi(4, B, C, t) p;64=0

for all (B,C,t)€dx2Z; ¢xI. Pick pi(4, B, C,t) €R such that b,(4,
B,C,t)=(p;(4, B,C,t) mod M). In what follows, P will denote
Izp,. Let us pick s;€P% such that ¢;=(s; mod M**1), 1<i<e,
and let
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(20-5) P(B, Ca t): ZA(B.C)P;'(A) Ba C) t)fiSA

Let us fix (B, C,t) arbitrarily for a while, and let d’=d'— |B|—|C]|.
Clearly p(B,C,t)€ P and by (20.4), p(B,C,t)€ M”*'. Hence p(B,
C,t)e MP?. Let us write I for Iz x . Since f;€1 for all i, we

have
(20.6) p(B,C,t)ye MP"' N1

By the normal flatness (2.1), we have inp(I)=(0y, -, 0,) grp(R) with
O0;=inp(f;) and Mgrp(R)Ninp(I)=M inp(I). (cf. [3] Ch II, Lemma
7.) Therefore, (20 6) implies that there exist p;(B, C,t) € MP*~% such
that p(B, C,t)— Zp,(B C,t) f; belongs to P?"*'. Hence, again by the
above fact about 1np(I), we find ¢;(B, C,t) € P ~%*! such that

a-1 m
P(B, C,0=Z pi(B, G, ) fy+ 2, 4:(B, G, ) f;

Let p'(B, C,t)=p(B, C,0)/x§", p;(B, C,t)=p;i(B, C,1)/x§ ~% and ¢}(B,
C,t)=q;,(B,C,t)/x%~%. Then pj(B,C,t)€ MR =(x,, y) R’ and ¢}(B,
C,t)€ PR'=(x¢)R’. Hence

a-1 m
P,(B; Ca t) =j§1P]/'(B) Ca t) g1+1§191/(33 C3 t) 8i

E(-7‘:0) y)(gla Ty gm)R/
C(xo, P{(glss go-1) R'+M""}
Hence there exists p}(B, C,t) € (xo, y) R’ such that

a-1
(20.7) p'(B, C,t)—p"(B, C,t) € (x0, y) M, where p"(B, C,t)= 3 pi(B
ji=1
G, t)gj.
Let R’ be the completion of R’, and choose representatives i;, % »;
in R’ of the elements u;, z; w; of S, where tel’, 1<i<e, 1<j<
r'—e. Letd(i)={(4,B,C)|(i, 4, B,C) € A} and

(208) h: = Z ter ﬂ’lZA(l')Pi(A’ B> C) t) ?A ;‘BZDC
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where #;=s;/x{, 1<j<le. Then, in view of (iii), we can find A} €
R, 1<i<a, such that

(20.9) h*=h! mod (xo, Y) R’ and T hi gr="3 h* gt
=1 =1

i=

By (20.5), p'(B, C,t)= Y s5,00pi(4, B, C, t) git* and hence by (20.8)
a—1

(20.10) L h¥gl=2eri: L*p'(B, C, 1)z5%0°
i=1

where ) * denotes the summation for all (B, C) with non-empty A(B,
C). Let us define hjo=h¥—h! with

(20.11) =3 ,cris N *pl(B, C, )38

which is clearly in (xo,y)R’. By (20.9), (h;—hi mod (x0,y)R") = (h;—
h; mod (xo, y)R'), which by (20.8) is equal to

bi— 2lrer w2y ai bi(4, B, C,¢) 428 w¢
=b;— 24 bi(4, B, C)TAZBa)C

=Y oibi(4, B, C)t* 2% 0w°, where 2(i)={(4, B, C)| |Aq|
+|B[+|C|>d —d;}. This shows that, if bjo=(h;o mod (x, y)R’)

(20.12) minycico-1 {¥n(bi—bio) +di} >d’

a-1

a-1 a-1 a—-1
Moreover g,— 2, (hi—hio) g7=(8— Zlhi &h '|"Z1 hio g7. But X hio g7
i= i= =1

i=1
a-1 ” a-1 y
= ZIEP a‘fz*(P/(B9 Ca t) _P”(Ba C, t))zBE)C

a-1
by (20.10), (20.11) and (20.7). Hence by (20.7), we get yn(Zhiog7)
>d, and so o

a-1
vn(&a —i; (hi—hio)g?) >d,
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This combined with (20.12) proves that by replacing h; by h;—h;, we
can increase the number d’ without affecting (20.1). We have seen
that this suffices for (20.3). Now, with A; of (20.3), let wéz‘fz‘jlh,- gi
which is in (xo, (g1, - ga-1) R'=(x0, (g1, - ga-1) R'. \ﬁ;e_lhave
shown that (2) holds with this w;. As before, (g1, ---, g,) is a standard
base of the ideal it generates in gry-(R’). Hence (iv) implies (3).
Q.E.D.

Having proven Lemma 20 as an inductive procedure, we can easily

deduce the following proposition.

Proposition 21. Let the basic assumptions be those of (2.1) and
(2.2), and choose (x, y) according to (13.1). If v¥(X', Z)>v}¥(X, Z),
then we can choose a standard base (fi, .-, fm) of the ideal Iz x .
such that for every i, 1 <i<m,

() fi€e(zp0)% with di=v.(fi)=v¥(X, Z);

(i) in,(fy) € Ug, .+, and

(iii) if g;=f;/x¥, 1<j<m, then there exist w;€ (x0, y) (g1, :-»
gi-1)0z+,,» such that v, (g})=d; with gi= gi—wj.

Moreover, we then have
(iv) (gi, - &m) is a standard base of Iz x-.s, and

W) v¥X, Z)=vi(X, 2).

Here note that (iv) is a consequence of (i), (ii) and (iii). In fact,
if g;=in,(f;) and ¢;=(g7 mod (x0, ¥)O0z+,s), then ¢;=¢;/X§ for all
i. Thanks to Lemma 15, deg¢;=d; and ({y, ---, ¢») is a standard
base of the ideal it generates in gr.(g '(x)), where ¢;=in,(¢;).
Hence by (iii), (g{, ---, &) is a standard base of the ideal it generates
in gr,/(Z'). Hence (iv) follows from the assumed inequality of the
proposition. Finally (v) is immediate from (iii) and (iv).

We are now interested in the implication: v} (X', Z)=y¥(X, Z2)=
H$*U=HY  as was asserted in TH IIl. To prove this, we need

some elementary facts about regular sequences in a graded algebra.

Remark (22.1) Let A=@D;»04; be a graded A,-algebra, and let
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v=_(vy, vy, ---, s) be a system of homogeneous elements in A4, which
are either of positive degrees or in the Jacobson radical of A,. We
then know that the following conditions are equivalent to each other
([17], Proposition (2.8)):

(i) v is a regular sequence for A,

(ii) we have Ker(a)=Im(8) for the A-homomorphisms defined as

follows:
Bocicics Aeij 5 Dogics Aei 5 A

where the left end (resp. the middle) is a free A-module with a free
base {e;;} (resp. {e;)} and a (resp. B) is defined by af(e;) =uv;(resp. B(e;;)

=vje;— v;ej).

Remark (22.2) Let G=L[ V] be a polynomial ring over a field
L, naturally graded, and let H be a homogeneous ideal in G. Let V;
denote the subsystem (¥¢,V31, .-, Vi) of V. Then the following condi-
tions are equivalent for each pair (d, s) € Z%:

() (Vi)GNH;C(Vi)H for every d<d.

(i) (FVw)6NH;C(Vi)H for every d<d and i<s.

(iii) We have Ker () = Im(B8)q for all d’<d, where a and (8 are
the homomorphisms of (22.1) defined for A=G/H and v;=(V; mod H).
(p;Ae; is graded by (D;Ae;),=P:(4,)e;.)

Proof. Pick any 7= Z gVi€ H;. Then, assuming (i), we shall
prove mw&€ (V_1))H. Note that if this is done, the implication (i)=> (ii)
follows immediately. For d=0, the assertion is clear., We use an
induction on d. Say d>0. By (i) there exist h;€ Hy_;, 0<i<s,
such that Zg,V, Zh Vi+hsVs. Then clearly h,€ (V(s-15)G. So
hs€(Vis- 1))Gf\Hd 1C(V(s 1) H by 1nduct10n assumption on the degree.
Hence A —Zh V; with h} € H and 7= Z(h +hiV)Vie(Vis-1y)H. Next

we shall prove (i)=>(iii). Take any /1=Za,-e,~€ Ker (@) — Im(B)g-, i
i=o

this were not empty. Take any representative g; Gy for each a;, SO

that Zg,V € H. Then by (i) there exist h; € Hy such that Z(g, h)V;
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=0. G being a polynomial ring, we find g€ Hy—y for 0<i, j<s

such that g;j=— gij, gz=0 for all ¢, j and gi_hi:igijVj. Let b;;=
i=o

(gij mod H). Then B(@o<i<j<sbijei;)=4, which is absurd. The im-

plication (iii)=> (i) is immediate from the following diagram:

B; ;Ge;; — EBiiGCi — (l;
@i de; —L» Bido —2 4
where the vertical arrows are the natural homomorphisms with kernels

generated by H and the horizontal arrows increase degrees by one. Also
(ii)= (1) is trivial. Q.E.D.

Remark (22.3) The assumption being the same as that of (22.2),

let us define
p . o
Do<ici<s Geij > Do<ics Gei = G

as before by letting B’(e;;))=V;e;—Vie; and a'(e;)=V;. If the con-
ditions (i) —(iii) of (22.2) are satisfied, then we have

(iv) Ker (@)ND;(Hy)ei=p (Di;j (Har-1)ei;)
for all d'<d.

Proof. Take any z'=.i: h;e; with h; € Hy, such that @’ (r)=0. Let
t be the smallest integer s:1(=:lol that h;=0 for all i>¢. We shall prove
T € R (Bi;(Hy—1) ei;) by induction on ¢. This is trivial for t=0. Say
¢>0. Then by (ii), h € (Vy1)GNHe C(Vy1)H. Write h,=:§‘,:h,-,V,-

1-1 t-1
with h;; € Hy._;. Then r+8’(Zh,~,e;,)=Zh§e; where h;=h;+h; V€ Hy.
i=0 i=0
Apply the induction assumption to this element. Q.D.E.

Back to the notation of (13.1), (13.2), (14.1), (14.2) and (19.2), let
us put Xg=inpy (x0) and Y;=iny-(y;), 1 <j<s.

Lemma 23. Under the assumptions of Proposition 21, let us as-
sume that v} (X', Z)=v}(X, Z). Then (Xg, Y’) is a regular sequence
for gr.(X’), where gr, (X’) is viewed as gr,-(Z)-module in a natural
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way.

Proof. Let G=gr. (Z) and V=(V,, ---, V) where Vo=X; and
V:=Y}, 1<i<s. We shall prove the following statement by induction

on d.

(23.1.d) (V)GNHy C(V)H for all d'<d, where H= (g7, ---, §n)G with
gi=inu (g7).

This is trivial for d=0. Now take any d >0 and any g€ (V)GN Hy.
Write gzﬁl—z;g‘}’ with h;E€Gg_4. Pick one representative h; € M4~
for each /_l,-‘:l:ld let b;=(h; mod (x¢, y) R). Since g€ (V)G and ¢;=(g7
mod (xo, y) R'), vN(‘f:b;</J,~)> d. Moreover, clearly vy(b;))>d—d; for
all i. Hence by Lér—nlma 17, there exist ckjEK[X:]d(k)_dj/\Ug, » and
b, € N4*® such that

(23.1)  Slcwey=0 for all k and v§ (b;— b)) >d— d; where
i=1

b7 =2 4(chi/ X§®~N)by.

Pick a representative Cy; € P*®~% for each ¢,;, where P=1p,, and let
Ck=£_,'ijf,- which belongs to P?®. (23.1) implies C, € PO\ pétr+1
=MF‘}(k). By (19.1), inp()=(dy, ---, 0,)G with @;=inp(f;) and
Mgrp(R)Ninp(I)=M inp(I), where I=1Iz x .. Therefore, by the same
argument used in the paragraph of (20.6)-(20.7), we get

(23. ii) Cr€ S MPIt-dsf,
=1
Pick a representative B, M'“~*® for each b}, and let h=2,(Cyi/

x4®=d5) B! Then :'zﬂh;f &=, (Co/ 5¢%) B} which, by (23.ii), belongs
to M(gi, - gm)f{’. As MIA{’=(x0, y)IA{’,

(23.i) R b7 ] =2hi(g] — &)+ Lhigi€ (x0, 1) (g1 g

(See (iii) of Prop 21.) We have b;=(h; mod (x,, y)f(’) and the in-
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equality of (23.1) implies that there exist

(23.iv) h¥e(wy, )R, 1<i<m, such that h;—h]—h¥ belong to
Y.

MA=4+1 for all i,

This implies v,f,fz"Z (hi—hi—h¥)gH)>d. Hence if we write g* for
i=T

_}f}l(h}'—i—h?‘)gﬁf then
(23.v) g=g* with g*=(g* mod M'**")

Let us write y, for xo. We have g*€(yo, y) (g1, -, g R by (23.
iii) and (23.iv). Let us pick an expression g*=.i g¥y; with g¥e(gy,
-~ gm)R’ in such a way that the number é;ozminosjss{vw(g;!‘)}
takes its maximum. Let gf=(g} mod M'“*'). If d*>d—1, then g*
=0. If d¥=d—1, then g‘*zzs]g‘;!‘V,-. In these two cases, we get g*
€ (V)H, which is by (22.v) \jv—hoat we want for (23.1.d). Suppose d*
<d—1. Then we get .Zs:ngj=0 because vy (g*)>d. By induction
assumption, (23.1.d) hol]d—sO for d'=d*+1 and hence (iv) of (22.3) does
for d' =d*. This means that there exist g§; € Hp_1, 0 <{i:<j<s, such
that gj-——_i Vig¥, where gf,=—g¥ and gf=0 for all (i, ). For
each (i, j)’=3vith 0<i<j<s, pick g, e M 'N(gy, -, gn)R’ which
represents g¥.  Then g*=j?::0g}k )3'=j§sog?‘yj—zos;,fs$yi g?‘j}’f:jg;)
(gf—izso)fig;?‘j)yj, where g¥,=—g¥; for all (i, j) and g¥ =0 for all i.

S
But this contradicts the maximality of d*, because g¥= 2 V;g¥; and
i=0

hence vy ( g}"—.i yi g5)>d* for all j. This completes the proof of
(23.1.d) for all ,aj.o Now having (23.1.d) for all d>>0, we get (iii) of
(22.2) for all d’>>0. Hence by (22.1), V is a regular sequence for G/H.
This is what Lemma 23 asserts. Q.E.D.

Corollary (23.2) Under the assumptions of Lemma 23, we have
HY =H{ 50 for all 1 2>0.
Let Q be a graded algebra over a field L. Let ' be a graded free

Q-module with a free base {4p} pcs where Ap is homogeneous of degree
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dp for every B€ 4. Let J be a homogeneous ideal in (). Then we

(24.1) ranky, (¢’ /JQ )m= 2. Bes ranky (Q/])m dy

for all m, where (); denotes the homogeneous part of degree i. This
equality is clear from the fact that (Q'/JQ’), admits a direct sum de-
composition 2} pesdp(Q/J)m-a,

Lemma 24. Under the assumptions of Lemma 23, we have Htid"L)

53 for all ¢t>0.

Cx,p,z

Proof. Let (f1, .-, fu) and (g{, ---, gn) be the systems given in
Prop 21. If ¢;=iny (f3), then ¢;E U, . and ¢;=¢;/X¢=(g7 mod (%o,
y)R') for all i. Following the notation of (14.1) and (14.2), let L=
S/N, z;=iny(z;) and 7;=iny(7;) for 1<i<e. Also let @;=iny(w;),
1<j<r'—e, so that gry(S)=L[z, &) Let Q'=grn(S) and Q=L[7,
@]. Then Q' is a free Q-module with a free base {z®}pes. The 7;
are homogeneous of degrees ¢;, and the natural grading in Q" induces a
grading in Q by Q,=0Q;NQ. Let ¢,=iny(¢;), which belongs to L[7] for
all j. Let Jo=(¢{1, ---, §m)L[T] and J=JoQ. By definition, H (1, -(m)
=rankz(Q'/JQ")m, which by (24.1), =X pes rankz(Q/J)m- 8/ = L Bes
H‘L’E;f,’h (m—|B|). This then is equal to ZBEJHKD,],,O(m— | B|) with
Iy=(¢) K[ 0], because, K being naturally imbedded in L, ¢; is the image
of ¢; by the K-homomorphism K[ ¢ ]— L[7] which sends ¢; to 7; for all
i. On the other hand, {YZ}pc, with Y=(Xi,...,X,) is a free base
of K[X] as a graded module overe K[ 0, X,.1, ---, X;, Xo|. Hence for
the same reason as above, 2. pes H#{i5(m— |B|)=H Y x11,50x7 (M)

HY  (m). As d+1=r+1—r" by definition, the equality of Lemma

C‘xuz

24 follows. Q.E.D.

Results up to here include implicitly all the proofs of the four theo-
rems stated in the beginning. We want to summarize and make them

explicit by following their logics once again as follows:

Proof of TH I. Thanks to the assumption (2.1), as is explained
in the paragraph immediately following Example (4.2), it is enough to
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prove the two inequalities of (4.1). The first of these two follows Prop
5 as was shown in Remark (5.2). The second inequality was proven in
Lemma 8 in the case of k(x)=k(x’). As for the general case, it is
reduced to the special case of the arguments given in the paragraphs of
(9.1)-(9.6), Prop 10 and Remark (10.1). (As was explained there, the
main difficulty for the general case is due to the possible inseparablity
of the extension k(x)—k(x’). Prop 10 is the key to overcome such a
difficulty.)

Proof of TH II. By Prop 21 (especially (v)), v¥(X, Z)<v¥ (X,
Z") is impossible.

Proof of TH IIl. Suppose H¢ Y =HY .. Then, as was seen in
the proof of TH I, all the equalities of (4.1) must hold. Then by Remark
(12.2), the if-part of TH III is proven. Next assume v} (X', Z)=v¥(X,
Z). Then by Corollary (23.2), we get HY) . =H st} Moreover by

Y(x),a’

Lemma 24, H{#Y) . =HY with C=Cxp. By the normal flatness
(21, H®=HY,. Hence HY ,=HY,.

Proof of TH IV. If v} (X', Z)=v}(X, Z), then by Prop 21 ((ii)
especially) we have a standard base of the ideal of Cx . in gr,(Z),

which consists of elements of U, . This means that Cyx, , is invariant

by B, as was seen in (14.3).
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