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Introduction

In this paper, we shall discuss on stochastic differential equations
for sample functions of multi-dimensional diffusion processes with bound-
ary conditions. On this subject, important works were given by Ikeda
[2] and Skorohod [7]. Ikeda discussed the construction of two di-
mensional diffusion processes with Wentzell’s boundary conditions on a
unit disk using the known property of one dimensional reflecting Bessel
processes. Skorohod discussed the stochastic differential equations for
reflecting diffusion processes. Our main objective of the present paper
is to unify these two works. We shall formulate the stochastic differen-
tial equations with boundary condition in Definition 1 and show the
existence and the uniqueness of solutions in Theorem 1, which is our
main result. The uniqueness obtained there is that in the sense of the
probability law. It seems difficult to give a natural formulation of the
pathwise uniqueness except some special cases. As a consequence,
we can construct, in a purely probabilistic way, a class of diffusion
processes with Wentzell’s boundary conditions. In analytic way, such a
problem has been discussed by Sato-Ueno [6] and Bony-Courrége-
Priouret [1]].
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Let d(x) and b(x) be defined on R% = {x=(xy, x3, ---, x;,)[xIZO},
Borel measurable in x such that

@) o(x)=(0i(x)), i, j=1,2,...,n, is an n X n-matrix,

(i) b(x)=('(x)), i=1,2,...,n, is an n X l-matrix,
and 7(%) and B(%) be defined on OR%:={%=(x3, x3, -, x,)}, Borel
measurable in % such that

(iii) t(@)=(i(®)), i,j=2,3,.-, n, is an (n—1)x (n—1)-matrix,

Giv) B(E)=(F(®)), i=2,3,...,n, is an (n—1) X l-matrix.

We consider a stochastic differential equation of the following form;

[ dxj =0'(x) dB;+b'(x) dt+ do;,
@ ] dxi=0"(x) dB,+b'(x,) dt+7(z,) dM,+ 8 (3,) dow,

1=2,3,.-, 1,

where BI=(3}> B?p Tty B’tl)3 MI:(M?) M?’ RS ] M?)) Et:(x%a x?) RS x’t‘),
/(%)) dB,= Y, 0%(x) dB! and (3) dM,= 3 Ti(z,) dM.
ji=1 ji=2

Intuitively speaking, ¢; is a non-decreasing process which increases only
when the process x;,=(x}, x% ..., x%) is on the boundary i.e., when
x1=0 and which causes the reflection of the process at the boundary.
ti(z)dM,+ B(%,)d¢, represents a random motion of the process x; on
the boundary. Now we shall give a precise formulation of the equation
(1). By a probability space with an increasing family of Borel fields
(2, #, P; #;), we mean a probability space (£, &, P) with a system
{Z }iero,y Of sub-Borel fields of & such that it is increasing and
right-continuous, i.e., £, CF, if t<s and .?‘HOEGL\O.?*‘HE:.?, for

every .

Definition 1. By a solution of the equation (1)*), we mean a

probability space with an increasing family of Borel fields (2, #, P; %)

*)  We call it also “a solution corresponding to [o, b, 7, B
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and a family of stochastic processes X= {x,=(x}, x%, ..., x%), B;=(B},
B ..., BY), M,=(M2%, ..., M%), ¢;} defined on it such that

(i) with probability one, they are all continuous in ¢ such that
By=0, My=0 and ¢,=0,

(ii) they are all adapted to &, i.e., for each ¢, they are &,

measurable,

(iii) with probability one, x;€ R% (i.e., x} =0) for all ¢ and ¢, is
non-decreasing ; furthermore, ¢, increases only when x}=0, ie., if

x1>0 for some ¢ then there exists ¢>0 such that
Prre—Pu-evo=0,
(iv) (B, M,) is a system of &, martingales such that
<B, B>,=0,t, <B,M>=0, <M, M>=0;¢",
and

v) %X={x, By, M, ¢;} satisfies
t t
x} —xtl)z gogl(xs) dB,+ Sobl(xs) ds+ ¢y,
(1)’ . . o t . t t
wi—vi={ o) B+ (e ds+{ dGo a+ i do,
1=2,3, -, 1,

where %,=(x?% x%, ..., x7) and the integrals by dB and by dM are

understood in the sense of stochastic integrals, cf. [4].

Remark 1. As is well known (cf. e.g. [4]), B; is an n-dimen-

sional Brownian motion such that B;— B; is independent of %, t>s.

*) For a systém {X,, Y} of & martingales, <X, Y> is the continuous adapted
process of bounded variation such that X, Y,— <X, Y>, is a martingale, cf. [4].
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Now we shall define the uniqueness of solutions. It is defined, as

usual, in the sense of probability law.

Definition 2. We shall say that the uniqueness holds for (1) if,
for any two solutions X=(xy, By My, ¢;) and %X'=(x}, B;, M}, ¢})
(which may be defined on different probability spaces) such that x,=x
and xy==x a.s. for some x € R%, the probability law of the processes x;
and x; on the space {W*, #(W*)} coincides, where W+ is the Fréchet
space of all R%-valued continuous functions on [0, oo) with the compact

uniform topology and Z(W™*) is the topological Borel field on W™.

Proposition 1. Suppose that, for the cquation (1), the wniqueness
holds and that, for every Borel probability measure p on RP, a solution
of (1) exists such that P[xo€ dx]=u(dx). Then, if P, is the proba-
bility law of the process x; such that xo=x a.s. which is unique by
the first assumption, x———> P,(B) is universally measurable for every
Be@(W*) and {P., x€R"} has the strong Markov property. In
particular, for any solution of (1) such that P[x,€ dx |=u(dx), the
probability law Q of the process x; is uniquely determined and is given
by Q(B)=P(B) u(dx), Be 2 (W),

This can be proved in exactly the same way as Proposition 2 and

Corollary 2 of [ 8] and hence the proof is omitted.

Now we shall discuss the existence and uniqueness of solutions of

(1). The result is summarized in the following

Theorem 1. Suppose 6, b, v and 8 are all bounded and Lipschitz

continuous. Further, suppose a constant c¢>0 exists such that
2) |61 (2) | =(L o} (x)H)"* =c.
j=1

Then, for any probability law p on R%, a solution ¥=(x;, B;, M,, ¢;) of
(1) exists such that P(xo€ dx)=u(dx). Furthermore, the uniqueness
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of solutions (c¢f. Definition 2) holds. Thus, x; defines a diffusion process
on R™ by Proposition 1.

Proof.

(i) First, we shall consider the following special case; ¢i(x)=1,
0}(x)=0, j=2,3,...,n and b'(x)=0. Then, the first equation of (1)
is of the form

(3) dx}=dB!+ dg,.

By Skorohod [77] (cf. also McKean [5]), ¢, and x} are uniquely deter-
mined if x} and B} are given;

(4) x}=B}+ x}, t<oo=inf{t; B}+x}=0}
=B}+x(1,—0£2i81;t[B§+x(l,], t>00,

) ¢ =0, t<0o
= —min[ Bl+ x}], t>0,.

o <s<t

We shall show that there exists an (n— 1)-dimensional Brownian motion
B, independent of B; such that M,:BW This implies, in particular,
that the joint distribution of (x¢, B;, M;) is uniquely determined by the
distribution of x,. For this, we note first that, since ¢; is the local
time of the one-dimensional reflecting Brownian motion xl, lim¢,= oo
a.s. By a general theory ([4]), B,=M, _, is an (n—l)-di;;:ansional
Brownian motion and hence, it is sufficient to prove that B; and B,
are independent. Let P(|®B) be the regular conditional distribution
given B={B;;t€[0, o0)}. Now we have

(6) E((M;_M;)Fl(w)F2(w))=03 i=2,3,..,m, t>s

where Fi(w) is M= {M,; u €[0, s |} -measurable and Fy(w) is B-meas-
urable. For, by noting that Fy(w) has an expression (cf. [3], or [4])
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Fo(0)=c+ g:d)s(w) dB,  as.,

where O,(w)=(0dL, ..., @") is a measurable process adapted to B,
={B,;t€[0,s]} and also that

E {(M;‘ - M;)S:’a}u(w) dB, Fl(w)} —0

because of <M, B> =0,

we have
E{(M;— M) F\(0) Fy()} = E{ (M = M) Fy(@){ e +  0u(0) aB, )} =0

since Fl(w)(c+S:0u(a)) dBu> is & -measurable. (6) implies that

E{(Mi—M)F,(0)|B}=0 a.s..
Similarly, we can prove that
E[{(Mi— M) (M —M)—0:(¢:— ¢ )} Fi(0) | B]=0  a.s.

Thus, {M,, M;, P(|B)} is a system of martingales such that <M’, M/>
=0;;¢.. This implies that {B,, P(|B)} is (n—1)-dimensional Brownian
motion a.s. and hence B; and B, are independent.

Now, we shall show that the pathwise uniqueness of solutions for (1)
holds; for any two solutions X=(x,, B,, M}, ¢;) and ¥ =(x;, B;, M}, ¢;)
on the same probability space, xo=x;, B;=B; and M;=M; imply that
x,=x,. We have remarked above that xo=x; and B,=B; imply
¢:=¢, and xl=2x'l. Then, by denoting x(¢)=(x%(), ---, x"(¢t)) and
(=", - "),

(=20 + | '), 3)) B+ [ v, 20 ds

n S:)z'"(i:(s)) dM,+ S;B"(a‘c(S)) dos
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and

2= 2 (0) + g;afcx%s), #(s)) dB,+ S;b%xl(s), %'(s)) ds

+{c@eyam+{ gande, =2 .
Hence, if we set z(¢)=x(¢)—x'(¢), then for i=2,...,n,
20— [HE 6, 36D —bGH0), ¥(6) T ds
S ORTIEIONS
={ [0, 360 =00, F )T dB.
IO EION n,
is &, martingale and hence, for any bounded %,-stopping time 0,
E{150) = { T (), 56)—b(x'(s), #/()]ds
~(toGe) s @ e del?)
=E{[ £ o). 3 —0i(' (o), ¥ @) Tds
SPHECIORLCIONETY,
=xE{[ 121744,
where 4,=t+¢; and K; >0 is a constant. Also, we have

{SZEB‘@(s))—ﬁ"(a'(s))] dws}z
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<[t -FE e Tdone.

<& 120000,

and similarly,
(oo, 3=, 27 ds)
gK:,g:u(s)lst-a.
Hence, there exists a constant K,>0 such that
@ E{l:@ 13 <KE{[ 12017 d 41+ 4.}

Let T>0 be fixed and 0= A;%, t€[0, TJ, where A;! is the inverse
function of t—~~—>A4;. Then ¢ is an & -stopping time such that c<t<{T
and ¢, <t<T. Therefore, by (7), there exists a constant K=K (T)>0
such that, for every t€ [0, T,

a1

0

®) E( (A7) <KE{( ™ 1201 Pd 4
=KE{S:) 20421 Zd.s}

=& { B4} s

This implies that z(t1)=0 a.s. t€[0, A7'] and, since T is arbitrary,
2(t)=0, i.e., %(t)=x'(t) or x(¢t)=x'(z). Thus, the pathwise uniqueness
holds.

Now, the existence of solutions is shown in the following way; let
{B(), B(z), x(0)} be given on a probability space (£, %, P), where
B(t) (B(0)=0) is an n-dimensional Brownian motion, B@) (B(0)=0)

is an (n—1)-dimensional Brownian motion and x(0) is an R%-valued
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random variable such that they are mutually independent. Let x(2)
and ¢(¢) be given by (4) and (5) as the unique solution of (3). Let
M,= Bw &, be the Borel field generated by {x(0), B(s), M(s"); s€ [0, t],
se€[0,t]} and F,=/\F,,e. It is easy to see that (B;, M;; #,) is a
system of martingale;>8vhich satisfies the condition (iv) of Def. 1. Let
%o()=(x%0), ..., x"(0)) and define %x(¢), k=1, 2, ... inductively by

2i0= 0+ [ '), 201D B+ { B0, 34 a(o) s

t . t
+Sofx(ik—l(s))dMs"l"Soﬁ’(%k—l(s)) dos, i=2,3, .., m.
Then, by the same estimate as (8), we have
t
©)  E{ 24— s a( A7) <K | B 3aa( 47— 3a (47| ds

and hence, by a usual argument, %(¢)=Ilim %,(¢) exists a.s., the con-
vergence being uniform in ¢ on each compact set. Clearly, X=(x(z)
=(x'(2), (¢)), B(t), M(t), ¢(¢)) is a solution on (2, F, P; #,). Also
it is clear, by the way of construction, that there exists F(x, wi, ws);
(%, w1, w))EREX WX Wy ~—>F€& Wix Wy, Wi, Wo, W3 and W, being
the space of all continuous functions t€[0, oo)~—w(t)E R" (resp.
R*', resp. R%, resp. R.) such that it is Z(R")X BW1)x BW>5)
/B W3)x B W,)-measurable for every t and

(10) (x., p.)=F(x9, B., M.) a.s..

By the above arguments, every solution must be given in this way and
hence, the uniqueness in the sense of Def. 2 of solutions is obvious.
(ii) Now we consider the general case. We shall reduce it to the
above special case by the following three transformations;
a) a transformation of the Brownian motion.
Let ¥=(x;, B;, M;, ¢;) be a solution on (2, #, P; #,) corresponding
to [0, b,7, ). Let p(x), x € R% is a measurable n X n-orthogonal matix
and set
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B,:g;p(xs)st, ie., B;‘=§lg;p}(xs)d3§).
Then B, is an n-dimensional Brownian motion and it is easy to see
that ¥=(x,, B;, M,, ¢;) is a solution on (2, &, P; &,) corresponding to
[¢=0p™", b, 7, B].
b) a time change.

Let X=(x,, B;, M,, ¢,) be a solution on (2, #, P; &,) corresponding
to [0, b, v, 8]. Let c(x), x€ R% be a measurable function such that
c1<c(x)<c; for some constants cy;>¢;>0. Let A(t)zS:c(xs)ds,
=247 B,=S;\/;(?cs) dBa:', My=Ma;', ¢,=@a;t and }1—:?,4;‘. Then,
(%, By, My, ;) is a solution on (2, &#, P; #,) corresponding to [\/5_10',
¢ b, 7, f]. This can be proved easily if we note the following general
fact: if (Y, &#,) is a system of martingales such that <Y? Y’7>,
=¢"(t) and A4, is a strictly increasing continuous process adapted to
Z, such that A.=oo a.s., then (Y= Ya;l, Fa;') is a system of
martingales such that <7Y? Y/>,=¢%(4;1). This fact is a direct
consequence of Doob’s optional sampling theorem.

c) a transformation of the drift.

Let (x;, B;y M,, ¢;) be a solution on (2, #, P; #,) corresponding
to [0,b,7,8]. Let d(x)=(d'(x), d%(x), ---, d"(x)) be defined on
x€ R7", bounded and measurable. Let P(dw) be the probability

. t
measure on (£, #) such that, for each ¢, P(B)=SBexp[S d(x)dB;
0
¢ -
—1/280|d|2(xs)ds]P(da)) for every Be€ #, Then, (x, B,= B,

t ~

—S d(xs)ds, My, gp,) is a solution on (2, &#, P; &#,) which corresponds
0

to [0, b=b+0d, v, B]. This is well known and is called usually

Girsanov’s theorem.

Now suppose the coefficients [@, b, v, 8] satisfy the condition of
the theorem. Then it is easy to see that there exists an orthogonal

matrix p(x), Lipschitz continuous in x such that cT‘:o‘op‘1 has the
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form

a.P—l(x)=<a(x), 0, sy 0).

kk >k

Since a(x)zzﬁa}(x)z, there exist positive constants ¢, and ¢, such
that ¢, ga(xj)écz. Let ¥=(x,, By, M;, ¢;) be a solution of (1) on
(2, #, P; #,). If we perform on it the transformation of the Brownian
motion determined by p, the time change determined by c(x)=a(x)? and
the transformation of the drift determined by d(x)=(—[a(x)] 2%'(x), 0,
..., 0) successively, then we get a solution (%, B, M, ¢;) on (&, &,
P; },) which corresponds to [&, b, v, ] where [ &, b, v, 8] are bounded
and Lipschitz continuous such that &}(x)=1, ¢i(x)=0, j=2,3, .., n
and 5'(x)=0, that is, they satisfy the condition of the case (i). Then,
as we saw in (i), the joint distribution of the process (%;, By, M, ¢;) is
uniquely determined by giving the distribution of X,. Since x;, can be
obtained from {%; B,} by the transformation of the drift determined by
—d(x) and then by the time change determined by c(x)~!, the proba-
bility law of the process x; is uniquely determined by giving the
distribution of xy. Thus, the uniqueness in the sense of Def. 2 of
solutions holds. The existence of solutions is also clear; as is shown
in (i), a solution (%;, B;,, M,, ¢;) corresponding to [&, b, r, 8] exists.
If we perform on it the transformation of the drift determined by
—d(x), the time change determined by c¢(x)™! and the transformation
of the Brownian motion determined by p~' successively, we get a
solution (x;, B, M;, ¢;) which corresponds to [0, b, t, #]. The theorem

is completely proved.

Remark 2. Our result can be used to construct diffusion processes
with boundary conditions on a manifold with boundary since the con-
struction can be localized and therefore reduced to the case of the half-

space.

Remark 3. By a formula on stochastic integrals, cf. [4], we
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have, for f& C3(R%)®,

f(x,)—f(xo)=a martingale+ S;Af(xg) ds+ S:Lf(?v.\.) dos,

where
Af ()= 23 @ (x)0" f/@x"ax"+’_=}'i‘1 bi(x)0f /05
and
Lf (%)= 33 ai(%)0" f/axfaxf+i§"23"(;c)af/axf+af/axl
with
2a""(x):k§”]10;;0'{ and Za"'(?c)——-ézzr};fi.

Thus we see that the infinitesimal generator of the semigroup of the
diffusion process x; constructed above is an extention of the differential
operator A with the domain 2(4)={f€ C¥(R%); Lf|sr*=0}.
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