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The following fact was proved by Gutwirth? in the classical case:

Let D be a line on P? and consider the affine plane S=P?—D.
Assume that C is an irreducible curve defined over a ground field K
and of degree, say d, on P? such that CN\S is biregular to an affine
line. Then CND contains a unique ordinary point, say P. If we look
at also infinitely near points, then all of singular points, say Py, .--, P,
are arranged so that (i) P=P; and (ii) each P;,; is an infinitely near
point of P; of order 1. Let m; be the effective multiplicity of P; on
C (that is, the multiplicity of P; on the proper transform of C by
successive quadratic dilatations with centers Py, ..., P;_;). On the other
hand, let f(x, y) be the irreducible polynomial which defines CN\S in
the affine coordinate ring K[, y] of S. Then

Theorem. Consider the linear system L of curves of degree d on
P? which goes through Y, m;P;. If dimL>1, then d is a multiple
Of d—ml.

This fact implies also, under the same assumption, that there is a
polynomial g(x, ) such that K[x, y]=K[f, g].

The purpose of the present paper is to give a proof of the above
theorem without any restriction on the ground field K. We add also

1) A. Gutwirth, An inequality for certain pencils of plane curves, Proc. Amer.
Math. Soc. Vol. 12 (1961) pp. 631-639
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some remarks on positive characteristic case. In particular, we give an
example which shows that the conclusion of the theorem become false
under a slight modification of the assumption, in the positive character-
istic case. Therefore we like to restate a well known open question in

the classical case in the following form:

Conjecture. If d is not a multiple of the characteristic p of K,
then the assumption of the theorem holds good always, or equivalently,
d-times of D belongs to L.

The writer wishes to express his thanks to Professor Oscar Zariski
and to his friends in Purdue University for their discussion with him

on the problem.

1. (d, r)-sequence

When two natural numbers d and r such that d_>r are given,
sequence 1y, ---, 7, defined as follows is called the (d, r)-sequence:

Start with dp=d and dy=r. When d,, -, d; are defined and if
d;>0, let ¢g; and d;.1 be such that d;_1=g;d;+d;.1 (0<d;1<d)).
Then for every k such that (‘z:_,; g)+1<k g’;jq,-, rp is defined to be
d;.

Lemma 1.1. Under the notation, we have
q=§]1q,-, do=(d, r) and
Lri=d+r—dg, 2ri=dr.

Proof. We have

do=q1d1+ d3; dodi=q1 d}+d1 ds,

di=q2d:+ds; d1d:=q,d}+ d2 ds,
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de—2=qGa-1da-1tda; da-2da-1=qa1d% 1+ da1ds
da—1=9a da; da1 daZQa d.

Summing up these equalities respectively, we have do+di
=2qidi+da; dodi=2qid} and we have the required result.

Proposition 1.2. Let C be an irreducible curve on a non-singular
surface F and let P be a point of C such that P corresponds to only
one point of the derived normal model of C. Let r be the multiplicity
of P on C. Let D be another irreducible curve on F which goes
through P as a simple point. Let d be the intersection multiplicity of
C and D at P, and let ¢ be the G.C.M. (d,r). Let the (d, r)-sequence
be ri,---, 4. Then there is a sequence of points Py=_P, P, ..., P, which
is determined uniquely by d/c,rv/c and D such that (i) each P;.y is
an infinitely near point of P; of order 1 and (ii) effective multiplicity
of P, on C is r;. (The way of determination of P; is shown by the
proof below.)

Proof. We use an induction argument on d. If d=r, then ¢=1,
ri=r and the assertion is obvious. Assume that d>r. Consider the
quadratic dilatation dilp F, the proper transforms C’, D’ of C, D and
also the intersection number (dilp P, C"). Since P is an r-ple point of C,
we have (dilp P, C')=r. Consider the unique common point P, of dilp P
and D’. By our assumption on P, P, is the unique common ordinary
point of dilpP and C’. On the other hand, since the intersection
multiplicity at P of C and D is d and since P is r-ple on C, the
intersection multiplicity at P; of C’ and D’ is d—r. Therefore the
multiplicity of P, on C’ is the minimum of r and d—r. Now, if d—r
>r, then considering C’ and D’ instead of C and D respectively, we
have a case with less d, and the proof is completed by our induction
argument. On the other hand, if r>d—r, then considering dilp P and

C’ instead of D and C respectively, we complete the proof similarly.

2) This is equivalent to that P is an analytically irreducible point of C.
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2. The proof of the theorem

Consider C, d, m; P; etc. as in the theorem, without assuming that
dimL>1. Let (d, mi)-sequence be m,=ry, rz .-, rg.

(1) Assume that (d, m;)=1." Then we see by virtue of Pro-
position 1.2 that m;=r; for any i <n and Tpy1=Tpy2=--=r,=1. This
means that 2(genus of C)=d’—3d+2— Y ri+ Y r,=d(d—mi—2)
+mi+1 by Lemma 1.1. Therefore, by that C is rational, we have
d—m;—2<0, whence m;>d—1, and we see that my=d—1, and
therefore 1=d—m; divides d in this case.

(2) Assume now that 6=(d, m;)5=1 and that d—m; does not
divide d. Then n>gq and m;=r; for any i<q and m;<0 for any
j>q. On the other hand,

0=2(genus of C)=d*—3d+2— Y, m?+ Y. m;

=d’—3d+2— T mi+ L mi— L mi+ Y my
i<q i<q i>q

i>q
=d(d—m1)—2d+mi+2—0— Y mi+ Y m;
i>q i>q

Let (d, d—m,)-sequence be s, .-, 5, Then X s?=d(d—my), Xs;
=d+(d—m;)—08. Therefore

2.1) mi—Yim;=73 s — 3 s;+2—20.
i>q i>q

Since d—m,; does not divide d, d—m; is a proper multiple of 0;
d—my=u6 (©>>2). On the other hand, let 8 and 7 be integers such

3) Our computation shows the following fact: Assume that C’ is a curve on
a non-singular surface F and let P’ be a point of C’ such that (i) as a curve, C’
has no singularity other than P’ and (ii) P’ is analytically irreducible (i.e., P’ is a
one-place singularity of C’). Let r(>1) be the multiplicity of P on C’. Assume
that there is a curve D’ going through P’ as a simple point such that the intersec-
tion multiplicity d of C”-D’ at P’ is prime to r. Then (arithmetic genus of C’)
—(genus of C’)=(dr—d—r—1)/2. Therefore d is uniquely determined by C’ (if
exists).

Geometric reason for this is the following. Under the notation of Proposition
1.2, both P, ., and P, ., lies on di],,q1 P,, and therefore no curve, having P as a
simple point, goes through Py, .-, Py ..
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that §171j236+ra OST<6. Set 61='..=6326, 6ﬂ+1=‘r- Then Zat
1”4
=), m; and obviously
i>q

203=20; > mi— Y m;
i>ae i>aq
Assume for a moment that };m; <>} s;+20. Then
i>a

Lsi—Lsizsi—sit 2 0i— 2 0

i>u+2 i>u+2

=u?0’—ud+ X2 02— ) 0;

i>u+2 i>u+2
= (u?—u—2)0%+20+ 02— 0;

>20+ 1 mi—2m;
i>q i>q

=20+ s3— 2 s;+2—20 (by (2.1).)
This implies 2 <0, which is impossible. Therefore we must have

Z TIZj> ZS{+26.
i>q

Then, since Y m;+ 2 si=d+mi—0+d+(d—m;)—0=3d—20 (by
i<q

Lemma 1.1), we have
>m;>3d.

Since 0=d®—3d+2— Y mi+ X, m;, we have >, m?=d*—3d+2
+ Y m;>d*+2. This implies that two members of L have intersection
number bigger than d?+2 unless they have common components.

Since L has an irreducible member C, we see that dimL=0.
By these (1) and (2), we completes the proof of the Theorem.
3. A remark

In the case where the characteristic of the ground field K is zero,

the condition
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(*) There is a linear system L* of curves such that (i) C is a
member of L* (ii) a generic member of L* is an irreducible rational
curve and (iii) dimL*>>1 implies that dimL>>1 for the linear system
L in the theorem, because L* has no variable singularities by a theo-
rem of Bertini whence L* is contained in L.

But, in the positive characteristic case, one can have an easy
counter-example.

Indeed, letting p(s~<0) be the characteristic of K, consider curve

C, with a parameter ¢ in the affine plane as follows:

x=1P?

y=t**4+¢+b (a is a natural number prime to p, b€ K).

Since K[t%%, t*?+t+b]=K[¢t], this C, satisfies the requirement
on singularities. The equation for C, is y?*=x*+x+b%?. Therefore
C, is a member of the linear system spanned by C=C, and d-times of
the line at infinity, where d=degCo=max (p® ap). Therefore there
is an L* as in (*) but, if a>1 dimL=0 by virtue of our theorem.

Note that the above example gives an example of a polynomial
f(x, ¥) in the polynomial ring K[, y] such that (i) K[, yJ/fK[x, y]
=~ K[t] but (ii) there is no g such that K[ x, y]=K[ f, g].
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