A theorem of Gutwirth

By

Masayoshi Nagata

(Received Sept. 1, 1970)

The following fact was proved by Gutwirth ${ }^{1)}$ in the classical case:
Let D be a line on \boldsymbol{P}^{2} and consider the affine plane $S=\boldsymbol{P}^{2}-D$. Assume that C is an irreducible curve defined over a ground field K and of degree, say d, on \boldsymbol{P}^{2} such that $C \cap S$ is biregular to an affine line. Then $C \cap D$ contains a unique ordinary point, say P. If we look at also infinitely near points, then all of singular points, say P_{1}, \ldots, P_{n} are arranged so that (i) $P=P_{1}$ and (ii) each P_{i+1} is an infinitely near point of P_{i} of order 1. Let m_{i} be the effective multiplicity of P_{i} on C (that is, the multiplicity of P_{i} on the proper transform of C by successive quadratic dilatations with centers $\left.P_{1}, \ldots, P_{i-1}\right)$. On the other hand, let $f(x, y)$ be the irreducible polynomial which defines $C \cap S$ in the affine coordinate ring $K[x, y]$ of S. Then

Theorem. Consider the linear system L of curves of degree d on \boldsymbol{P}^{2} which goes through $\sum m_{i} P_{i}$. If $\operatorname{dim} L \geq 1$, then d is a multiple of $d-m_{1}$.

This fact implies also, under the same assumption, that there is a polynomial $g(x, y)$ such that $K[x, y]=K[f, g]$.

The purpose of the present paper is to give a proof of the above theorem without any restriction on the ground field K. We add also

[^0]some remarks on positive characteristic case. In particular, we give an example which shows that the conclusion of the theorem become false under a slight modification of the assumption, in the positive characteristic case. Therefore we like to restate a well known open question in the classical case in the following form:

Conjecture. If d is not a multiple of the characteristic p of K, then the assumption of the theorem holds good always, or equivalently, d-times of D belongs to L.

The writer wishes to express his thanks to Professor Oscar Zariski and to his friends in Purdue University for their discussion with him on the problem.

1. (d, r)-sequence

When two natural numbers d and r such that $d \geq r$ are given, sequence r_{1}, \ldots, r_{q} defined as follows is called the (d, r)-sequence:

Start with $d_{0}=d$ and $d_{1}=r$. When d_{0}, \ldots, d_{j} are defined and if $d_{j}>0$, let q_{j} and d_{j+1} be such that $d_{j-1}=q_{j} d_{j}+d_{j+1}\left(0 \leq d_{j+1}<d_{j}\right)$. Then for every k such that $\left(\sum_{i<j} q_{i}\right)+1 \leq k \leq \sum_{i \leq j} q_{i}, r_{k}$ is defined to be d_{j}.

Lemma 1.1. Under the notation, we have

$$
\begin{aligned}
& q=\sum_{i=1}^{\alpha} q_{i}, \quad d_{\alpha}=(d, r) \text { and } \\
& \sum r_{i}=d+r-d_{\alpha}, \quad \sum r_{i}^{2}=d r .
\end{aligned}
$$

Proof. We have

$$
\begin{array}{cc}
d_{0}=q_{1} d_{1}+d_{2} ; & d_{0} d_{1}=q_{1} d_{1}^{2}+d_{1} d_{2}, \\
d_{1}=q_{2} d_{2}+d_{3} ; & d_{1} d_{2}=q_{2} d_{2}^{2}+d_{2} d_{3} \\
\ldots \ldots & \ldots \ldots \\
\ldots \ldots & \ldots \ldots
\end{array}
$$

$$
\begin{array}{ll}
d_{\alpha-2}=q_{\alpha-1} d_{\alpha-1}+d_{\alpha} ; & d_{\alpha-2} d_{\alpha-1}=q_{\alpha-1} d_{\alpha-1}^{2}+d_{\alpha-1} d_{\alpha} \\
d_{\alpha-1}=q_{\alpha} d_{\alpha} ; & d_{\alpha-1} d_{\alpha}=q_{\alpha} d_{\alpha}^{2} .
\end{array}
$$

Summing up these equalities respectively, we have $d_{0}+d_{1}$ $=\sum q_{i} d_{i}+d_{\alpha} ; d_{0} d_{1}=\sum q_{i} d_{i}^{2}$ and we have the required result.

Proposition 1.2. Let C be an irreducible curve on a non-singular surface F and let P be a point of C such that P corresponds to only one point of the derived normal model of $C .{ }^{2)}$ Let r be the multiplicity of P on C. Let D be another irreducible curve on F which goes through P as a simple point. Let d be the intersection multiplicity of C and D at P, and let c be the G.C.M. (d, r). Let the (d, r)-sequence be r_{1}, \ldots, r_{q}. Then there is a sequence of points $P_{1}=P, P_{2}, \ldots, P_{q}$ which is determined uniquely by $d / c, r / c$ and D such that (i) each P_{i+1} is an infinitely near point of P_{i} of order 1 and (ii) effective multiplicity of P_{i} on C is r_{i}. (The way of determination of P_{i} is shown by the proof below.)

Proof. We use an induction argument on d. If $d=r$, then $q=1$, $r_{1}=r$ and the assertion is obvious. Assume that $d>r$. Consider the quadratic dilatation $\operatorname{dil}_{P} F$, the proper transforms C^{\prime}, D^{\prime} of C, D and also the intersection number $\left(\operatorname{dil}_{P} P, C^{\prime}\right)$. Since P is an r-ple point of C, we have $\left(\operatorname{dil}_{P} P, C^{\prime}\right)=r$. Consider the unique common point P_{2} of $\operatorname{dil}_{P} P$ and D^{\prime}. By our assumption on P, P_{2} is the unique common ordinary point of $\operatorname{dil}_{P} P$ and C^{\prime}. On the other hand, since the intersection multiplicity at P of C and D is d and since P is r-ple on C, the intersection multiplicity at P_{2} of C^{\prime} and D^{\prime} is $d-r$. Therefore the multiplicity of P_{2} on C^{\prime} is the minimum of r and $d-r$. Now, if $d-r$ $\geq r$, then considering C^{\prime} and D^{\prime} instead of C and D respectively, we have a case with less d, and the proof is completed by our induction argument. On the other hand, if $r>d-r$, then considering $\operatorname{dil}_{P} P$ and C^{\prime} instead of D and C respectively, we complete the proof similarly.

[^1]
2. The proof of the theorem

Consider $C, d, m_{i} P_{i}$ etc. as in the theorem, without assuming that $\operatorname{dim} L \geq 1$. Let $\left(d, m_{1}\right)$-sequence be $m_{1}=r_{1}, r_{2}, \ldots, r_{q}$.
(1) Assume that $\left(d, m_{1}\right)=1 .^{3)}$ Then we see by virtue of Proposition 1.2 that $m_{i}=r_{i}$ for any $i \leq n$ and $r_{n+1}=r_{n+2}=\cdots=r_{q}=1$. This means that 2 (genus of $C)=d^{2}-3 d+2-\sum r_{i}^{2}+\sum r_{i}=d\left(d-m_{1}-2\right)$ $+m_{1}+1$ by Lemma 1.1. Therefore, by that C is rational, we have $d-m_{1}-2<0$, whence $m_{1} \geq d-1$, and we see that $m_{1}=d-1$, and therefore $1=d-m_{1}$ divides d in this case.
(2) Assume now that $\delta=\left(d, m_{1}\right) \neq 1$ and that $d-m_{1}$ does not divide d. Then $n \geq q$ and $m_{i}=r_{i}$ for any $i \leq q$ and $m_{j} \leq \delta$ for any $j>q$. On the other hand,

$$
\begin{aligned}
0 & =2(\text { genus of } C)=d^{2}-3 d+2-\sum m_{i}^{2}+\sum m_{i} \\
& =d^{2}-3 d+2-\sum_{i \leq q} m_{i}^{2}+\sum_{i \leq q} m_{i}-\sum_{j>q} m_{j}^{2}+\sum_{j>q} m_{j} \\
& =d\left(d-m_{1}\right)-2 d+m_{1}+2-\delta-\sum_{j>q} m_{j}^{2}+\sum_{j>q} m_{j}
\end{aligned}
$$

Let $\left(d, d-m_{1}\right)$-sequence be s_{1}, \cdots, s_{q}. Then $\sum s_{i}^{2}=d\left(d-m_{1}\right), \sum s_{i}$ $=d+\left(d-m_{1}\right)-\delta$. Therefore

$$
\begin{equation*}
\sum_{j>q} m_{j}^{2}-\sum_{j>q} m_{j}=\sum s_{i}^{2}-\sum s_{i}+2-2 \delta . \tag{2.1}
\end{equation*}
$$

Since $d-m_{1}$ does not divide $d, d-m_{1}$ is a proper multiple of δ; $d-m_{1}=u \delta(u \geq 2)$. On the other hand, let β and γ be integers such

[^2]that $\sum_{j>q} m_{j}=\beta \delta+\gamma, 0 \leq \gamma<\delta$. Set $\delta_{1}=\cdots=\delta_{\beta}=\delta, \delta_{\beta+1}=\gamma$. Then $\sum \delta_{i}$ $=\sum_{j>q} m_{j}$ and obviously
$$
\sum \delta_{i}^{2}-\sum \delta_{i} \geq \sum_{j>q} m_{j}^{2}-\sum_{j>q} m_{j} .
$$

Assume for a moment that $\sum_{j>q} m_{j} \leq \sum s_{i}+2 \delta$. Then

$$
\begin{aligned}
\sum s_{i}^{2}-\sum s_{i} & \geq s_{1}^{2}-s_{1}+\sum_{i>u+2} \delta_{i}^{2}-\sum_{i>u+2} \delta_{i} \\
& =u^{2} \delta^{2}-u \delta+\sum_{i>u+2} \delta_{i}^{2}-\sum_{i>u+2} \delta_{i} \\
& =\left(u^{2}-u-2\right) \delta^{2}+2 \delta+\sum \delta_{i}^{2}-\sum \delta_{i} \\
& \geq 2 \delta+\sum_{j>q} m_{j}^{2}-\sum_{j>q} m_{j} \\
& =2 \delta+\sum s_{i}^{2}-\sum s_{i}+2-2 \delta \quad \text { (by (2.1).) }
\end{aligned}
$$

This implies $2 \leq 0$, which is impossible. Therefore we must have

$$
\sum_{j>q} m_{j}>\sum s_{i}+2 \delta
$$

Then, since $\sum_{i \leqslant q} m_{i}+\sum s_{i}=d+m_{1}-\delta+d+\left(d-m_{1}\right)-\delta=3 d-2 \delta \quad$ (by Lemma 1.1), we have

$$
\sum m_{i}>3 d .
$$

Since $0=d^{2}-3 d+2-\sum m_{i}^{2}+\sum m_{i}$, we have $\sum m_{i}^{2}=d^{2}-3 d+2$ $+\sum m_{i}>d^{2}+2$. This implies that two members of L have intersection number bigger than $d^{2}+2$ unless they have common components. Since L has an irreducible member C, we see that $\operatorname{dim} L=0$.

By these (1) and (2), we completes the proof of the Theorem.

3. A remark

In the case where the characteristic of the ground field K is zero, the condition
(*) There is a linear system L^{*} of curves such that (i) C is a member of L^{*} (ii) a generic member of L^{*} is an irreducible rational curve and (iii) $\operatorname{dim} L^{*} \geq 1$ implies that $\operatorname{dim} L \geq 1$ for the linear system L in the theorem, because L^{*} has no variable singularities by a theorem of Bertini whence L^{*} is contained in L.

But, in the positive characteristic case, one can have an easy counter-example.

Indeed, letting $p(\neq 0)$ be the characteristic of K, consider curve C_{b} with a parameter t in the affine plane as follows:

$$
\left\{\begin{array}{l}
x=t^{p 2} \\
y=t^{a p}+t+b \quad(a \text { is a natural number prime to } p, b \in K)
\end{array}\right.
$$

Since $K\left[t^{p 2}, t^{a p}+t+b\right]=K[t]$, this C_{b} satisfies the requirement on singularities. The equation for C_{b} is $y^{p 2}=x^{a p}+x+b^{p 2}$. Therefore C_{b} is a member of the linear system spanned by $C=C_{0}$ and d-times of the line at infinity, where $d=\operatorname{deg} C_{0}=\max \left(p^{2}, a p\right)$. Therefore there is an L^{*} as in (*) but, if $a>1 \operatorname{dim} L=0$ by virtue of our theorem.

Note that the above example gives an example of a polynomial $f(x, y)$ in the polynomial ring $K[x, y]$ such that (i) $K[x, y] / f K[x, y]$ $\cong K[t]$ but (ii) there is no g such that $K[x, y]=K[f, g]$.

Kyoto University

[^0]: 1) A. Gutwirth, An inequality for certain pencils of plane curves, Proc. Amer. Math. Soc. Vol. 12 (1961) pp. 631-639
[^1]: 2) This is equivalent to that P is an analytically irreducible point of C.
[^2]: 3) Our computation shows the following fact: Assume that C^{\prime} is a curve on a non-singular surface F and let P^{\prime} be a point of C^{\prime} such that (i) as a curve, C^{\prime} has no singularity other than P^{\prime} and (ii) P^{\prime} is analytically irreducible (i.e., P^{\prime} is a one-place singularity of C^{\prime}). Let $r(>1)$ be the multiplicity of P on C^{\prime}. Assume that there is a curve D^{\prime} going through P^{\prime} as a simple point such that the intersection multiplicity d of $C^{\prime} \cdot D^{\prime}$ at P^{\prime} is prime to r. Then (arithmetic genus of C^{\prime}) -(genus of $\left.C^{\prime}\right)=(d r-d-r-1) / 2$. Therefore d is uniquely determined by C^{\prime} (if exists).

 Geometric reason for this is the following. Under the notation of Proposition 1.2, both $P_{q_{1}+1}$ and $P_{q_{1}+2}$ lies on $\operatorname{dil}_{P_{q_{1}}} P_{q_{1}}$, and therefore no curve, having P as a simple point, goes through $P_{1}, \cdots, P_{q_{1}+2}$.

