J. Math. Kyoto Univ. (JMKYAZ) 11-1 (1971) 149-154

A theorem of Gutwirth

By

Masayoshi NAGATA

(Received Sept. 1, 1970)

The following fact was proved by Gutwirth¹⁾ in the classical case: Let D be a line on P^2 and consider the affine plane $S = P^2 - D$. Assume that C is an irreducible curve defined over a ground field Kand of degree, say d, on P^2 such that $C \cap S$ is biregular to an affine line. Then $C \cap D$ contains a unique ordinary point, say P. If we look at also infinitely near points, then all of singular points, say P_1, \ldots, P_n are arranged so that (i) $P = P_1$ and (ii) each P_{i+1} is an infinitely near point of P_i of order 1. Let m_i be the effective multiplicity of P_i on C (that is, the multiplicity of P_i on the proper transform of C by successive quadratic dilatations with centers P_1, \ldots, P_{i-1}). On the other hand, let f(x, y) be the irreducible polynomial which defines $C \cap S$ in the affine coordinate ring K[x, y] of S. Then

Theorem. Consider the linear system L of curves of degree d on P^2 which goes through $\sum m_i P_i$. If dim $L \ge 1$, then d is a multiple of $d-m_1$.

This fact implies also, under the same assumption, that there is a polynomial g(x, y) such that K[x, y] = K[f, g].

The purpose of the present paper is to give a proof of the above theorem without any restriction on the ground field K. We add also

¹⁾ A. Gutwirth, An inequality for certain pencils of plane curves, Proc. Amer. Math. Soc. Vol. 12 (1961) pp. 631-639

Masayoshi Nagata

some remarks on positive characteristic case. In particular, we give an example which shows that the conclusion of the theorem become false under a slight modification of the assumption, in the positive characteristic case. Therefore we like to restate a well known open question in the classical case in the following form:

Conjecture. If d is not a multiple of the characteristic p of K, then the assumption of the theorem holds good always, or equivalently, d-times of D belongs to L.

The writer wishes to express his thanks to Professor Oscar Zariski and to his friends in Purdue University for their discussion with him on the problem.

1. (d, r)-sequence

When two natural numbers d and r such that $d \ge r$ are given, sequence r_1, \ldots, r_q defined as follows is called the (d, r)-sequence:

Start with $d_0 = d$ and $d_1 = r$. When d_0, \dots, d_j are defined and if $d_j > 0$, let q_j and d_{j+1} be such that $d_{j-1} = q_j d_j + d_{j+1}$ $(0 \le d_{j+1} < d_j)$. Then for every k such that $(\sum_{i < j} q_i) + 1 \le k \le \sum_{i \le j} q_i$, r_k is defined to be d_j .

Lemma 1.1. Under the notation, we have

$$q = \sum_{i=1}^{\alpha} q_i, \qquad d_{\alpha} = (d, r) \text{ and}$$
$$\sum r_i = d + r - d_{\alpha}, \qquad \sum r_i^2 = dr.$$

Proof. We have

150

A theorem of Gutwirth

$$d_{\alpha-2} = q_{\alpha-1} d_{\alpha-1} + d_{\alpha}; \qquad d_{\alpha-2} d_{\alpha-1} = q_{\alpha-1} d_{\alpha-1}^2 + d_{\alpha-1} d_{\alpha}$$
$$d_{\alpha-1} = q_{\alpha} d_{\alpha}; \qquad \qquad d_{\alpha-1} d_{\alpha} = q_{\alpha} d_{\alpha}^2.$$

Summing up these equalities respectively, we have $d_0 + d_1 = \sum q_i d_i + d_{\alpha}$; $d_0 d_1 = \sum q_i d_i^2$ and we have the required result.

Proposition 1.2. Let C be an irreducible curve on a non-singular surface F and let P be a point of C such that P corresponds to only one point of the derived normal model of $C^{(2)}$ Let r be the multiplicity of P on C. Let D be another irreducible curve on F which goes through P as a simple point. Let d be the intersection multiplicity of C and D at P, and let c be the G.C.M. (d, r). Let the (d, r)-sequence be r_1, \ldots, r_q . Then there is a sequence of points $P_1 = P, P_2, \ldots, P_q$ which is determined uniquely by d/c, r/c and D such that (i) each P_{i+1} is an infinitely near point of P_i of order 1 and (ii) effective multiplicity of P_i on C is r_i . (The way of determination of P_i is shown by the proof below.)

Proof. We use an induction argument on d. If d=r, then q=1, $r_1=r$ and the assertion is obvious. Assume that d>r. Consider the quadratic dilatation dil_P F, the proper transforms C', D' of C, D and also the intersection number (dil_P P, C'). Since P is an r-ple point of C, we have (dil_P P, C')=r. Consider the unique common point P_2 of dil_P P and D'. By our assumption on P, P_2 is the unique common ordinary point of dil_P P and C'. On the other hand, since the intersection multiplicity at P of C and D is d and since P is r-ple on C, the intersection multiplicity at P_2 of C' and D' is d-r. Therefore the multiplicity of P_2 on C' is the minimum of r and d-r. Now, if $d-r \ge r$, then considering C' and D' instead of C and D respectively, we have a case with less d, and the proof is completed by our induction argument. On the other hand, if r > d-r, then considering dil_P P and C' instead of D and C respectively, we complete the proof similarly.

²⁾ This is equivalent to that P is an analytically irreducible point of C.

Masayoshi Nagata

2. The proof of the theorem

Consider C, d, $m_i P_i$ etc. as in the theorem, without assuming that dim $L \ge 1$. Let (d, m_1) -sequence be $m_1 = r_1, r_2, \dots, r_q$.

(1) Assume that $(d, m_1)=1.^{3}$ Then we see by virtue of Proposition 1.2 that $m_i=r_i$ for any $i \leq n$ and $r_{n+1}=r_{n+2}=\cdots=r_q=1$. This means that 2(genus of $C)=d^2-3d+2-\sum r_i^2+\sum r_i=d(d-m_1-2)+m_1+1$ by Lemma 1.1. Therefore, by that C is rational, we have $d-m_1-2<0$, whence $m_1\geq d-1$, and we see that $m_1=d-1$, and therefore $1=d-m_1$ divides d in this case.

(2) Assume now that $\delta = (d, m_1) \neq 1$ and that $d - m_1$ does not divide d. Then $n \geq q$ and $m_i = r_i$ for any $i \leq q$ and $m_j \leq \delta$ for any j > q. On the other hand,

$$0 = 2 \text{ (genus of } C) = d^2 - 3d + 2 - \sum m_i^2 + \sum m_i$$
$$= d^2 - 3d + 2 - \sum_{i \le q} m_i^2 + \sum_{i \le q} m_i - \sum_{j > q} m_j^2 + \sum_{j > q} m_j$$
$$= d (d - m_1) - 2d + m_1 + 2 - \delta - \sum_{j > q} m_j^2 + \sum_{j > q} m_j.$$

Let $(d, d-m_1)$ -sequence be $s_1, ..., s_q$. Then $\sum s_i^2 = d(d-m_1), \sum s_i = d + (d-m_1) - \delta$. Therefore

(2.1)
$$\sum_{j>q} m_j^2 - \sum_{j>q} m_j = \sum s_i^2 - \sum s_i + 2 - 2\delta.$$

Since $d-m_1$ does not divide d, $d-m_1$ is a proper multiple of δ ; $d-m_1=u\delta$ ($u\geq 2$). On the other hand, let β and γ be integers such

Geometric reason for this is the following. Under the notation of Proposition 1.2, both P_{q_1+1} and P_{q_1+2} lies on dil $_{P_{q_1}} P_{q_1}$, and therefore no curve, having P as a simple point, goes through P_1, \dots, P_{q_1+2} .

³⁾ Our computation shows the following fact: Assume that C' is a curve on a non-singular surface F and let P' be a point of C' such that (i) as a curve, C' has no singularity other than P' and (ii) P' is analytically irreducible (i.e., P' is a one-place singularity of C'). Let r(>1) be the multiplicity of P on C'. Assume that there is a curve D' going through P' as a simple point such that the intersection multiplicity d of $C' \cdot D'$ at P' is prime to r. Then (arithmetic genus of C') -(genus of C')=(dr-d-r-1)/2. Therefore d is uniquely determined by C' (if exists).

that $\sum_{j>q} m_j = \beta \delta + \gamma$, $0 \le \gamma < \delta$. Set $\delta_1 = \cdots = \delta_\beta = \delta$, $\delta_{\beta+1} = \gamma$. Then $\sum \delta_i = \sum_{j>q} m_j$ and obviously

$$\sum \delta_i^2 - \sum \delta_i \geq \sum_{j>q} m_j^2 - \sum_{j>q} m_j.$$

Assume for a moment that $\sum_{j>q} m_j \leq \sum s_i + 2\delta$. Then $\sum s_i^2 - \sum s_i \geq s_1^2 - s_1 + \sum_{i>u+2} \delta_i^2 - \sum_{i>u+2} \delta_i$ $= u^2 \delta^2 - u \delta + \sum_{i>u+2} \delta_i^2 - \sum_{i>u+2} \delta_i$

$$= (u^{2} - u - 2)\delta^{2} + 2\delta + \sum \delta_{i}^{2} - \sum \delta_{i}$$
$$\geq 2\delta + \sum_{j>q} m_{j}^{2} - \sum_{j>q} m_{j}$$
$$= 2\delta + \sum s_{i}^{2} - \sum s_{i} + 2 - 2\delta \qquad \text{(by (2.1).)}$$

This implies $2 \leq 0$, which is impossible. Therefore we must have

$$\sum_{j>q} m_j > \sum s_i + 2\delta.$$

Then, since $\sum_{i \leq q} m_i + \sum_{i \leq q} s_i = d + m_1 - \delta + d + (d - m_1) - \delta = 3d - 2\delta$ (by Lemma 1.1), we have

$$\sum m_i > 3d$$
.

Since $0 = d^2 - 3d + 2 - \sum m_i^2 + \sum m_i$, we have $\sum m_i^2 = d^2 - 3d + 2$ $+ \sum m_i > d^2 + 2$. This implies that two members of L have intersection number bigger than $d^2 + 2$ unless they have common components. Since L has an irreducible member C, we see that dim L = 0.

By these (1) and (2), we completes the proof of the Theorem.

3. A remark

In the case where the characteristic of the ground field K is zero, the condition

(*) There is a linear system L^* of curves such that (i) C is a member of L^* (ii) a generic member of L^* is an irreducible rational curve and (iii) dim $L^* \ge 1$ implies that dim $L \ge 1$ for the linear system L in the theorem, because L^* has no variable singularities by a theorem of Bertini whence L^* is contained in L.

But, in the positive characteristic case, one can have an easy counter-example.

Indeed, letting $p(\neq 0)$ be the characteristic of K, consider curve C_b with a parameter t in the affine plane as follows:

$$\begin{cases} x = t^{p^2} \\ y = t^{ap} + t + b \end{cases} (a \text{ is a natural number prime to } p, b \in K).$$

Since $K[t^{p^2}, t^{ap}+t+b]=K[t]$, this C_b satisfies the requirement on singularities. The equation for C_b is $y^{p^2}=x^{ap}+x+b^{p^2}$. Therefore C_b is a member of the linear system spanned by $C=C_0$ and d-times of the line at infinity, where $d=\deg C_0=\max(p^2,ap)$. Therefore there is an L^* as in (*) but, if $a>1 \dim L=0$ by virtue of our theorem.

Note that the above example gives an example of a polynomial f(x, y) in the polynomial ring K[x, y] such that (i) $K[x, y]/fK[x, y] \cong K[t]$ but (ii) there is no g such that K[x, y]=K[f, g].

KYOTO UNIVERSITY

154