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§ O . Introduction

Let H  be the com plex upper half plane and let T  b e  a  discrete

subgroup o f th e  group G  o f  conformal automorphisms o f  H .  W e as-

sum e that T \H  is  compact.

For each unitary m atrix representation x  o f  T ,  w e consider an

eigenvalue problem (called the (T , x)-eigenvalue problem in  §1,) follow-

in g  E S ] .  Th e spectra o f  th is  eigenvalue problem and its generaliza-
tions have been investigated since the famous paper of A . Selberg [S ]

appeared in  1956. But, at p resen t, no t m uch  is know n even  in the

above special case.

In th is paper, w e w ant to  study "H ow  do the spectra o f  (T, z)-
problem behave when I '  varies?"

T h e re  is  an o th e r  (m ore group-theoretical) interpretation o f  our
prob lem . W e g ive it in the following.

Let G, T , x  be as above and let U=- Ind x be the un itary represen-
r t G

tation o f G  induced from x. As is  w ell know n , U  can be decomposed
in to  the discrete sum  U ,  o f irreducible unitary representations Ili

of G .  W e  c a ll the set Su= {U i; i =1, 2, • • •} the spectra of U=Ind x
r t G

and decompose it into the disjoint union of two subsets, the C-part SE
and the D-part so, w here so consists o f  those elements o f  S u  con-
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tamed in  th e  continuous series (that is, the continuous principal series

and the supplementary series) o f  irreducible unitary representations of

G  and SO consists o f  those elements o f  S u contained in the discrete

series.

Now, our problem can be rephrased as follows" ) : " H o w  do the

C-part S b  of the spectra Su  o f  th e  induced representation U = Indz  o f
FI G

G behave when T  varies?" (We need not study the behaviour of the

D-part so, for S id(U =Indx ) is completely known.)
F I G

Some problems of the similar nature were also discussed by J.M.G.
Fell [ F ]  in a more general situation.

Obviously, the first thing we must do is to given  a  precise mean-

in g  to  the phrase " T  va ries ". In  our case, however, there exists a

very suitable theory for that purpose, at least when T 's  have no elliptic

elements. It is the so-called moduli theory o f closed Riemann surfaces.

The purpose o f  this theory is, roughly speaking, to give a "natural"

topology and a "natural" complex analytic structure to  the set Mg  o f

conformal equivalence classes of closed Riemann surfaces of a given

genus g .  The transcendental approach to the moduli problem of closed

Riemann surfaces was originated some thirty years ago by O. Teichmaller
and has been developed by L. V. Ahlfors, L . Bers, and H. E. Rauch.

Since Mg  is  n o t  a manifold in its natural topology, Teichmiiller in-

troduced a  covering space 7 ',  o f it ,  called Teichmüller space. One of

the m ain theorem in  th e  theory is  that 7 ',  can be endowed with

a  s tru c tu re  o f a  complex analytic manifold ( 2 ) . Another important

structure of 7 ',  is that o f  Riemannian manifold due to  A. Weil and

L. V . A h lfo rs . For the sake o f completeness, the outline of the theory

of Teichmfiller spaces is presented in  § 2 .  Almost all proofs are omitted

1) About the relation between the spectra o f  (F,x ) - eigenv alue problem and
the spectra of the induced representation, see [G, Chapter 1, §5].

2) This theorem implies that the multiplicity in  which each irreducible unitary
representation in  th e  discrete series appears in  th e  decomposition E@U, o f  U
=Ind x must be a constant on every  T g .  (Note that representations in the discrete

ria
series are parametrized by integers.) In fact, we can assure the above observation
using the explicit values of the multiplicities.
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referring to [A 1 -3 1 . Th e only exception is Lemma 2.6., which plays

an  essential role in  our later task (§§4 -5 ). Its proof, being rather

long, is given in the Appendix at the end of this paper.

§1 is preliminaries.

The contents of §2  and their important roles in  this paper are

explained above.

§3 is devoted to give the precise formulation of our problems in

terms of the moduli theory. We here explain it in  th e simplest case

when x :  the identity representation.

Since each point of Tg  represents a  conformal equivalence class of

closed Riemann surface, it determines a Fuchsian group T  (up to inner

automorphisms of G) . Hence, we can associate it with the spectra of

(T , 1)-problem. Then, we can ask, "Is there a  series A(1) (1= 1, 2, ...)

of continuous functions on  T , whose values at each point represent all

the eigenvalues o f th e  eigenvalue problem associated with the point?"

Moreover, i f  such A M  exist, we may ask whether each A M  can be

considered as a real analytic function or not.

§§4-5 is the main part of this paper.

In  §4, the followings are proved;

'For every real analytic curve W =W (t)  ( t  ; real parameter) in

Tg , there exists a  series A ( j ) =A ( j ) ( t )  o f real analytic functions

in  t  whose values at each point represent all the eigenvalues

of the associated problem.' (Theorem 4.1.)

'Given a  poin t P  o f  T  and a simple eigenvalue 2 0 o f th e

eigenvalue problem associated with P , there exists a  neigh-

bourhood V o f P  in  T g  a n d  a  real analytic function A  on V
such that A (P ) -=2 0 a n d  at each point the value of A  re-
presents o n e  o f th e  eigenvalues o f th e  associated problem.'

(Theorem 4.2.)

In  §5, we prove an  interesting formula for the differential coef-

ficients of the above functions A ( j ) (t).

Namely, Theorem 5.1., the main theorem in  this section, implies
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that
'In the above notations, let, 20 -= AU) (t o )  be a simple eigenvalue

of the eigenvalue problem associated with the point P=W(to)

on the curve W (t) an d  le t F  b e an  eigenvector belonging to

Ao. Then we can find an  element vxo (calculable from F )  of
the tangent space ..Fp o f T  a t P  such that

r d
L d t A m ( t )

i t = t 0

-=  g P (v '

where g p ( . ,  •) is  the innerproduct in  ..9- p and 1J is the element
of 9 -  p tangential to the curve =WO.'

Now, a word for our method. Since, our problem is , roughly speaking,
to  ask , "H ow  d o  th e  eigenvalues behave when T  varies?", w e  are
tempted to consider this as a sort of perturbation problem at least
locally. In fact, our problems resemble the ones which have long been
known as boundary perturbation problems in  mathematical physics. In
particular, L. A . Segel showed ( 3 )  t h a t  the use of conformal mappings is

very effective to turn some of such problems into ordinary perturbation
problem s. It w ill becom e clear in  §§4-5 that his method, suitably
modified, is also applicable to our . problem s. For perturbation theory,

w e use the terminologies and theorems of the excellent book of T. Kato

[ K ]  rather frequently.
F inally, th e  author wants to express his hearty thanks to Prof.

K. Shibata for his kind advices on the theory of Teichmiiller spaces.

§ 1 .  Preliminaries

1 . 1 .  Notations
Let H= {z= x + i y; y> 0} be the complex upper half plane. Then,

G= SL(2, R)/{± el operates transitively on H from the left by

az+b 
cz+ d

3 )  Archive for rational mechanics and analysis, 8 (1961), pp. 228-237.
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a  bfor z  in  H  and g = ( )
c  d  

in  G .  Hence, G  can be identified with the

group of all conformal automorphisms of H.

The G-invariant metric on H  is

ds 
2 d x 2 - 1 - d y 2

y 2

hence the G-invariant measure on H  is

(1.3)
dx  dydz —   y 2

And the ring of G-invariant differential operators on H  is generat-
ed by

, 2
2 \(1.4)4

= 0y2)

1.2. ( F ,  x ) - eigenvalue problems

Let F  be a  discrete subgroup of G such that F \H  is  compact and
le t  x  b e  a  finite-dimensional representation o f  F  b y  n x  n  unitary
m atrices. F o llo w in g  E n  w e  c a ll a n  n -dimensional column vector,
whose components are scalar functions on H , a  function vector on H.

Consider the complex vector space .Y e(F, x ) of all function vectors
F  on H  which satisfy the following conditions :

(i) F  is  (componentwisely) measurable ;

(ii) F(A z )=x (A )F(z )  for a ll z  in  H  and A  in F ;

(iii) 'F (z) F(z) d z < CO,
,F

where .F  i s  a  measurable fundamental domain o f F  in  H  and  d z  is
the G-invariant measure on H  given by (1.3).

Introducing an innerproduct

(1.2)

(1.5) (F1, F2),r(r, x ) =

we can consider ,  x )  as a H ilbert sp ace . This innerproduct does



118 Noriaki Kawanaka

not depend on  the choice o f  a  fundamental domain g "  because of the
above condition (ii).

F o r a  differential operator L  on f i  an d  a  function vector F , we
define L F by

 

L f i(z )

Lf2. (z)

L f ( z )

   

LF (z) -= for F=

 

f. 2

.fn

   

W e also use the following notation :

(1.6) F P)1 for FE ye(I', x).

Now, we consider the fundamental eigenvalue problem :

(1.7) 4F= 2F (F E ,e(F, x)),

w h ere  4  is  the differential operator given by (1.4).

It is w ell know n and can be easily verified that the operator 4 in
'(F, x )  is sym m etric and positive. H en ce , it h as th e  selfadjoint ex-

tension  4 (the F riedrichs extension). The quadratic form p associated

w ith  I .  (in the sense of [K , pp. 322-3231) is given by

(1.8) i F i
OF 2  

+  
OF

X y
dz( F E 9 (p)),

  

w here 9 (p ) i s  the domain of p.
For brebity, w e shall use the notation 4  for 4  in the following.

Definition 1 .1 . The eigenvalue problem (1.7) interpreted as above

is called the (F, x)-eigenvalue problem or the (T, x)-problem.

The following theorem is well known.

Theorem 1.1.
(i)' f ' ,  x )  has a complete orthonormal system  {F.i ; j =1, 2, 3, • • •1
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w hich consists of  eigenvectors o f  the (F,x )-eigenv alue problem  (1.7).

(ii) T he eigenvalues A;  (j= 1 , 2 , •• .) of  th e  (F, 70-problem are  all
real and nonnegativ e and of  f inite multiplicity .

M oreov er, they  hav e  no  f in ite  po in t o f  accum ulation  on  the  real
line.

§ 2 .  The moduli theory o f closed Riemann surfaces

As stated in §0, we give here a brief survey of the moduli theory

of closed Riemann surfaces following [A1-31.

2 .1 . Teichmiiller spaces

Let H ,  G ,  F  be as  in  § 1 .  In  this section and below, we shall

assume, furthermore, that F  has no elliptic elements. Then, as is well

known, any closed Riemann surface of genus g>1 can be represented

as a quotient space F \ H  for some such F .  Moreover, two Riemann
surfaces W1=F 1 \H and W2= FA H  are conformally equivalent if and
only if F 1 and F2 are conjugate to each other as subgroups of G.

Definition 2 .1 . W e say that F  is  a  Fuchsian group o f genus

g ( > 1 ) ,  if

(i) F  is  a  discrete subgroup o f G=S L (2, R )/ 1+. e l  such that

F \H  is compact,

(ii) F  has no elliptic element,

(iii) as a closed Riemann surface, the genus o f  W--= F \H  is  g.

The following is also well known.

Lemma 2 .1 . A ny Fuchsian group of  a given genus g  is isomorphic
to  an  abstract group generated by  elem ents al, a2, •••, a2, w hich satisfy
the  only  one relation

a 2a i l •  •  • a 2 ,_  a 2 ,a 2 8 _ i a ze —

1 .
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Let F  be a Fuchsian group of genus g .  B y  the above lemma, it
is generated by elements A 1 , A2, •• •, A 2 g  of G which satisfy the only
one relation

(2.1) A l A 2 A -1 1 A 2- 1  • • • A 2 g -1 A 2 g  A ig1 -1-4 2- gi = E3

where E  is  the unit m atrix of the second order. Using this fact, we
can state the formal definition of Teichmiiller spaces:

Definition 2 .2 . Consider the set Tg of pairs (F, { .21 1),)  where F
is  a  Fuchsian group o f genus g  and {A i ; i =1, 2, •••, 2g} i s  a set of
generators of T  which satisfies (2.1).

We define an equivalence relation i n  Tg by setting (T,
(T ', { A } )  if and only i f  there exists an element B  of G such that

A i = B A; B -
1 ( i  =  1, 2, 2 g ) .

The set of all equivalence classes under this relation is called the

Teichmiiller space T g .

Lemma 2 .2 . I n  each equivalence class o f  7 ',  ( in  th e  sense of
Definition 2 .2 ), there ex ists a unique elem ent (T , { A i } ) such that the
fixed points of  A 1 a re  0 , 0 0  and the attractiv e fixed point of  A 2  i s  1.

W e call such (T , { A } ) a  normalized pair in T g .  It is clear that
Tg  can be identified with the set of all normalized pairs in Tg . Hence,
we arrived at the second definition of Teichmtiller spaces, that is,

Definition 2 .3 . Let (F 0 ,  { A M  b e  a fixed norm alized pair in Tg

(in  the sense above). Consider the set of a ll  pairs ET, 0 11 where T  is
a Fuchsian group o f genue g  and 0  is  an isomorphism from 1" 0  onto
T  such that (F, { 0(A 1)} )  i s  a normalized pair in Tg .

The set of a ll  pairs [F , 0 11 is  c a lle d  the Teichmfiller space T (F 0).
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T h e natural topology (moreover, th e  structu re  o f real analytic

manifold) of T g = T (I' 0 )  is given in  [A 2, pp. 177-1791.

2 .2 . Quasiconforrr Al mappings and Beltrami equations.

Definition 2 .4 . Let 2  b e  a  domain in  th e  complex plane. A
homeomorphic mapping f  of S2 onto itself is said to be quasiconformal,
if f  has locally integrable distributional derivatives and satisfies

(2.2) f i  p f z a.e.,

where i t  is an element of /7(S d) such that !PI o n < 1 and

. .

f z = 2 U . - Y.0 ,  f z = 2  ( f x  L P -

Remark 2 .1 . Any quasiconformal mapping f  is sense-preserving.
In fact, the Jacobian of f ( = l f z  I 2I  2

)  is nonnegative by the above
definition.

In  th e  following, we consider only such cases when 2  i s  the
whole complex plane C  or the complex upper half plane H.

Theorem 2 .1 . (Morrey, [A 1 ], [A B i)
(i) Let ,a be an element of L ( C )  w hich satisf ies II/4,X L  T here

exists a unique homeomorphic mapping o f C  onto itself , to be denoted
by PP, which satisfies

frl= It• a.e.

and is normalized by

W (0)==O , W PM = 1, fVe(0.0).=

(ii) Let a  E  (H) satisf ies T here  ex ists  a unique
homeomorp hic m app ing  o f H  onto itself , to be denoted by  p, w hich
satisfies
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p p ; a.e.

and is  n o rm a liz ed  b y

f ( 0 ) = O ,  f (1 )= 1 , f ( 0 . 0 ) = 0 . 0 .

Rem ark 2.2. T h e normalization in  ( i i )  m akes sense, for i t  i s
known that 7  h as  a unique extension to  a  homeomorphism of closed
half plane.

Rem ark 2.3. Let det be as in  (ii). Extend the definition of p  by

121(z)=- /100.

Then we can define W ,  and 7  is  th e restriction o f  V  t o  th e upper
half plane H.

Rem ark 2.4. In the particular case when ,a= 0, w e have W (z )
= z  and p (z ) - -=- . .z.

W e also need the following concept.

Definition 2.5. L et F  b e  a  Fuchsian group of genus g  and let
be an  element of L - (H).

W e say  th a t da  i s  a Beltrami coefficient w ith  respect to  F  or a
J ' -Beltrami coefficient, if

(2.3) it (A z )= ( z )   (cz+  d ) 2

(cz+ d) 2
(z E H)

f o r  a l l  A  =- (
a b) in J .c  d

T h e lin ear sp ace  o f  F-Beltrami coefficients w ill be denoted  by

B (r) , its  open unit b a ll {/1 E B (r); < b y  B i (T).

The importance of the above introduced concepts : quasiconformal

mappings and Beltrami coefficients, becomes clear by the following

Lem m a 2.3. Let b e  a Fuchsian g r o u p  o f  g e n u s  g  and let it
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be  a n  elem ent o f  B 1 (T ) . W e can def ine the m apping p  by Theorem
2.1 (ii). T hen , f o r any  A  E Aì  ==_po Ao(p) - 1  i s  a  conformal auto-
morphism of  H , th at is , contained in  G . T h u s ,

(2.4) OP.: A .= f  A o ( f

is  an  isom orphism  from  T  onto another Fuchsian group FP of  genue g.

Theorem 2 .2 . (Ahlfors)

Let (T , { A i} ) be a f ixed norm alized pair in D g . For each It E  1(n ,
(Ta, -(2171) is  also  a norm aliz ed  pair in  T g , t h a t  i s ,  ET '', O'`1E T(F)
(in  the  sense of  Def inition 2.3.).

2 .3 . The complex analytic structure on 7

Let T  be a  Fuchsian group o f genus g  and let y be a  T-Beltrami

coefficient. T h en , th e  limits

ft"(z)—  z
lim (z E H)

and

21'(z)— A(z) hm (zE H , A E T )
t-o

exist ([A l, p . 1031. We denote them by f Lv1 and Iv ] resp ec tive ly .

Definition 2 .6 . W e  s a y  th a t  v E B  (T )  is lo c a l ly  triv ia l (or

stationary), if [v] = 0 for all A E T

The set of all locally trivial T-Beltrami coefficients is obviously a

linear subspace o f B  (T ) . We denote it by N(T).

Let Q (T) be the space o f all automorphic forms o f weight 2 with
respect to T . It  is  w e ll k n ow n  th a t Q (T) is a  complex vector space

o f dimension 3 g - 3 ,  where g  is the genus of T .
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Lemma 2.4. ([A l], [A3 1)

(i) T here is an  antilinear isomorphism 0  f rom  the complex vector
space B(F)/N(F) onto Q(T):

(2.5) 0 : y 1—>01v1(6)—  1 2v ( z )   dx  dy .
7r (2 — E)4

Hence, the dim ension of  B U T  N (F)  is  3 g - 3 .

(ii) On the other hand, we may define an  antilinear mapping 0*
f rom  Q(F) into B(F):

(2.6) 0*: ço

(iii) 00*=identity, and

v — 0* 0 Iv] E N(T) f o r all v  in  B(F).

Definition 2.7. Any basis of the (3g-3)-dimensional vector space
B (T ) /N (F )  is  ca lled  a  F-Beltrami basis. B y  t h e  above lemma, we
know that {y 2 ç-Oi; yoi(i= 1, 2, •••, 3g-3) form a  basis o f  Q (F)}  i s  a

F-Beltrami basis. S u c h  one will be called a  W eirs F-Beltrami basis.

Lemma 2.5. (Bers)

L et F  be  a  Fuchsian group o f  genus g  an d  le t {v i ; i =1 , 2,

3 g -3 } b e  a  T -B eltram i basis.

Then, for every  elem ent ,u  o f  B (F ) w hich has a  sufficient small
norm t h e r e  corresponds unique complex numbers C1(p), C2(11), •••,
C3 g _3 (p ) such that

j e 'l ( P ) v 1 A - t .2 ( P ) ''2 4 - 4 "  3  - 3 ( P ) ' 3 I  -=

f o r all A  in F .

Now, we can state the m ain theorem in  th e  theory of Teichmtiller

spaces.
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Theorem 2.3. (Bers)

(i) Let [T ,  01 be any  elem ent o f  7' (r o), w here To
group of  genus g. T h e n ,

(2.7) ei 1—>c --(clot), c2(10, • •  C3g- 30-0)

(111111-: sufficiently small)

i s  a  Fuchsian

defines a  topological m apping from  a  neighbourhood of [T ,  011 i n  T(T 0 )
onto a  neighbourhood o f  the  origin o f  C2 g- 3 .

(ii) T(1"0 )  h a s  a  s t ru c t u re  o f  a  (3g-3)-dim ensional complex
analy tic m anifold def ined by  the  coordinates m appings (2.7).

Furtherm ore, T(1-
0 )  w ith the  above structure is complex analytically

equivalent to a  bounded dom ain in  C2 g- 3 .

Definition 2.8. T h e  above lo c a l coordinates= ( C i , C3g_3)

defined in  a  neighbourhood of ET, 01E T(T o)  is called Bers' coordinates

with respect to a  T-Beltrami basis

The point [T ,  0 ]  is called the origin of the Bers' coordinates.

2.4. T h e Riemannian structure on  Tg , two lem m as o f  special

importance

Clearly, th e  (real) tangent space o f  T(T o)  a t P=ET  , 01  can be

naturally identified with B (T )/N (T ) considered a s  a  real vector space.

[A 2 , 31  defined a  natural herm itian structure of Tg . It  is  g iven  b y

the following:

(2.8) gp(v, V1) =  2Re. 1 O D ]  0D /1 dx  dy
TV!

=2Re. 1 Y  OD/1 dx dy,

for all y, E B  (T ) . (See Lemma 2.4.)

The following lemmas are essential ones for our later work.
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Lemma

( 0  L e t {v 1 , ,  v „ }  b e  a  s e t o f elem ents of L ( C ) .  W e assume

that ev ery  v  is indef initely  dif ferentiable in  a  com m on  dom ain  ( (C).
W e set

P = CI P I - I - C 2 v 2 + • • •+ C n vn,

w here C-=(Ci, • • • , Cn) E C " .  Then, f o r an y  compact subset K  o f .62  and

nonnegativ e integers n1 , n2 , there  is  a positive num ber s  such that

 Fr,  ( -

( : z )  ( : , ) n (z )

i s  holom orphic i n  C  and  continuous i n  ( z , C )  b o th  f o r z  E K  and

max Ci < s.

(ii) L e t {v 1 , ..., v n }  be a set of elem ents o f  L — (H ) .  W e assume

that ev ery  v i is indefinitely  dif ferentiable in  H .  W e set

/-.
1=

 S 1  1 +  S 2  2 +  •  • •  +  S n  n 5

where S = r  (s 1 , s2, • .., s n ) E R5 . T h e n ,  f o r  any  com pact subset K  o f  H
and nonnegativ e in tegers n l ,  n2 ,  th e re  is  a  positiv e num ber a such

that

(2.9)
(  v i ( a  v2

az
TVA ( 0 ( z ) .

is holom orp  h ic  in  C  a n d  continuous i n  (z , C) both f o r  z  E K  and

max I C11 <E, where
1 5 i 5 n

"A(C)=C 1i)1+ C2f)2+ • • • +  Cn î)n, C = (CI, • • COE C"

4 )  In  [A2, 3], the following is asserted without proof:
Let t E 1, — (H ) be real analytic on H . If, furthermore, depends real analyti-

cally o n  a  number o f  parameters, 7 (z )  is simultaneously real analytic in  z  and
parameters.

But, the author does not know any proof o f this assertion.
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vi(z) z E H
and i (z)---

1( -2)E H .

M oreov er, if  w e restrict (2.9) to  z E H  and  C E R n ,  we get

( Oa Z ) f i  ( 6 8 2 ) n 2  f g S )  ( Z ) .

P ro o f. ( ii)  is  a  consequence o f ( i)  and Remark 2.3.. A  proof of

( i)  is  g iven  in the Appendix at the end of this paper.

Lemma 2 .7 . CA21)

(i) For any  ,a E L - (H ) ( C - (H),

02 
f t"  a n d  d

d
t ( : 2  f " )  ex ist (for suf f iciently  sm all t) , and

Ldit 

(ii) P u t  0P =-(if IZI 2 — I  2 ) (Im .fP (z)) - 2 ,  w here Im IP(z )  means
t h e  im ag in ary  p art o f  f  q z ) .  I f  v=  y 2 ( ç a  E  Q (T )), w e  g e t  th at

r  d p t ,1 ___ 0 .

L dt Jt-0

§ 3 . The statement of our problems

Let F 0 b e  a  fixed Fuchsian group o f genus g  (Definition 2.1.) and
let x  be its fixed finite dimensional representation by unitary matrices.

W ith each element [T ,  0 111 in  T (T 0 )  (Definition 2.3.), we associate
the (T, x 0 )-eigenvalue problem (Definition 1.1.), w here xo i s  a  unitary
matrix-representation o f T  defined by

(3.1) xo (A)-= x(0 - 1 ,4) (A  E T).

B y the naturality of the above correspondence, we can expect that
th e r e  is  a  se r ie s  A i= /V L F, OD o f  continuous function with some
regu larity  such  th at a t each  point ET, 01E T(T 0) ,  they represents all
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the repeated eigenvalues of the eigenvalue problem associated with the
point.

Remark 3 . 1 .  Even if we use other normalization in Lemma 2.2.,

the obtained series 'VET, 0 ] )  will be the same.

§ 4 .  The reduction o f  our problems to the perturbation theory

for differential operators

Let ET, 01 b e  an arbitrary point in the Teichmiiller space T(To)
=  T  (Definition 2.3.). Fix a  W eil's T-Beltrami basis {vi; j = 1, 2,

3g— 3} (Definition 2.8.). Then, following Theorem 2.3., w e can in-
troduce Bers' coordinates C-=(Ci, C 2 5  •  •  • 5  3 g - g )  w ith respect to in

a  neighbourhood V  of a  poin t ET, 01E T(T 0 ). (T he orig in  of the

coordinates is [F, 0 1 . )  W e shall often use the notation [T o i n -
stead of ET", 01 0̀1],  if is  the Bers' coordinates of ET", 0PO1 in  V.

Now, fix an n-dimensional unitary matrices-representation x of F0

and consider (F, x 0)-eigenvalue problem for each point ET 01 in T(ro)•

As explained in §1, [F e, Xecl-eigenvalue problem is associated with
the quadratic form lk in .f "(1-, ;co)

(4.1) ik [F]

 

OF

 

2 OF 
Y 21dX  dY ( F E  (1.k)),

 

OX

          

where is  a measurable fundamental domain of T  in H.
On the other hand, the norm in . . r ( T  zed is defined by

EF1=- I I Fl cr (ao,) = S
d Xy d2 Y (4.2) F (Z)1 2

To avoid the difficulty that the underlying Hilbert space ..Y e(T ;co)
depends on C, w e use here a device which is analogous to the one used
in  th e  so-called boundary perturbation problem s. (See [K , pp. 423-
4261].)

Now suppose that [F e, x e ,]=E P ` ,  0P01] b e  a point in V  and let

b e  the quasiconformal mapping o f  H  defined in  Theorem 2.1. (ii).
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Then, for any element F (Z ) o f  .Ye(rt-, xec) ,  th e  function vector P(z)
defined by

(4.3) P (z) = F (Z) (Z = f 1`(z))

i s  a n  element o f  ,rf =ie(F, x 0). (N o te  th a t  the  cond ition  "P(A z)
= x(A ) P (z) (A  E T )" follows from Lemma 2.3.)

B y m eans o f  this linear mapping ;  F  P, we can define new
quadratic forms f3t. and eit- in  de' depending on C:

(4.4) [ P ] =  E F ] (defined by (4 .1))

ji  a.  aP 

• 

ay aP  12

) F  1II OX ax O X  O y  I

ax  aP

▪ 

ay  aP  2

a y  ax O
1J (z, C) dx d y,▪ I Y  y

(4.5) e‘q. If'l = E F 1 (defined by (4.2))

= y 1P(z)1 2  j r ( 1,!2
C )  d x  d y ,

where .F  i s  a  measurable fundamental domain o f  F  in  H , Z =p (z ) ,
X -= X (z ,C)= Re. {Z (z, C)} = Re. I f  (z)}, Y = Y(z, C) = Im. IZ (z , C)}

Im. If I  ̀(z)}, and

T(z, =  aY )  (C) 0 (Remark 2.1.).8(x , y ) —

Lemma 4.1.
(i) For each C, eic i s  a  bounded symmetric quadratic form in  ye.

So, there is a  bounded selfadjoint operator Wc i n  .re associated with Li4.:

F2)=a;-CF1, F21 (F1 , F2  E

Moreover, QI i s  a m ultiplication by

(4.6) y 2 J(z ,C) 
y 2 •
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(ii) For each C, f .'N- is a  densely defined closed positive symmetric
quadratic form  in  „re . So, there is a unique positive selfadjoint operator
sp, in  .Y e associated w ith 1.k :

g (V) c ( )  a n d  (4.-V 1, F2)=Îk iF1, F2 1

(F i e ( ), F 2  E  ( i3 )).

P ro o f. B y  §1 and [K , pp. 322-3231,  w e  have o n ly  to  show the

closedness of fk. But this can be easily verified by using (4.4) and the

closedness of 4k.

Thus, if V  is sufficiently small, the (T e ,  x 9 )-problem is equivalent

to  the following eigenvalue problem :

(4.7) $ G= 2G (G E  (T ,

1 1
where 2.- , ,117 2

Given a real analytic curve in  V  which passes through the origin
[T , 01  o f th e  above Bers' coordinates C . This can be represented by

a real analytic function o f a  real small parameter t:

(4.8) C = C (t),

where C (0) = (0, 0, • • •, 0).

In  such a situation, w e  sh a ll use notations

Zvi), g m , ".•
Now, w e g ive an important lemma.

Z t) qt, • " ) instead of

Lemma 4 .2 . The f am ily  o f  operators Z t (d e f in e d  ab o v e )  is  a

selfadjoint holomorp  hic f am ily  o f ty p e  ( B )  ( in  th e  sense  o f  [K , pp.

385-386 and p. 3951) fo r  suff iciently  small t.

P ro o f. For each  t, Z t i s  c le a r ly  a positive selfadjoint operator.

So, the o n ly  th in g  w e have to  show i s  th a t  the fam ily  o f quadratic
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forms qt associated  w ith  Z  satisfies th e  assumption o f  [K , p. 398,
Theorem 4.8.1.

The quadratic form qt is defined by

(4.9) q t[G ]= k 1 (defined by (4.4))

x  0 (A (at) - 1 G)O a) ;  0 (A (tH G)x o  

ax 0  (A (t) - G)  +  a y  0 (A (t) - 1G 
Y 0 x Y y

x J(z, t)dx

If we denote the above

(4.10) / ( z ,  t )= (z , t )

dy.

OG

integrand by / ( z ,  t ) ,  it can be shown that

2 OG ( OG+ P2 ( Z ,  t )Ox k. Ox Oy

P 3 (z, t) F P4(z, t) IG( a
a

G
x )

0Gy

P5(z, t) 1G( ° G P 6 (z, t)1G1 2
y

where

P i(Z  t )  =  2 P  i ,n (Z )  t n( :  convergent for z E t < s )0 

and

(4.11) P i,n (z ) I 1)cn
-

1( z  E

with positive constants b, c.

Here, we used the following facts,

a) Lemma 2.6. (ii).

b) f "
°

( z ) _ z  (Remark 2.4.) and hence J (z, 0)= 1.
c )  Lemma 4.1. (ii).

2

21
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d ) C auch y inequality for Taylor coefficients of holomorphic func-
tions.

Further more,

(4.12) 17  8G  y   OG  •1 <  1   j
Ox A  a y 2

 

OG

 

2 0 G+ 121 
etc.

y

 

Ox

     

Using (4.10), (4.11) and (4.12), we get that

where

and

cit 1G1 = (To [G] t q( 1 ) 1G1+ t 2 q(2 ) EG1+

c io [G ]= (  I 6 G I 2 + I  °G  I 21. dx dy11 Ox I 18)(11

cio) [Gil] < f go [Gil),

(G E C2(H)r).re(r , x0)) with positive constants d, e, f.

Thus we verified the conditions.

Therefore Lemma 4.2. is proved.

Now, we state our principal results in  this section . A s above, we
fix a Fuchsian group ro of genus g  and its finite dimensional represen-
tation x  by unitary matrices.

Theorem 4.1. Given any real analytic curve W=W(t)=.[T(t),0(t)]
in  Tg =T(1-

0 ), where t  v aries in an open interv al I of  the real line.

T h en , t h e r e  i s  a  sequence o f  real an aly tic  f u n c tio n s  A u (t)
( j =1 , 2 , ...) such that f o r  e ac h  t , all  the repeated eigenvalues of the

(:), x$(0)-Problem are represented by  -WM (0 .

P ro o f. L et [T , CE T (T 0 ) b e  an y  point on the curve and let

{v1 , v2, • • • , v3g _3} be a  W eil's T -B eltram i basis. T hen  w e can  in -
troduce Bers' coordinates with respect to {Pi} in  a  neighbourhood V
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of ET, 0 1 .  (The origin is ET, O D  In  V , the curve W' can be repre-
sented in the form (4.9). Hence, as far as the curve '  is contained
in  V , this theorem follows from Lemma 4.2. and Theorem 1.1 (ii).
(See EK, p. 408, Remark 4.221)

Applying the above arguments at each  point on W, we can easily
show that the theorem also holds globally.

Theorem 4.2. Giv en a po in t  [F ,  0 1  i n  T (T 0 )  an d  a s im p le
eigenvalue 2 of  the  (T , x o )-problem , there is a  real analytic function
A= ACT' , O i l) def ined in  a  neighbourhood V  of  [F ,  O l i n  T  (T  0 ) such
that at each point [T', 0 , 1 i t s  v alue represents o n e  o f  th e  eigenvalues
of  the (F', x 0')-problem.

P ro o f. A lthough, analytic perturbation problems with several
parameters are discussed in EK] only for the finite dimensional cases

(CK, P. 119, Theorem 5.161), it  c an  b e  g en e ra liz ed  to  th e  infinite
dimensional ones by almost the same method as in the one-parameter-
theory (EK, pp. 365-371]). Then, Theorem 4.2. can be proved by the

same manner as Theorem 4.1..

Remark 4 .1 . U sin g  T h eo rem  4.1. t h e  ab o ve  fu n ctio n  A
A(ET' , 61'] )  can be extended to the whole space T (T o )  so that at

each  point i t s  values represent some eigenvalues o f th e  associated
problem. (Note that the extended function may be many-valued.)

§ 5 . Calculation o f th e  differential coefficients of the functions

A ( ' ) (t)

In this section, w e are going to calculate the differential coefficients
o f th e  functions A ( t )  g iven  in  Theorem 4.1.. Since our method
depends on  a  lemma in the perturbation theory, we shall first explain
it  and then turn to our problem.

L e t  T (x )  b e  a  selfadjoint holomorphic fam ily of type (B ) (DC,
p. 403]) depending on a real parameter x.
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I f  20 i s  one of the eigenvalues o f th e  unperturbed operator T(xo)
w ith  m u ltip lic ity  in ( < 00), th e re  are  rea l ana lytic  functions 2( 1 ) (x),
2(21 (x), • • • , 2(m) (x )  (defined for sufficiently small ix— x o 1)  such that for

e a c h  x, 2 ( i ) ( x )  a re  eigenvalues o f  T ( x )  and  2( 1 ) (x 0 ) =- 2( 2 ) (x o )=  •
A( ' )  (x0)= Ao.

The following is proved in  EIC, p. 4051

Lem ma 5.1. Let the situation be as abov e and  le t t(x ) be  the
ses quilinear f orm  associated w ith T ( x ) .  Then,

(5.1) ddx 2 (x ) l x _ x Q —  m
i" 121  d

d
x  (t(x )Içoi1 )1

x-x„

where

A(x)-  1   2 Ai(x)
m

and ço i (i=1, •••, m ) f o rm  an orthonormal basis of the eigenspace of
T (x 0 )  corresponding to the eigenvalue Ao•

Now, we shall apply this lem m a to our case explained in § 4 .

Let th e  s itu a tion  b e  a s  in  T h e o re m  4.1. G iv e n  a n y  point

[T , OI E T(1 - 0) o n  the curve W =W (t), w e  introduce Bers' coordinates
C (C i , ,  C 3 g _3 )  w ith respect to  a W eirs T-Beltrami basis {v i; i = 1, 2,

3g — 3} in  a  neighbourhood V  o f ET, 0 1 . In  V, the curve ' can
be represented in  the form (4.8). H ence by Lem m a 4.2. and Lemma
5.1., our problem is reduced to calculate

(5.2) d  
dt

3 g -3
w here qt is  g iv e n  b y  (4.9) w ith  Z = f (t)=  it(C (t))=  E
(We assumed, without loss of generality, that ET, 0 1=w(0 ).)

dAs can be easily seen, we can replace ,u(C(t)) by it(C(t))1 .
dt i=o
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B y  th e  above reason , w e shall assume th a t  it(t)=tv, v= y 2

(yo E Q(T)) in calculating (5.2).

The following lemma, which follows from Lemma 2.7. (ii), makes
our task much easier.

Lemma 5.2. L et A (z, t) be as  (4.6), where Z =p ( t ) (z), C=C(t).
T hen, we hav e that

d
d

t  ( A ( z ,  t ) ) 1
O.

B y th is lem m a and A(z, 0 )=1 , it  can  b e  sh o w n  th a t (5.2) is
equal to

(5.3) L viEGi ,r ddt t = 0

where is given by (4.4) with Z =P"(z ), C=C(t).

fitici= „ 1

  

"
2 6 G 12 t p  12

 1 + 1 j I0X OX
OG  12

ay 1

 

y

      

— 2  R e a 6.9x )( 190Gy ) ( : yY 6OxY 
Oo Xy  6 Xx  )11

1 dJ(z , t) x dy.

Now, let us begin to calculate (5.3), using Lemma 2.7. (0, that is,
r  d   i f t q l  =1 ) .
L dt Jt=0

[ d td {1 j  2 /1 d   " ) C f "z 08 f  " )110 y r=o dt z 02 0 2 _t=o

--(0)— v)+(w— v),

where r  d   ( a f t 'v
L dt \ z
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Here, we used the fact that f ° (z )---- -z  (Remark 2.4.).

In the same manner, we get that

[1{ I '7:1211,=.---(w+ 0+ (to+

E d  (  a Y  a Y ,  OX  O X  )1 1  f=
L dt a y  ax a y  a x  t=o

d (  1   V
L dt \ t)

Using these formulas, we get that

[  CC+t 13t
 EG 110

17) "
 2

J1 2_  i i t(  OG O G   VE O G  O G   )11= 2 R e .

.f. ay lax' 1\ a x / \ 0 y /  \ax/\ay dxdy

=2R e.(
J  

rtm ) ( ) ( z _ , . ) 2 ]  dxdy.
F  L \ 02 / \ 02 /

(Recall that v =  y 2 , where q, i s  a n  element o f  Q (1 " ). )  We here

remark that, i f  we put

(5.4) 8G—raG., VoG2 )(z— z)2

for an element G  of d'e (T , G is a  T-Beltrami coefficient.

Now, we can state our principal result in  this section.

Let the situation be as in  Theorem 4.1..

Given a po int P=W(t o )=E r t o , 640  o n  th e  curve W. and  one o f the
eigenvalues A0=A ( i i) (t0)= • •• = A " ) (to) of the (T to , x0,0)-problem of mul-

tiplicity m, we put

v xù _r_  1  m 0Fuoi(5.5)   E Ø *0 E
m  1=1

(see Lemma 2.4.),
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where {F 1 ' ,  F ( j2) ..., FU } i s  an  orthonormal basis o f the eigenspace

belonging to the eigenvalue 2 .

Theorem 5 .1 . The w eighted m ean of the  dif ferential coefficients

of A ( i°  (t) (i=1, 2 , ... m ) a t  t = t o is giv en by

(5.6) 1  Li r  d   A u  ( 0 1
m  i=iL  dt 11=10

m r  13F ( )'\ op cm\
=  

1
m ,g9[(9T- )

= gP(v , Px0 ) ,

— )2]dx dy }

w here vxo i s  the elem ent of g - p giv en by  (5 .5 ) and v = y 2 0 (ç EQ(1" to ))
i s  the elem ent o f  g - p  tangential to  the curv e '  and gp( • , • ) is  the

innerproduct in  ..F p  giv en in  §2.4.

Remark 5.1. W hen AU1) (t)=  A( i2) (t)= • • • = AU.0 ( t )  a t  le a s t  for
small I t — to I (hence fo r a l l  t ,  b y  th e  real analyticity of A l ( t ) ) ,  the
above value (5 .6 )  coincide with the differential coefficients of A " ( t )

(i= 1, 2, • • • , in) at t o . In particular, such case occurs when m = 1, that
is , 2 0 i s  a simple eigenvalue of the (F r o  z ) -problem.

Appendix. A  proof of Lemma 2 .6 . (i)

1 .  From now on, C is  the whole complex p lane. Let p >  2 be a  real
number and n  >  0  be an  integer. We introduce the Banach space H p,

of functions defined on  the whole plane C , which satisfy the following
conditions :

a) fE C n (C )

b) a p f  (0 < +  n 2 < n ) are contained in L (C ),
c )  a'zzl 622 f  (0 < ni n 2 .<  n )  satisfy the global

Holder conditions of order 1 —  2/p,

where 0 ,f —= fz —= 2
1 ( f x— i f ) ,  a x f = f . = 2

1 ( f x + i f y ). T h e  norm is
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defined by

where

I f lp
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< f> ,=  m a x  f  p d t , ,n ,}
OSni+ n 2 ,2

,n2= max { 110 P f s u p  1°'» 2 f  (z1) — ° 7 2  f (z  2 )1 1.
zi— Z21 1 -2 1 1'21 ,z,ec

The fa c t  th a t  Hi ' ,  i s  a  Banach space follows easily from

Lemma A .  HOP 2< f > p , n  f o r 0 < n i + it 2 n.

Proo f. A n easy generalization of [A4, (2.8)1 .

2 .  Following [A4 ], w e introduce tw o operators P  an d  T  defined by

— 1 1 (Ph)(e)—  h ( z ) ( —  1  d x d y7r c z— z

for h E L P (C) (p> 2), and

—1 (. h (z)lim( T h ) ( $)= (z dxdY

for h E H p, 0 .

Lem ma B. ([A4, pp. 7-81) F o r  h E H p , 0 , P h  is continuously
differentiable and

(Ph)i = h, (Ph), = Th.

Lemma C . Fo r h ECKCY1Hp ,i , T h  is continuously  dif ferentiable
and

( Th) E -= hz , (Th), -= T (h,).

This fo llow s from  [A l, p. 88, (9)1 an d  Lem m a B.

The follow ing is proved in  [A l, C hapter V ].
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Lem m a D . Fo r ev ery  p >l, th e re  is  a  constant Cp such that

11T  p  - ‹ C f o r all h  E  (C )

Moreover, C p - * 1  as

Clearly, this enables u s  to extend T  to LP(C).

Lemma E.

(i) I f  f , g E llp ,„,  f .  g is also contained in  H p ,n

<  g > f > p,„< g> p,n,

w here a „ i s  a positive constant w hich depends only  on n.

(ii) For f  EC(C)(111p,„, T f  is contained in  .H p ,„  and

< T f > p,n Igp ,n< f  >  Pdo

w h e re  p , „  i s  a  positive constant w hich depends only  on p and n.

Proof. (i) is easily shown from Lemma A .  L e t  u s  prove (ii)

by induction on n. F o r  n  0 ,  this is (essentially) proved in  [A4, p. 9].

A ssum e that this is true for n = .'n— l .  I f  f  E e on nH p,m , f z  a n d  f i  is

contained in  CT -
 1 n  and

< fz> f  > < f  > P ,M •

Hence

<Tf>p,„, , maxi<Tf>p,o, <Crpz>p,m_i, < (77),>p,,,,_11

<max-63 p,o < f> p ,o , Op, nt-1 <f z  >p,m_i, <fz>

1} <f> P ,M 5

where we used Lemma C .  S o ,  i f  we p u t  18p,„i = max { 8 p , 8p,m-i, 1 } ,

(ii) is also true fo r  n = m. Thus, (ii) is proved.

3 .  L e t  ,ez be a n  element o f  L - ( C )  which satisfies !Lull_ k  with a
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fixed constant k <1 . By Lemma D ., there is a  number p > 2 such that
k C p <1 . We fix such p  from now on.

Theorem A .  (LAB, Theorem 11)

I f  6 ELP(C) th e  equation 0 1.- -= ,a0-1-6 h as  a unique solution
which satisfies

a) (0) 0, E LP(C).

M oreov er, th is  so lu tion  can  be  represen ted  a s  coP'°. = P(pq+ 6),
w here q  i s  the  so lu tion  o f  the  equation: q= T u g + T6  in V ,  t h a t  is,

q = T6 + T i  T6 + T iet Tit T 6  + ...  ( : convergent in LP(C)).

Theorem B .  Let u ,  6  i n  Theorem  A . be contained i n  Cg r1H-p,„.
1 I f  <,a> p ,„<  q, tor  and  w r  are  in  Hp, n  an d

an8p,n

<q> P m  <6 > p ,n ,
1— a n 19P, n < P >  p,n

1
3

Pox <Wr> 1— an 8  p ,n < p , n  <
6 >

P M

< (1) /P' > pdi `=:
1

— an 19p,n<P> p,n

P ro o f. T h e  n o r m  of t h e  t r a n s f o r m a t i o n  T a i n  Hp ,„ is

<aná9p,n< >p , n  by Lemma E. (i), (ii). S o , if  < it > p,n <1an 19p, n

q = T6 ± TuiTo-  T , a  Tit T6 ± • • -

i s  convergent in  H p ,„. Hence qE H p ,„ and

{ P (P q  0-)1z= T(atiq 6 )=

= IP(,aq+ 6)1 , a q +  6 (by Lemma B.)

a re  also in Hp,„.
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From q= T fig+  T 6 ,  we get that

<g > an f9,, <,a  p, <g> p,n+ 19p,n< c>  p,.

and  thus

<q> p,n< P,n < 6 >  p ,n .
Pp,n

Other estimates follows from this easily.

We also need

Lemma F .  L e t ,u, 6  be a s  i n  Theorem A . and let  f i b ,  6 0 also

satisfy t h e  same conditions as  0-, namely, Po E L ,  O o E L P  a n d

Itoli k <1.
I f  we p u t 2 =  o)'' — we get that

with E =(11 —  tio)go + 0
-
 — 6 o,

where yo is  the solution of  go= T(Ito go) + T10 i n  L P .

T h is is proved in  [A B , p. 3881.

4 .  Here we recall Theorem 2 .1 , (i), namely,

Theorem C .  (LAB, Lemma 12])

F o r any ,u E L - ( C )  such that H O -  _.‹ .k  <1 ,  th ere  is  a unique
homeomorp hic m app ing  W P  f r o m  C  onto itself which satisfies the
B eltram i equation:

W I=  P r ;

and is normalized by

W l'(0)= o, r v ( 1 )= 1 , w (c> 0 )= ..

Lem m a G . ([A B , Theorem 7  and  Theorem 9 ])
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(i) Fo r th e  so lu tio n  W  in  Theorem C.,

WP I1R,p_<c(R)

w here c(R ) is a  constant w hich depends only  on R , k  and p, and

WIIR,P=
Izi1,1z211=-R I Z i 1

1 - 2 / p
I fv(z 1) —  

W / ( z 2 ) I 

(ii) HIP"— WHR ,P --> 0, i f  f i n  i t  almost everywhere.

Lem m a H . (LA B], p. 397)

L e t  2 ( z )  b e  a  fixed C r -f unc tion  w ith  0 <A <  1 ,  2 ( z ) = 1  for

zl < R —  6, 2 ( z ) =0  f o r  R —  6  /2 , an d  le t  x ( z )  b e  also  a  fixed
Cr-f unction w ith  0 <  x < 1, x  (z)= 1  f o r z l<R  —  6  /2 , 2 ( z )= 0 f o r
I  R —  6  /  4 , w h e re  6  is  an  arbitrary  positive num ber.

T hen, w e have that

A w coXY,,r (Theorem A.),

where

V = ( 2
i — laz)Tr`.

5 .  L e t v i (i -= 1 , 2 , . . .)  b e  (n  1 )- t im e s  continuously differentiable in

Theorem D . P u t  a ( t ) = t 1 v1, w h e re  t=( t i , t 2 , • • • t 1)  are  real

param eters . T h e n , f o r an y  positiv e n u m b e r 6 ,  th e re  is  a positiv e
num ber s such that

6 , 1 W t ( z ) (0 < n i +  n 2  ‹ n  + 1 )

are  continuous in  (z , t)  f o r  z l< R - -  6 ,  I t  < s .

P ro o f. L et A  and x  be as  in  Lemma H.
We first prove that
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(*) 2 fV I(t) E for sufficiently small t,

b y in ductio n  o n  n . F o r n = 0 , using

(**) 211 — (o x )(1)

where ')2(t)=(2 2 — /1(0 2,)PV#(1 ) (Lem m a H),

we can see that  2 W ° E H , 1 by Theorem  B. (Note that v(t)E Hp, 0 b y
Lemma G.)

Now assum e th a t (* ) is  p ro v ed  fo r n  =  m . T h en , v(t)E  Hp,.+1,
h en ce  b y  T h eo rem  B  2  ï V ° E ÷ 2 ,  n a m e ly , (* )  is  a ls o  t ru e  for

n  m  + 1 .  Thus (*) is proved for a ll n .

Next, we shall prove that

( * * * )  <  IF "('') — A W '4 ° > +1 —). 0  a s  t' t ,
also  by induction on n.

For that purpose we need some estimates :

(a) < (2  W '" —  AWg t ) )z> p,n

= toXp(t),,j(0)z > p , n

< 0.4p, (t '),f(t ',t) >p,n (Lemma F.)

8 p ,n  < E  (t 1, t) > p,,, (Theorem B.),
1— a n  dp,n<xli(t)>p,n

w h e r e  (t', t) = x ta  (t 1) — ,ei (t)}q (t) .1(0

w it h  q (t) = T  (2 (t) q (t)) (t)

(b) <E(t r , t)>p, n

< < x { p (e)-- ,e t(t) lq (t)> p ,,,-1 - < v(e)-7 7 (t)> p ,,,

.___.cen <xte.t(e)— ,tt(t)} >p,„<q(t)>p,,,

▪ < 22 1w -gt')_ Tv#(0).> p , „

• <A ,{ /(0  FVP. ( t") —,u (t) rygol >p,n.
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(C) <ATVP"— 2 1Jy ( ' ) > p,n+1

= max { < (A FVP(i)),> p,„, < (  rv(t') - ATVP( t ) )E >

<APFP ( '' )
— AV * ) >p,01.

For n = 0, (***) follows easily from (a), (b ), (c) and  Lemma G.

Assume that (*** ) is proved for n = m . Then, we get from (b), (c)

that

<E (ti, t)>p ,, n — 0  as

Hence follows that

< (A W t ' >p , m  0

<(2  W "  Awp(t)) i >. p , r n _,()

(  t ' t )

(  t ' t).

By this an d  (d ), we see that (* * * )  is true for n = m + 1. Thus

(*** ) is true for all m.

By Lemma A , (* )  implies that

anzi P'p(t) ( 0 < n 1 +  n 2 < n )  are  continuous in  z for lz I < R—  26,

and  (***) implies that they a re  uniformly continuous in  t  fo r  I t I G e

an d  I z I < R - 6. Combining these, we have proved the  theorem.

T h eorem  E . L et vi (i= 1 , 2, •••, 1) an d  /1(0 be  a s  in Theorem
D . .  T h e n , f o r any  positiv e num ber 6, th e re  is  a positiv e  num ber s
such that

d
 W7/t) (0  < n i+ n 2 < n , 1  <i < I )  are continuous in  (z, t)

dt i 
f o r  lz1._.‹R-6 and

P r o o f . We borrow the following result from [Al, p. 1041:

(

d   TVP (o)($)= 1 11 (LF" ) vi )(z)R(z, IVP' (f) (e))dxdy,
dt i 7 r c

where L ' " ' 1 =  
( T r ; ( 1 ) ) 2

WV ) 1 2 — 1 fri-v )  2} o( FVP(1))-1
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$ —1 R (z, $)=  1 $
z — $ z - 1 z

L et x be a s  in  Lem m a H . Then,

( dt W ( o) (E)

1 
7 r

1 (x L i`c "  i )(z )R (z , rvP(t)(e)) dx d y

1  ( 1(1 - x)L'`" )v i l(z)R(z, PV I.* ) ($)) dx d y.

From the fact that W#
(°)

($)=----$ and the uniform continuity of W (t)

in  t  fo r  I $1 R  (L em m a G .), w e can  show that I Wl` ( t ) ($ )
2

fo r I $ <R —  6  and sufficiently small t. Hence, the second term of the

right member of (#) can be n -times continuously differentiable in  $ for

1$1 <R —  6  an d  sufficiently small I t  . T h e  obtained derivatives are
continuous in  ($, t).

O n the other hand, the first term is equal to

7r1 .1

(

J

(
c ( x P ( ' )  P i )  ( z )  z  t v

1
,40 (e)   dxdy

1 1(x L i`u ) v i)(z) 1 r '‘(t) ($)P P ' ) ( E ) - 1 t dx d y,z —1 z

and  again  the second te rm  is  n -times continuously differentiable in  $
fo r I $1 <R —  6  and sufficiently small I t I , th e  obtained derivatives being
continuous in  ($, t).

The remained term is

G= —  1 ( x P ( t )  v  i )(z) 1 dx dy .C W t(E )

and

(#)

By Lemma B,
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Ge =  T(XL F ( i )  Vi)° W t ) }  W r ) {(XLgt) p i )o W(t)} fr7

Ge =  { T  (x L g o v  Fr71`(`)}
{ ( x L i , ( i )  y

1) 0 W t } v im

W e can easily show that

T (xL/* )  v ) E H p,n (for small I t )

by Theorem D  and  Lemma E  ( i i ) .  Hence the only th ing w e must

prove is that

< T  (x 1 ; ' ) v i ) —  T (xP ( 1 ) 1) i )>  p,  n 0

a s  t '--÷  t.

For that purpose it is sufficient to show that

XL P ( t )  V i > p,n — > 0

a s  t' --> t. (Lemma E (ii))

But this is obvious from (* * * ) in  the proof o f Theorem D and

the fact that

(IF'`) - 1 =  ï r  w ith v = —  Fv;,, ,a )0 (

6.

Theorem F .  (LAB, Theorem 111)

Let v i ( i =  1, 2, —1) be elements o f  L ( C ) .  W e set

/1 (0 —  CI V 1+  C 2  1) 2 CI V1)

w here ,d(C)-- - (Ci, • • CI) E  C n a n d  IC I  is  s o  s m all  th at (C) I_ <1.
T h e n , P `m (z ) i s  holomorphic in  C  for each z.

Theorem G.

Let y 1 (i = 1 , 2, 1) in  Theorem F be indefinitely differentiable in a

dom ain 9  in  C .  Then fo r  each compact subset K  of .9 and all integers
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n1, n2 0 , th e re  is  a positive num ber e  su c h  th at 8?: 1 8 2 WP“" ) (z  EK)
are holomorphic in  C f o r  ICI<E.

P ro o f . When 9 =-- { z  z I <R }  f o r  some R > 0 , this follows from

Theorem E. an d  Theorem F . .  I n  f a c t ,

8_ 8 ; 18 ;2  TVP(0 = 010:1. 2 fVgn = O.

There is n o  essential difference in  proving th e  theorem fo r  general

domain 9 .
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