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§0. Introduction

Let H be the complex upper half plane and let I" be a discrete
subgroup of the group G of conformal automorphisms of H. We as-
sume that I'\H is compact.

For each unitary matrix representation x of I, we consider an
eigenvalue problem (called the (I”, x)-eigenvalue problem in §1,) follow-
ing [S]. The spectra of this eigenvalue problem and its generaliza-
tions have been investigated since the famous paper of A. Selberg [ S]]
appeared in 1956. But, at present, not much is known even in the
above special case.

In this paper, we want to study “How do the spectra of (I, x)-
problem behave when I" varies?”

There is another (more group-theoretical) interpretation of our
problem. We give it in the following.

Let G, I', x be as above and let U=Indx be the unitary represen-
tation of G induced from x. As is well Il;;lf)wn, U can be decomposed

into the discrete sumZGB U; of irreducible unitary representations U;

1
of G. We call the set Sy={U;;i=1, 2, ...} the spectra of U=Indx
rtG

and decompose it into the disjoint union of two subsets, the C-part S§

and the D-part SB, where S§ consists of those elements of Sy con-
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tained in the continuous series (that is, the continuous principal series
and the supplementary series) of irreducible unitary representations of
G and SP consists of those elements of Sy contained in the discrete
series.

Now, our problem can be rephrased as follows!V: “How do the
C-part S§ of the spectra Sy of the induced representation U=Indx of
G behave when [I' varies?” (We need not study the behaviou: tOGf the
D-part SB, for SP(U=Indx) is completely known.)

Some problems of rt;;(;a similar nature were also discussed by J.M.G.
Fell [F7] in a more general situation.

Obviously, the first thing we must do is to given a precise mean-
ing to the phrase “I" varies”. In our case, however, there exists a
very suitable theory for that purpose, at least when I’s have no elliptic
elements. It is the so-called moduli theory of closed Riemann surfaces.
The purpose of this theory is, roughly speaking, to give a “natural”
topology and a “natural” complex analytic structure to the set M, of
conformal equivalence classes of closed Riemann surfaces of a given
genus g. The transcendental approach to the moduli problem of closed
Riemann surfaces was originated some thirty years ago by O. Teichmiiller
and has been developed by L.V. Ahlfors, L. Bers, and H.E. Rauch.
Since M, is not a manifold in its natural topology, Teichmiiller in-
troduced a covering space T, of it, called Teichmiiller space. One of
the main theorem in the theory is that T, can be endowed with
a structure of a complex analytic manifold®. Another important
structure of T, is that of Riemannian manifold due to A. Weil and
L. V. Ahlfors. For the sake of completeness, the outline of the theory

of Teichmiiller spaces is presented in §2. Almost all proofs are omitted

1) About the relation between the spectra of (I, y)-eigenvalue problem and
the spectra of the induced representation, see [G, Chapter 1, §5].

2) This theorem implies that the multiplicity in which each irreducible unitary
representation in the discrete series appears in the decomposition X @U; of U
=I:}glx must be a constant on every T,. (Note that representations in the discrete

r

series are parametrized by integers.) In fact, we can assure the above observation
using the explicit values of the multiplicities.
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referring to [A1-3]. The only exception is Lemma 2.6., which plays
an essential role in our later task (§8§4-5). Its proof, being rather

long, is given in the Appendix at the end of this paper.
§1 is preliminaries.
The contents of §2 and their important roles in this paper are

explained above.

§3 is devoted to give the precise formulation of our problems in
terms of the moduli theory. We here explain it in the simplest case
when x=1: the identity representation.

Since each point of T, represents a conformal equivalence class of
closed Riemann surface, it determines a Fuchsian group /° (up to inner
automorphisms of G). Hence, we can associate it with the spectra of
(I, 1)-problem. Then, we can ask, “Is there a series 4” (j=1,2, ...)
of continuous functions on 7T, whose values at each point represent all
the eigenvalues of the eigenvalue problem associated with the point?”

Moreover, if such A‘) exist, we may ask whether each A” can be
considered as a real analytic function or not.

§§4-5 is the main part of this paper.

In §4, the followings are proved:

‘For every real analytic curve €=%(t) (¢; real parameter) in
T,, there exists a series 4”=AY(¢) of real analytic functions
in ¢t whose values at each point represent all the eigenvalues
of the associated problem.” (Theorem 4.1.)

‘Given a point P of T, and a simple eigenvalue 4, of the
eigenvalue problem associated with P, there exists a neigh-
bourhood V of P in T, and a real analytic function 4 on ¥V
such that A(P)=1, and at each point the value of A re-
presents one of the eigenvalues of the associated problem.’
(Theorem 4.2.)

In §5, we prove an interesting formula for the differential coef-
ficients of the above functions A(¢).

Namely, Theorem 5.1., the main theorem in this section, implies
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that
‘In the above notations, let, 1o=A4“(¢;) be a simple eigenvalue
of the eigenvalue problem associated with the point P=%(z,)
on the curve %(¢) and let F be an eigenvector belonging to
Zo. Then we can find an element v,, (calculable from F) of

the tangent space Jp of T, at P such that

(4 190 =g »),

dt -

where g,(¢, ) is the innerproduct in Jp and v is the element
of Jp tangential to the curve #=%(¢).

Now, a word for our method. Since, our problem is, roughly speaking,
to ask, “How do the eigenvalues behave when I varies?”, we are
tempted to consider this as a sort of perturbation problem at least
locally. In fact, our problems resemble the ones which have long been
known as boundary perturbation problems in mathematical physics. In
particular, L. A. Segel showed® that the use of conformal mappings is
very effective to turn some of such problems into ordinary perturbation
problems. It will become clear in §§4-5 that his method, suitably
modified, is also applicable to our problems. For perturbation theory,
we use the terminologies and theorems of the excellent book of T. Kato
[K] rather frequently.

Finally, the author wants to express his hearty thanks to Prof.

K. Shibata for his kind advices on the theory of Teichmiiller spaces.

§1. Preliminaries

1.1. Notations
Let H={z=x-+iy; y>0} be the complex upper half plane. Then,
G=SL(2, R)/{*e} operates transitively on H from the left by
az+b

1.1) g(Z)=m

3) Archive for rational mechanics and analysis, 8 (1961), pp. 228-237.
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for z in H and g=<‘: Z) in G. Hence, G can be identified with the
group of all conformal automorphisms of H.

The G-invariant metric on H is

_ dx’+ dy2

(1.2) ds? 52 ,

hence the G-invariant measure on H is

(1.3) dz=2% ;ly .

Y

And the ring of G-invariant differential operators on H is generat-
ed by

2f 0% 0°

(1.4) d=—y W+a—y2)'

1.2. (I, x)-eigenvalue problems

Let I" be a discrete subgroup of G such that I'\H is compact and
let x be a finite-dimensional representation of I by nXn unitary
matrices. Following [ S]], we call an n-dimensional column vector,
whose components are scalar functions on H, a function vector on H.

Consider the complex vector space ([, x) of all function vectors
F on H which satisfy the following conditions:

(i) F is (componentwisely) measurable;

(i) F(A4z)=x(A)F(z) for all z in H and 4 in I;

G | FE@FGdz<o,

where & is a measurable fundamental domain of I" in H and dz is
the G-invariant measure on H given by (1.3).

Introducing an innerproduct

1.5) (F, FZ)-?’(I‘.x)_—_S"Fl(z) Fy(2)dz,

we can consider s#(I’, x) as a Hilbert space. This innerproduct does
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not depend on the choice of a fundamental domain &% because of the
above condition (ii).

For a differential operator L on H and a function vector F, we
define LF by

Lf.(2) S
LF(z)= LfZ.(z) for F=| f,
Lfa(2) f
We also use the following notation:
(1.6) |F|=CF-F): for Fex (', %).
Now, we consider the fundamental eigenvalue problem:
1.7 AF=F (Fesr (I, 1)),

where 4 is the differential operator given by (1.4).

It is well known and can be easily verified that the operator 4 in
#(I", %) is symmetric and positive. Hence, it has the selfadjoint ex-
tension 4 (the Friedrichs extension). The quadratic form P associated
with 4 (in the sense of [K, pp. 322-3237) is given by

Yaz weamw,

oF
0x

2
+|

a2 4]

where 2(p) is the domain of p.

For brebity, we shall use the notation 4 for 4 in the following.

Definition 1.1. The eigenvalue problem (1.7) interpreted as above

is called the (/', x)-eigenvalue problem or the (/’, x)-problem.
The following theorem is well known.

Theorem 1.1,
() oI, %) has a complete orthonormal system {Fj; j=1,2,3, ...}
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which consists of eigenvectors of the (I', x)-eigenvalue problem (1.7).
(i) The ecigenvalues 2; (j=1, 2, ««.) of the (I'y x)-problem are all
real and nonnegative and of finite multiplicity.

Moreover, they have no finite point of accumulation on the real

line.

§2. The moduli theory of closed Riemann surfaces

As stated in §0, we give here a brief survey of the moduli theory

of closed Riemann surfaces following [A1-37].

2.1. Teichmiiller spaces

Let H G, I' be as in §1. In this section and below, we shall
assume, furthermore, that /" has no elliptic elements. Then, as is well
known, any closed Riemann surface of genus g>1 can be represented
as a quotient space I'\H for some such I'. Moreover, two Riemann
surfaces W1=1\H and W,=1,\H are conformally equivalent if and

only if I'; and I’y are conjugate to each other as subgroups of G.

Definition 2.1. We say that /' is a Fuchsian group of genus
g(>1), if

(i) I is a discrete subgroup of G=SL(2, R)/{+e} such that
I'\H is compact,

(i) [ has no elliptic element,

(ili) as a closed Riemann surface, the genus of W=I\H is g.
The following is also well known.

Lemma 2.1. Any Fuchsian group of a given genus g is isomorphic
to an abstract group generated by elements ai, ag, «-, @z, which satisfy

the only one relation

=1,-1 -1 -1
a1azay " ay -~-azg_1aggazg_1azg—1.
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Let I' be a Fuchsian group of genus g. By the above lemma, it
is generated by elements A, A, --., Az, of G which satisfy the only

one relation
(2.1) Ay Ay AT AZY . Apy y Arg A3} AZF=E,

where E is the unit matrix of the second order. Using this fact, we

can state the formal definition of Teichmiiller spaces:

Definition 2.2. Consider the set T, of pairs (I', {4;}) where I
is a Fuchsian group of genus g and {4;;:=1, 2, ..., 2g} is a set of
generators of I' which satisfies (2.1).

We define an equivalence relation~in 7, by setting (I, {4;})~
I’y {4}}) if and only if there exists an element B of G such that

A;=BA}B'  (i=1,2, .., 2g).

The set of all equivalence classes under this relation is called the

Teichmiiller space T,.

Lemma 2.2. In each equivalence class of T, (in the sense of
Definition 2.2), there exists a unique element (I'y {A;}) such that the
fixed points of Ay are 0, oo and the attractive fixed point of A, is 1.

We call such (I, {4;}) a normalized pair in 7,. It is clear that
T, can be identified with the set of all normalized pairs in 7,. Hence,

we arrived at the second definition of Teichmiiller spaces, that is,

Definition 2.3. Let (I, {4;}) be a fixed normalized pair in T,
(in the sense above). Consider the set of all pairs [I", 6] where I is
a Fuchsian group of genue g and 6 is an isomorphism from I’y onto

I' such that (I, {0(4,)}) is a normalized pair in 7.
The set of all pairs [I', 8] is called the Teichmiiller space T (/7).
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The natural topology (moreover, the structure of real analytic
manifold) of I'y=T(I"y) is given in [A2, pp. 177-179].

2.2. Quasiconforn il mappings and Beltrami equations.

Definition 2.4. Let £ be a domain in the complex plane. A
homeomorphic mapping f of £ onto itself is said to be quasiconformal,

if f has locally integrable distributional derivatives and satisfies

2.2) fi=uf. a.e.,

where 4 is an element of L*(2) such that ||#|/.<1 and

fom—ae (famifys fr=—g (fatify).

Remark 2.1. Any quasiconformal mapping f is sense-preserving.
In fact, the Jacobian of f(=|f.|?— [f:|?) is nonnegative by the above
definition.

In the following, we consider only such cases when £ is the

whole complex plane € or the complex upper half plane H.

Theorem 2.1. (Morrey, [Al], [AB])

(i) Let u be an element of L™(C) which satisfies ||y|l.<1l. There
exists a unique homeomorphic mapping of C onto itself, to be denoted
by W*, which satisfies

Wh=u-wt a.e.
and is normalized by
w1 0)=0, WHx1)=1, W*(oo)=oo.

(i) Let neL~(H) satisfies ||u|l.<l. There exists a wunique
homeomorphic mapping of H onto itself, to be denoted by f*, which
satisfies
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fe=nufy a.e.
and is novmalized by
SH0)=0, fH(1)=1, fr(ec)=-co.
Remark 2.2, The normalization in (ii) makes sense, for it is

known that f* has a unique extension to a homeomorphism of closed

half plane.

Remark 2.3. Let x# be as in (ii). Extend the definition of x# by

Then we can define W2, and f* is the restriction of W to the upper
half plane H.

Remark 2.4. In the particular case when #=0, we have W*(z)
=z and f4(z)=z.

We also need the following concept.

Definition 2.5. Let /" be a Fuchsian group of genus g and let
# be an element of L~(H).
We say that g is a Beltrami coefficient with respect to /' or a

I'-Beltrami coefficient, if

(cz+d)?

(cz+d)* (z € H)

(2.3) u(Az)=p(z)

for all A:(a b) in I'.
cd
The linear space of [/ -Beltrami coefficients will be denoted by
B(I'), its open unit ball {#€ B(I); ||#|l.<1} by Bi(I').

The importance of the above introduced concepts: quasiconformal

mappings and Beltrami coefficients, becomes clear by the following

Lemma 2.3, Let I' be a Fuchsian group of genus g and let n
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be an clement of Bi(I"). We can define the mapping f* by Theorem
2.1 (ii). Then, for any A€, A*=froAo(f*)™! is a conformal auto-

morphism of H, that is, contained in G. Thus,
(2.4) 0*: A |> A*= frodo(f*)!

is an isomorphism from I onto another Fuchsian group I'* of genue g.

Theorem 2.2. (Ahifors)

Let (I', {4;}) be a fixed normalized pair in Ty For cach p€ B(I),
(r#, {4%) is also a normalized paiv in Ty, that is, [I'*, 0*]e T)
(in the sense of Definition 2.3.).

2.3. The complex analytic structure on 7

Let I" be a Fuchsian group of genus g and let v be a /'-Beltrami

coefficient. Then, the limits

tuf N\
im A= F  Lem
t—0 t
and
vy
1im_A_M (zeH, A€l
t—0

exist ((Al, p. 103]). We denote them by f[v] and 4[] respectively.

Definition 2.6. We say that v€ B([') is locally trivial (or
stationary), if A[v]=0 for all A€

The set of all locally trivial /'-Beltrami coefficients is obviously a
linear subspace of B(I”). We denote it by N(I").

Let Q(I") be the space of all automorphic forms of weight 2 with
respect to /'. It is well known that Q(I") is a complex vector space

of dimension 3g—3, where g is the genus of /.
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Lemma 2.4. ([Al], [A3))

(i) There is an antilinear isomorphism O from the complex vector

space B(I")/N(I") onto Q(I'):

N _12 W(z)
(2.5) O: v w[»j(s)_TSSH(Z—jé)T dx dy.

Hence, the dimension of B(I')/N(I") is 3g—3.

(ii) On the other hand, we may define an antilinear mapping O*
from Q") into B(I'):

(2.6) 0*: ¢ 1> ¥*¢.
(iii) OO*=identity, and

y—0*0[v]e NU) for all v in B(I).

Definition 2.7. Any basis of the (3g— 3)-dimensional vector space
B(I')/N(I') is called a I'-Beltrami basis. By the above lemma, we
know that {y*¢:; ¢:(i=1, 2, ..., 3g—3) form a basis of Q(I")} is a

I'-Beltrami basis. Such one will be called a Weil’s I -Beltrami basis.

Lemma 2.5. (Bers)

Let I' be a Fuchsian group of genus g and let {v;;i=1,2, ...,
3g—3} be a I'-Beltrami basis.

Then, for every element p of B(I") which has a sufficient small
norm || ft]|., there corresponds unique complex numbers €i(u), &2(4r), -,
Eag—3(y) such that

Ah(#)V:+§z(#)Vz+-"+tsg—3(#)vsy—3=AIL
for all A in I'.

Now, we can state the main theorem in the theory of Teichmiiller

spaces,
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Theorem 2.3. (Bers)

(i) Let [I', 6] be any element of T(I'y), where I'q is a Fuchsian
group of genus g. Then,

2.7 L7#, 6407 1> = (Cu(a), Coa), -5 Lag-3(10)

(|l s sufficiently small)

defines a topological mapping from a neighbourhood of I, 0] in T(Iy)
onto a neighbourhood of the origin of C373.
Gi) T(o) has a structure of a (3g—3)-dimensional complex
analytic manifold defined by the coordinates mappings (2.7).
Furthermore, T (I"y) with the above structure is complex analytically

equivalent to a bounded domain in C¢73,

Definition 2.8. The above local coordinates &=(&1, ---, 3-3)
defined in a neighbourhood of [I",0]€ T(I',) is called Bers’ coordinates

with respect to a I'-Beltrami basis {v;}.

The point [I, 8] is called the origin of the Bers’ coordinates.

2.4. The Riemannian structure on T, two lemmas of special
importance
Clearly, the (real) tangent space of T(I'y) at P=[I", 6] can be
naturally identified with B(/")/N(I") considered as a real vector space.
[A2, 3] defined a natural hermitian structure of T,. It is given by
the following:

(2.8) gr(v, v’)=2Re.Sr\H(D 00y Y dxdy

=2Re.| v O[¥dxdy,

for all v, v €B(I'). (See Lemma 2.4.)

The following lemmas are essential ones for our later work.
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Lemma 2.6.9

(i) Let {vi, ---, Yu} be a set of elements of L™(C). We assume
that every v; is indefinitely differentiable in a common domain 2(CC).
We set

H=Cvi+&vo+ -+,

where £=(&,, ..., L) €C". Then, for any compact subset K of 2 and

nonnegative integers ni, na, there is a positive number ¢ such that

@)@y T

is holomorphic in & and continuous in (z,&) both for z€K and
max | ;| <e.

1<i<n
(i) Let {yy, ---, Yu} be a set of elements of L”(H). We assume
that every v; is indefinitely differentiable in H. We set

NH=s1V1Fs2Va+ 5, Vg,

where S={(s1, S2, -+, Sx) E R".  Then, for any compact subset K of H
and nonnegative integers ni, ne, there is a positive number ¢ such
that

is holomorphic in & and continuous in (z,&) both for z€K and

max |&;| <e, where
1<i<n

/}(C):CI l,)l'l'CZ §2++Cn ﬁn’ C:(Cls Tty C,,)EC"

4) In [A2, 3], the following is asserted without proof:

Let p€ L=(H) be real analytic on H. If, furthermore, ; depends real analyti-
cally on a number of parameters, f#(z) is simultaneously real analytic in z and
parameters.

But, the author does not know any proof of this assertion.



The decomposition of L? (I'\SL(2, R)) and Teichmiiller spaces 127

v;(z) zeH

and ﬁ;(z)E{’_
v;(z) zeH.

Moreover, if we restrict (2.9) to z€ H and £ €R", we get

(o) (55) 7o

Proof. (ii) is a consequence of (i) and Remark 2.3.. A proof of

(i) is given in the Appendix at the end of this paper.

Lemma 27. ([A2]))
(i) For any pe L=(HYNC~(H),

O ana (DY o -
5z f'* and AT f*) exist (for sufficiently small t), and

FACDINT

(i) Put o*=(|f41°—|f41%) Am.f*(2))7% where Im.f*(z) means
the imaginary part of f*(z). If v:yzgﬁ (p€Q(I)), we get that

i tu:l J—
|:dt o t=o_0'

§3. The statement of our problems

Let /"y be a fixed Fuchsian group of genus g (Definition 2.1.) and
let x be its fixed finite dimensional representation by unitary matrices.
With each element [/, 0] in T(I"y) (Definition 2.3.), we associate
the (I, xo)-eigenvalue problem (Definition 1.1.), where %, is a unitary

matrix-representation of /" defined by
3.1 x5(A)=x(6"1A4) (4el).

By the naturality of the above correspondence, we can expect that
there is a series A4;=A;([/", 0]) of continuous function with some

regularity such that at each point [I', 0 ]€ T(I,), they represents all
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the repeated eigenvalues of the eigenvalue problem associated with the

point.

Remark 3.1. Even if we use other normalization in Lemma 2.2.,
the obtained series A;([I", 87]) will be the same.

§4. The reduction of our problems to the perturbation theory

for differential operators

Let [I, 6] be an arbitrary point in the Teichmiiller space T(I",)
=T, (Definition 2.3.). Fix a Weil’'s /'-Beltrami basis {v;; j=1,2, ...,
3g—3} (Definition 2.8.). Then, following Theorem 2.3., we can in-
troduce Bers’ coordinates &=({1, &, -+, {3,—,) with respect to {y;} in
a neighbourhood V of a point [, 8]€ T(I'y). (The origin of the
coordinates is [/, 67].) We shall often use the notation [/, 6,] in-
stead of [I'*, 6#07], if £ is the Bers’ coordinates of [ I, 6*67] in V.

Now, fix an n-dimensional unitary matrices-representation x of I

and consider (I, x4)-eigenvalue problem for each point [ 17, 6] in T (I,).

As explained in §1, [ I, %, |-eigenvalue problem is associated with

the quadratic form p; in (I, %,):

(4.1) p;[F]=S,C{Ig—§

¢ | oF |?
+|W faxay  Feapo),

where &, is a measurable fundamental domain of /" in H.
On the other hand, the norm in #(/7, xgc) is defined by

X
4.2) 0 CF 1= 1Py = | 1F(@)| =52
<

To avoid the difficulty that the underlying Hilbert space o (I, %5,)
depends on {, we use here a device which is analogous to the one used
in the so-called boundary perturbation problems. (See [K, pp. 423—
426].)

Now suppose that [I'¢, %o, ]=[1"*, 6#6] be a point in ¥ and let f*
be the quasiconformal mapping of H defined in Theorem 2.1. (ii).
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Then, for any element F(Z) of #([y, %), the function vector F(2)
defined by

(4.3) F()=FZ) (Z=f"2))

is an element of #=u(I", x;). (Note that the condition “F(Az)
=%(4)F(z) (Ael)” follows from Lemma 2.3.)
By means of this linear mapping; F > F, we can define new

quadratic forms p; and @, in o depending on &:

(44)  B[FI=p[F]  (defined by (4.1))

:S{,f)x oF 0y oF |
DX ox ' 0X oy

ox OF 0y oF |?
+'0Y 0x+6Y 0y

b o dxdy,
(4.5) a;[Fl=a,[F]  (defined by (4.2))
= 1P@12 &0 dxay,

where & is a measurable fundamental domain of I" in H, Z=f*(z),
X= X(za C) = Re. {Z(Za C)} = Re. {f” (z)}s Y= Y(Z, C) = Im. {Z(za C)}
=Im.{f*(2)}, and

0(X,Y)

©=0 (Remark 2.1.).

Lemma 4.1.
(i) For each &, 8; is a bounded symmetric quadratic form in .

So, there is a bounded selfadjoint operator Uy in # associated with ay:
QU F1, Fo)=0a;[Fy, F] (F1, Fye o).

Moreover, WU, is a multiplication by

2
(4.6) A= 55) JISZ’ 9
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(i) For each &, P, is a densely defined closed positive symmetric
quadratic form in #. So, there is a unique positive selfadjoint operator
B; in H# associated with p;:

2P =D(By) and (B Fr, Fo)=p[Fy, Fy]
(F€2 (), F2€2 (b))
Proof. By §1 and [K, pp. 322-3237], we have only to show the

closedness of J:a;. But this can be easily verified by using (4.4) and the

closedness of p;.

Thus, if |{| is sufficiently small, the (/7 %o,)-problem is equivalent

to the following eigenvalue problem:
4.7) L,6=1G Ge s, 1),

1 1

where Q;:—%IgZ?B;?l;z.
Given a real analytic curve in V which passes through the origin
[I', 6] of the above Bers’ coordinates &. This can be represented by

a real analytic function of a real small parameter ¢:
(4.8) =L @),
where C(O):(O; 09 A 0)'

In such a situation, we shall use notations 2, qy, ---, instead of

Qewys Qeayy -+

Now, we give an important lemma.

Lemma 4.2. The family of operators L; (defined above) is a
selfadjoint holomorphic family of type (B) (in the sense of [K, pp.
385-386 and p. 395]) for sufficiently small t.

Proof. For each ¢, Q; is clearly a positive selfadjoint operator.

So, the only thing we have to show is that the family of quadratic
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forms q; associated with £, satisfies the assumption of [K, p. 398,
Theorem 4.8.7].
The quadratic form q; is defined by

(4.9)  q[C]=H[A;3G]  (defined by (4.4))

2

ZS {| ox 0(A()E6) L 0y 8(4(t)"36)
sl 0X 0x 0X 0y

ox a(A(z)—%G)+ dy 9(A(1)2G
oY o oY oy

ki

+|
xJ(z, t)dx dy.

If we denote the above integrand by I(z, t), it can be shown that

2 o
4 Py(z, ©) H”%I + Py(z, 1) fc(%)

+PuCe 0'6(- ) Pie, D16

where

Pi(z,t) =”§0P,~'n(z) t" (: convergent for z€ £, |t| <e¢)
and
(4.11) | P; u(2) | < bc" ! (ze F)

with positive constants b, c.
Here, we used the following facts,
a) Lemma 2.6. (ii).
b) f*®(z)=z (Remark 2.4.) and hence J(z, 0)=1.
c¢) Lemma 4.1. (ii).
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d) Cauchy inequality for Taylor coefficients of holomorphic func-
tions.

Further more,

aw [+ 5 e
Using (4.10), (4.11) and (4.12), we get that
a[61=q[C]+tqP[C]+*q®[6]+ ;
where
wl61={ {5+ | 55 Yaxay
and

qWGI=d" ' (ellGll% o+ fa0[CD),
(Ge CHH)N#(I', x4)) with positive constants d, e, f.

Thus we verified the conditions.

Therefore Lemma 4.2. is proved.

Now, we state our principal results in this section. As above, we
fix a Fuchsian group I’y of genus g and its finite dimensional represen-

tation x by unitary matrices.

Theorem 4.1. Given any real analytic curve € =%¢(t)=[1(z), 6(t)]
in T,=T(Ty), where t varies in an open interval I of the real line.

Then, there is a sequence of real analytic functions A9(t)
(j=1,2,...) such that for each t, all the repeated eigenvalues of the
(T gy, %o@))-problem are represented by {A9(2)}.

Proof. Let [I',0]€ T(I'y) be any point on the curve ¢ and let
{v1, Vo, -+, V3g_3} be a Weil’s I'-Beltrami basis. Then we can in-

troduce Bers’ coordinates £ with respect to {v;} in a neighbourhood ¥V
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of [I', 6]. (The origin is [I', 6].) In ¥V, the curve ¥ can be repre-
sented in the form (4.9). Hence, as far as the curve % is contained
in V, this theorem follows from Lemma 4.2. and Theorem 1.1 (ii).
(See [K, p. 408, Remark 4.227])

Applying the above arguments at each point on %, we can easily

show that the theorem also holds globally.

Theorem 4.2. Given a point [I', 0] in T(I o) and a simple
eigenvalue X of the (I, %s)-problem, there is a real analytic function
A=A{I", 0"]) defined in a neighbourhood V of [I', 6] in T(I'y) such
that at each point [I'’, 0" its value represents one of the eigenvalues
of the (I'', x4.)-problem.

Proof. Although, analytic perturbation problems with several
parameters are discussed in [K] only for the finite dimensional cases
(CK, p. 119, Theorem 5.167]), it can be generalized to the infinite
dimensional ones by almost the same method as in the one-parameter-
theory ([K, pp. 365-371]). Then, Theorem 4.2. can be proved by the

same manner as Theorem 4.1..

Remark 4.1. Using Theorem 4.1. the above function A
=A((I"”, 0"]) can be extended to the whole space T(Iy) so that at
each point its values represent some eigenvalues of the associated

problem. (Note that the extended function may be many-valued.)

§5. Calculation of the differential coefficients of the functions

In this section, we are going to calculate the differential coefficients
of the functions A”(¢) given in Theorem 4.1.. Since our method
depends on a lemma in the perturbation theory, we shall first explain
it and then turn to our problem.

Let T(x) be a selfadjoint holomorphic family of type (B) ([K,
p. 403]) 'depending on a real parameter x.
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If A, is one of the eigenvalues of the unperturbed operator T (xg)
with multiplicity m(<oo), there are real analytic functions AM(x),
AD (%), ...y, A™(x) (defined for sufficiently small |x—x,|) such that for
each x, A9(x) are eigenvalues of T(x) and AM(xo)=2A®(x¢)="
=2 (x0)=12,.

The following is proved in [K, p. 405 ]

Lemma 5.1. Let the situation be as above and let t(x) be the
sesquilinear form associated with T(x). Then,

6y [hiw] =L B @]

xX= xo
where

N 1 m
Ax)=— i
(2)=— P (x)
and ¢; (i=1, ..., m) form an orthonormal basis of the eigenspace of

T (xq) corresponding to the eigenvalue A,.

Now, we shall apply this lemma to our case explained in §4.

Let the situation be as in Theorem 4.1. Given any point
[I',6]e T(I'y) on the curve #=%(t), we introduce Bers’ coordinates
E=(&, .-, &35_3) with respect to a Weil's I"-Beltrami basis {v;; i=1, 2,
..., 3g —3} in a neighbourhood ¥ of [/, 6]. In V, the curve € can
be represented in the form (4.8). Hence by Lemma 4.2. and Lemma

5.1., our problem is reduced to calculate
d
(5.2) i La:[GTi-o,

38-3
where q; is given by (4.9) with Z=/f*O(2), u()=nE)=2&:)v;,
i=1
(We assumed, without loss of generality, that [I", 6]=%(0).)

As can be easily seen, we can replace u«(Z(¢)) by [% ,a((:(t))}

=0
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By the above reason, we shall assume that u(s)=1tv, v=y2¢')
(¢ € Q(IN)) in calculating (5.2).
The following lemma, which follows from Lemma 2.7. (ii), makes

our task much easier.

Lemma 5.2. Let A(z,t) be as (4.6), where Z=f+*"(z), £=C(t).
Then, we have that

['JdT (A(z, 1) LOEO.

By this lemma and A4(z, 0)=1, it can be shown that (5.2) is

equal to

(5.3) (-4 hre1] s

where P, is given by (4.4) with Z=f"(z), {=C ().

ﬁt [(6]= S’H 0§/ -

—zref(5 )(3—‘;') 5y ox oy 9e )]

dx dy.

oy

1
TG0

Now, let us begin to calculate (5.3), using Lemma 2.7. (i), that is,

[y =

Falk

LG -G - E M.

=(0—v)+(0—v),

Of’"
where o= [dt 0z >l=o'
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Here, we used the fact that f%(z)=z (Remark 2.4.).

In the same manner, we get that

Ealta

[ d 6Y6Y+6X 6X]
Ldt\ 0y 0x 0y 0x /=

()]

Using these formulas, we get that

[ el
=ere [ 35| - |52 -GG+ (GG h e

=2 Re.S’(p [’(%g— (%) (z— 2)2:] dxdy.

(Recall that v=y?@p, where ¢ is an element of Q(I").) We here
remark that, if we put

0 o="(29)(28) ¢+~ 2y

}]l=0=(w+v)+<w—+7>,

0x

for an element G of s# (I, %), B¢ is a I'-Beltrami coefficient.

Now, we can state our principal result in this section.

Let the situation be as in Theorem 4.1..
Given a point P=%(to)=[I}, 6;,] on the curve ¥ and one of the
eigenvalues do=AYD(t0)="---=A4Y"(to) of the (I's, %, )-problem of mul-
tiplicity m, we put

(5.5) v, =%ﬁ O*O[Br0]  (see Lemma 2.4.),

i=1
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where {FUD, FU2...  FU»} is an orthonormal basis of the eigenspace

belonging to the eigenvalue 4.

Theorem 5.1. The weighied mean of the differential coefficients
of AY2(t) (i=1,2,...m) at t=t, is given by

66 B[4 40

t=t,

L8 fore{ o[ (ZEU) (2 o5 axas)

i=1
'—“'gp(”, V)\o))

where v,, is the element of T given by (5.5) and v=y*¢ (€ Q1))
is the element of T, tangential to the curve € and g,(+,+) is the
innerproduct in T, given in §2.4.

Remark 5.1. When AYY(t)=AY2(t)=--=AY"(z) at least for
small |t—io| (hence for all ¢, by the real analyticity of AY9(z)), the
above value (5.6) coincide with the differential coefficients of AY9(z)
(i=1, 2,..., m) at to. In particular, such case occurs when m=1, that

is, 4o is a simple eigenvalue of the (/' xglu)-problem.
Appendix. A proof of Lemma 2.6. (i)

1. From now on, C is the whole complex plane. Let p>2 be a real
number and n =0 be an integer. We introduce the Banach space Hj,,
of functions defined on the whole plane C, which satisfy the following
conditions:

a) fecC"0)

b) 070%f (0<n,+n,<n) are contained in L?(C),

c) 030%f (0<ni+n;<n) satisfy the global

Holder conditions of order 1—2/p,

where 6,fEsz%(f,—ify), aszf;E%(fx+ify). The norm is
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defined by

<f>p.n= max {|f|p.n,.nz}

0<n1+n;<n

where

0502 f(z)— 07 0% fey | }

— 2z | 1-2/p

|1 ponn=max {1920 £ 1110, sup

z1,2:6C |zl

The fact that H,, is a Banach space follows easily from
Lemma A. [|020%f||l.<2<f>pn for 0 ni+n<n.
Proof. An easy generalization of A4, (2.8)].

2. Following [A4], we introduce two operators P and T defined by

= oy )t

for he L¥(C) (p>2), and

—1 h(z)

&ii‘sgg.z_wm

(Th)(§)= dxdy

for hE Hp'o.

Lemma B. ([A4, pp. 7-8]) For h€H,,, Ph is continuously
differentiable and
(Ph);=h, (Ph),= Th.
Lemma C. For he CY{C)NHy 1, Th is continuously differentiable
and
(Th);=h,,  (Th),=T(h,).

This follows from [Al, p. 88, (9)] and Lemma B.
The following is proved in [Al, Chapter V].
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Lemma D. For cvery p>1, there is a constant C, such that
I Thll, < Cyllhll,  for all heC3(C)

Moreover, C,—1 as p—2.

Clearly, this enables us to extend T to L?(C).
Lemma E.
() If f, g€ Hypu [+g is also contained in Hy,
<f'g>p,n_§“n<f>p,n<g>p,m

where a, is a positive constant which depends only on n.

(ii) For f€CL(C)NHy, Tf is contained in Hpy, and
< Tf>p,n§3p,n<f>p,m

where B, is a positive constant which depends only on p and n.

Proof. (i) is easily shown from Lemma A. Let us prove (ii)
by induction on n. For n=0, this is (essentially) proved in [A4, p. 9.
Assume that this is true for n=m—1. If fECTNHym, f. and f; is

contained in C¥» ' "\H, 1 and
<[ pma S pm <[fi2pm 1 <[> pme
Hence |
<Tf > pm=max{< Tf >0, <(Tf):>pm1, <(Tf):>pm-1}
<max{B5,0<f >0 Bom1<[f:>pm1, <fe>pm1}
< max{Bp,0, Bpm-1, 1} <f>pm

where we used Lemma C. So, if we put fp»=max{Bp1, Bpm_1, 1},

(ii) is also true for n=m. Thus, (ii) is proved.

3. Let x# be an element of L~(C) which satisfies ||#||l. <k with a



140 Noriaki Kawanaka

fixed constant k<1. By Lemma D., there is a number p>2 such that
kCy<1. We fix such p from now on.

Theorem A. ([AB, Theorem 1)
If 0 € LX(C) the equation w;=pw,+0 has a unique solution o™

o

which satisfies
w(0)=0, w, € LY(C).

Moreover, this solution can be represented as w"°=P(uq+0),
where q is the solution of the equation: q= Tug+To in L?, that is,
q=To+TuTo+TuTuTo+ - ( :convergent in L*(C)).

Theorem B. Let pu, ¢ in Theorem A. be contained in CZNHy ,.

If <ﬂ>p,n§;, g, 0%’ and 0% are in Hy, and
anﬁp,n
g < B <6
T 1_an3p,n<ﬂ>p,n ’
Lo Bﬁn
<w >pn <6>ﬁ;”3

=1— anﬂp AU pn

1

= <G> N
,_1 anﬁpn</«‘>p,n bt

<w/L d>[),

Proof. The norm of the transformation 7x in H,, . 1S

< AuBpn<#>pn by Lemma E. (@), (ii). So, if <u>p,<—7"— B
X Bp,n

g=To+TpTo+TuTplo+- -
is convergent in H,,. Hence q €H, , and
oy?={P(uqg+0)}.=T(uq+0)=gq
"= {P(uqg+0)}:=uq+o (by Lemma B.)

are also in Hj ,.
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From g=Tuq+ To, we get that
<q>p,n§anBp,n</l>p,n<q>p,n+Bp,n<a>p,n

and thus

<q>p,ng-1—_f¥%p—n‘ <0>pne

Other estimates follows from this easily.

We also need

Lemma F. Let uy, ¢ be as in Theorem A. and let o, 09 also
satisfy the same conditions as p, G, namely, Ho€EL”, 0o € LY and
ol <E<1.

If we put 2=w"°— "™, we get that

2=uw"*
with &¢=(u— o) qo+0—0\,

where qo is the solution of qo= T (#oqo)+ T0, in L%

This is proved in [AB, p. 3887.

4. Here we recall Theorem 2.1, (i), namely,

Theorem C. ([AB, Lemma 127])
For any u€L™(C) such that ||pll.=Zk<1, there is a unique
homeomorphic mapping W* from C onto itself which satisfies the

Beltrami equation :
We=uWt
and is normalized by

w#0)=0, W+1)=1, W*#(co)=0o0,

Lemma G. ([AB, Theorem 7 and Theorem 97)
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(i) For the solution W* in Theorem C.,
| W*||rr=c(R)

where c¢(R) is a constant which depends only on R, k and p, and

W(z)—W
“W”R,P: sup | (zl) (ZQ)I .

Iz1l,lz21SR | 21— 22| 1721P

Gi) ||W* — W*||rp—0, if ttn— pt almost everywhere.

Lemma H. ([AB], p. 397)

Let A(z) be a fixed Cyfunction with 0<2A<1, 2(z)=1 for
|z| <R—0, 2(2)=0 for |z|>>R—03/2, and let %(z) be also a fixed
Cy-function with 0<x<1, x(z)=1 for |z|<R—06/2, 2(z2)=0 for
|z|=R—0/4, where 0 is an arbitrary positive number.

Then, we have that
AWHE=wXt" (Theorem A.),

where

7=z —ul)W*.

5. Let y; (i=1,2,...) be (n+1)-times continuously differentiable in
{z:|z| < R}.

1
Theorem D. Put u(t)=) t;v;, where t=(t1, ts, --- t;) are real

i=1
parameters. Then, for any positive number 0, there is a positive

number ¢ such that
omon W’/‘(’)(z) 0<ni+n,<n+1)

are continuous in (z,t) for |z| < R—0, |t]<e.

Proof. Let 2 and x be as in Lemma H.
We first prove that
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*y AW+ eH,,, for sufficiently small ¢,
by induction on n. For n=0, using
(**) A ED = wx;:(t),v/(t),

where 7(t)=(A;— u(t) A,)W*® (Lemma H),

we can see that AW*® & H,, by Theorem B. (Note that %(¢)€ H,,, by

Lemma G.)

Now assume that (*) is proved for n=m. Then, 7(¢) € Hpmi1,
hence by Theorem B AW*"e€H, ., namely, (*¥) is also true for
n=m+1. Thus (*) is proved for all n.

Next, we shall prove that

(R <A prD >, 10— 0 as Ut

also by induction on n.

For that purpose we need some estimates:
(a) < (l we) W'u(t))z>ﬂ,n
=< (wx/t(f’),v(f’) _ wx,u(!).n(f))z >pn

=<0 (Lemma F.)

< Bp,n ’ ) T .
== By u< 2l (E)> pom <EW, >0 (Theorem B.),

where (¢, )=x{u()—n®O}qO+7E)—7 ()
with ¢ (@) =T (xu@)q @)+ T7().
(b) <&@, )>pn
=<x{u@)—1O}Yq @) >0+ <7)=7)>pn
Sa,<x{u@)— 1@} > <qg()>
+ <AAWHO— Oy >,

+ < AuYWHO —pu (@) WD} >, .
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(C) <2 WeEE) — W,u(t)> pnsl
:max{<(l We) — W"‘(I))z>p,n, <(/1 We) 2 W"(t)); > pom
<2 W) — 2 Wﬂ(t)>ﬁ’0}.

For n=0, (***) follows easily from (a), (b), (c) and Lemma G.
Assume that (***) is proved for n=m. Then, we get from (b), (c)
that

<EW,)>pm—>0 as t'—t.
Hence follows that
<AWH)— AW +D), >, . —0 't
<@AWHO - WrD) >, -0 (' —>1).

By this and (d), we see that (***) is true for n=m-+1. Thus
(***) is true for all m.

By Lemma A, (*) implies that

0m0% W (0<n,+n,<n) are continuous in z for |z|<{R—20,
and (***) implies that they are uniformly continuous in ¢ for |z]|<e

and |z|<CR—0. Combining these, we have proved the theorem.

Theorem E. Let v; (i=1,2,...,1) and n(t) be as in Theorem
D.. Then, for any positive number O, there is a positive number &
such that

0;’162’27(% WH® (0 <n,+n.<n, 1<i<l) are continuous in (z, t)
for |z| <R—0 and |t|=Ze.

Proof. We borrow the following result from [Al, p. 104]:

(L)@ =2 @rov@ R W) dedy,

(W’I‘(i) 2 _
where LAy, = {v‘I W/z”t)|z_z_ I)W'z””|2 o( HM)-1
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and

Rz &)=—L — S 4oL,

z—§ z—

Let x be as in Lemma H. Then,
@  (Lwo)e
=—L{{ @ om@RE, wHO@)dxd
= _72'— c iI)Z 2, ) xay

L ({10 IR G, FROE) dudy,

From the fact that W*(®(&)=¢ and the uniform continuity of W*®

in ¢ for |&|<R(Lemma G.), we can show that |W"(')($)ISR——6—

2
for |§|<<R—0 and sufficiently small ¢. Hence, the second term of the

right member of (#) can be n-times continuously differentiable in & for
|&€|<<R—¢ and sufficiently small |¢|. The obtained derivatives are

continuous in (&, t).

On the other hand, the first term is equal to

_ __71T_S§C(xy(t) ) (2) z_;

~ L arow@{ =@ T ”(')f)'l}dxdy,

and again the second term is n-times continuously differentiable in &
for |&§|<CR—0 and sufficiently small |¢|, the obtained derivatives being
continuous in (&, ¢).

The remained term is

1
6=——{{ arroue dxdy.

1
z— Wﬂ(‘)(é)

By Lemma B,
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Gz= {T(xL”(‘) v;)o /220" W‘g‘” + {(xLﬂ(f) v;)o WOy W’;““,
Ge={T (xI*Pv,)o WO} WED + {(x LFD v;)o W+®} W‘”-
We can easily show that
T(xL*Dy)e Hy , (for small |t])

by Theorem D and Lemma E (ii). Hence the only thing we must
prove is that

< T xL*p))— T (xL*Pv;) >4, —0
as t'—t.

For that purpose it is sufficient to show that

< LMy, — LDy, >, 0

4

as t'—t. (Lemma E (ii))

But this is obvious from (***) in the proof of Theorem D and
the fact that

M
(o =W with v=—( % 2)o Y

Theorem F. ([AB, Theorem 117])
Let v; (i=1,2,...1) be elemenis of L*(C). We set

wu@=Civi+&vet+--+Lvyy,

where u(&)=&q, -, C)EC" and |&| is so small that ||x(Q)||.<1.
Then, W*Xz) is holomorphic in & for each z.

Theorem G.

Let v; (i=1,2,...1) in Theorem F be indefinitely differentiable in a
domain @ in C. Then for each compact subset K of 2 and all integers
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ny, ny =0, there is a positive number & such that 07 0% W*®(ze€K)
are holomorphic in & for |{|<e.

Proof. When 2={z;|z| <R} for some R>0, this follows from

Theorem E. and Theorem F.. In fact,

821. 007 Wﬂ(t)___azl 00 WO — .

There is no essential difference in proving the theorem for general

domain 2.
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