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Introduction

This paper g ives the broad middle ground o f a  theorem o f which
the two extreme cases were known.

In [2] Hochschild proved that i f  L  i s  a  finite dimensional p-Lie

algebra all o f whose p-Lie modules are completely reducible then L  is
abelian. L e t  U  b e  the p-universal enveloping algebra o f  L. U  i s  a
finite dimensional Hopf algebra and its  d u a l A  i s  a  finite dimensional
commutative local Hopf a lg e b ra . L  being "fully reducible" is equivalent
to  U being semi-simple and this is equivalent to A  being co-semi-simple;
i.e., the (direct) sum o f its  simple subcoalgebras. B y Hochschild's result
i f  A  i s  co-semi-simple i t  i s  cocommutative. I t  is  th e n  e a sy  to  show

that when the ground field is algebraically closed A  is (isomorphic to)

the group algebra o f  a  group o f th e  form  Z /pZ x  •••)<Z /pZ  (a finite
number o f times).

In  D I] Nagata has show n that a  fully reducible connected affine

algebraic group in positive characteristic is a  to ru s . T h u s i f  A  is  the

Hopf algebra o f regular functions on the group and if the ground field
is algebraically closed A  is (isomorphic to) the group algebra of a group
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of the form Zx ••• X Z  (a finite number o f times).
Hochschild's resu lt and Nagata's resu lt are but opposite extremes

o f th e  characterization o f  fully reducible (absolutely) connected affine

group schemes in positive characteristic . Th e com plete result is that
if A  i s  a commutative Hopf algebra representing a  fully reducible
absolutely connected affine group scheme in positive characteristic then
A is  cocommutative. If the ground field is algebraically closed then A
is  the group algebra of an abelian group all o f whose torsion elements
have p-power torsion.

In order to prove this result we first engage in some general Hopf

a lg eb ra  th eo ry . T h is  theo ry  w hen  app lied  to  affine group schemes
generalizes a  c lassica l resu lt and shows th a t  a  (closed) normal sub-
group scheme o f  a  fully reducible affine group schem e is again  fu lly
reduc ib le . W e use th is  to  show th a t th e  "infinitesimal" normal sub-
group schem es o f  a  fu lly  reducib le  group  schem e a re  aga in  fu lly
reducib le. U sing Hochschild's resu lt and some finite dimensional Hopf

a lgeb ra  structure th e o ry  w e  show that these infinitesim al subgroup
schemes are commutative. It follows that the original group scheme is
commutative because w e prove that the original group scheme can be
approximated by th e infinitesimal subgroup schemes. Th is tak es  the

form of a (Krull type) intersection theorem for Hopf algebras.
The intersection theorem  is that i f  A  is  a  finitely generated com-

mutative Hopf algebra representing an absolutely connected affine group

schem e then fo r  any proper ideal /C A  the intersection ("V " is  zero.
n

W e give an example to show that it is necessary to  assume th a t A  is

a Hopf algebra.
(W e use "fully reducible" to mean that all rational representations

are completely reducible. "Absolutely" connected means that the group

scheme remains connected when raised to the algebraic closure.)

§1. Splittings o f Hopf algebra maps.

W e shall be w ork ing over a  ground field, s a y  k. B y  0 ,  Horn,
End, etc. we m ean over k .  For a vector space V  w e use V* to denote
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the linear dual, Hom (V , k ). Often for f E V * , v E V  we will write

< f, v >  in  p lace of f (v). We use the terms "coalgebra" and "Hopf
algebra" as they are defined in  [ 7 ] .  For a coalgebra the diagonal map

is usually denoted 4  and the counit s. For Hopf algebras S denotes

the antipode. We freely use the comultiplication notation for coalgebras,
[7 , p. 101 o r  [ 6 ,  p. 323-3241.

Primarily we shall be working with commutative Hopf algebras.
For such a  Hopf algebra A  the functor

GA (  ) = {algebra maps from A  to (  )}

is  an  affine group scheme. We usually shall work in  Hopf algebraic
terms and (sometimes) indicate what the implications are for the group
scheme.

Given a  comodule M4 MO A , [7, p . 30 1  w e  h ave  th e  functor
M ® (  ) .  Given a  commutative algebra B, the B-module MO B be-
comes a  GA(B)-module as  follows: fo r g E G A(B) the action of g  on
MO B is given by

rmo B  ogr , . /140  A 0B roe_ m o B o B r o t  m o B .

So a  comodule is just an affine GA-module (functor).

In [7 , p. 287, p. 2901 we call a  Hopf algebra or coalgebra co-semi-
simple if  it is the sum of its simple subcoalgebras. This sum is neces-
sarily direct, [7 , p . 1 6 6 , 8 .0 .6 ] . A  coalgebra being co-semi-simple is
equivalent to every comodule o f th e  coalgebra being completely re-
ducible, [7 ,  p. 2 8 8 , 1 4 .0 .1 ] . A  Hopf algebra A being co-semi-simple is
equivalent to there being a (unique) coalgebra CC A  with A=kEDC,
[ 7 ,  p. 2 9 3 , 1 4 .0 .3 , c ]. Using this characterization Larson has observed

[ 3 ,  P. 9 , Lemma 1 .3 ] that a  Hopf algebra being co-semi-simple is un-
changed by field extension.

For a com m utative Hopf algebra A  to  b e  co-semi-simple it is
necessary an d  sufficient fo r  a ll affine GA-modules to be completely
reducible.
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1 .1  Theorem . Let B  be a Hopf algebra with subHopf algebra A.
If  C  is  a subcoalgebra of B  w ith B = A W C then A CCCDCA .

P ro o f. We shall use the "— ‘" action of B * on B , [6, p. 328, 2.11

and the "— " action of B  on B * [6, p. 328, 2.31. For f  E B*, b, 8 E B
the actions are defined by

<f b, 8> — = < f , i3S(b)>

b ( l ) < f ,  b(2)>.(a)

L et A i =  E B * I < f ,  A> = 0 1 .  We show

1.2 Ai— AC A ± ,

1.3A ' — BCC.

If f  E A -L ,  a E A  then

< f —  a, A > = < f , A S (a)>=O

since A  is a  subHopf algebra and  S(a) E A .  This establishes 1.2.

I f  b E B  write b = a + c  with a E A , c E C .  Then

f  — b—  E a(l)<f, am> +  c( l) < f, C( 2) > •
(a) (c)

Since zl(a) E A 0  A  a n d  (c )  E C O C  we have 1.3.

We can find $ E B * where $ E A ' an d  $  C  is  th e  counit o f  C
because B =-A ED C. Then for c E C, c = c. If  a E A

c a= ($  c )  a= •— am) —  (cam)

by [6, p. 328, 2.51. S a y  zga)= E ai a; with {ai}  ( A .  Then

ca= E (cai).

By 1.2 {$ A ' an d  th en  b y  1 .3  {($  a;) (ca i ) }  C C . Thus

caEC.
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The mirror proof shows AC C C. q.e.d.

If P  is  the projection from B  to  A  with kernel C then 1.1 shows

th a t P  is  an A-bimodule map. In these term s the theorem can be
dualized.

Suppose r :  A  B  is  a Hopf algebra m ap. Then

A  A O A -  A O B

and

A - A ® A  ',=. (?)-Lo BOA

give A  right and left B - comodule structures (resp.).

1 .4 . Theorem . S uppose n: A — > B i s  a surjec tiv e  Hopf  algebra
m ap an d  IC  A  is  a n  ideal w here A = ./ 6 )K er. 7. I f  Q: A  i s  the
splitting o f  A  4 B  > 0  w ith  Im Q =I th e n  Q  is  a  righ t an d  lef t B -
comodule map.

Since the proof of 1.1 is not so easily dualized we include a proof
of 1.4.

P ro o f. Since A = I3 K e r7 r  i s  a direct sum  o f  ideals w e can
write 1 = f  e  with f  and e  orthogonal idempotents and f  E l, e EKer

7 .  W e have

1.5 ( I 0 n )  d Ker K e r  rcO B

since if x E Ker

( r 0 I ) ( I 0 n ) 4 x = ( r O r ) 4 x = 4 r x = 0

because 7r is a coalgebra map. Thus we can write

1.6 (I On) z le= E ei O b i ,  w ith  {e } K er CB .

Next we show
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1.7 ( I0 7 t)  z 1 (I) ( IO B .

Since A 4 A, a-4. ae has kernel /  it su ffices  to  sh o w  that
(MO /) ( I  O r)  41= O. For a E /,

(MO 7r) 4a =  E a m e g (a (2))
(a)

= E e m  7 r (au) e(2) S(e(3)))
(a).(e)

E  au) eu) 0 7r(a(2) eu)) it S(e(3))
(a) ,(e)

= E a t®  7r) 4 aem ][10 S n(e(2))1.
(e)

W e a re  using that 7r is a n  algebra map an d  n S= Sir. B y  1 .6  the
above equals

E[U® ir) 4 a e ][1  0  S(bi)]

which is zero since {e} (Ker7r implies a e i 0  for all i.

By 1.5 an d  1.7 we see that A =/ED Ker 7r is  a  d ire c t sum of
right B-comodules. Thus th e  splitting map Q  is  a  right B-comodule

map.
By the mirror proof Q is a  left B-comodule map. q.e.d.

We return to the setting o f 1.1 where B  is a  Hopf algebra with

subHopf algebra A .  L e t A +  K e r  A ,  the augmentation ideal o f  A.
The two-sided ideal in  B  generated by A + is  a  Hopf ideal [7, p. 87]

and [7 , p. 88, Exercise] so that B/BA+.13 has a quotient Hopf algebra

structure, [7 , p. 8 7 ].  Under suitable "normality" conditions w e have
that

1.8 B A + = B A+ B  o r  A+ B=- B A+ B.

F or example i f  B  is  a  group algebra an d  A  is  th e  subgroup

algebra of a normal subgroup. O r if B  is commutative 1.8 will hold.

1 . 9  Corollary. Suppose B  i s  a  H opf  alg e b ra w ith  subHopf
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algebra A  a n d  1.8 holds. T h e n  B/ B A + B  i s  a co-sem i-sim ple Hopf
algebra.

P ro o f. S ay  BA+ =B A 1 B .  Then by 1.1 B A '= A+ ED C A +. Thus

i f  T B --B /B A + is  the natural Hopf algebra map we see that

B / B A+ = r (A ) ED (C).

rc (A) = k  and (C ) is  a  subcoalgebra so that by [6, P. 333, 3.21  o r
[7 , p. 293, 14.0.3, c ]  the  Hopf algebra B /B A ± is co-semi-simple. q.e.d.

In a co-sem i-sim ple coalgebra any subcoalgebra has a  coalgebra

complement. Thus we have

1 . 1 0  Corollary. Suppose B  i s  a  commutative Hopf algebra w ith
subHopf algebra A .  I f  B  is co-sem i-sim ple then B/ B A + is  also .

O n the group scheme level we h ave  th e  following interpretation

o f  1.10. The inclusion A c_,B  gives a n  epimorphism GA * *---GB  with

'kernel GB/BA Thus GB/BA'• is  a norm al subgroup scheme of G B .  By

1.10 w e have that all affine GB-modules are completely reducible implies

that all affine GB/BA - modules a r e  completely reducible. We shall show
in  a  subsequent paper that all closed normal subgroup schemes o f GB

a r e  o f  th e  form  GBIBA' fo r  suitable A  B .  (O f course , A  is  the
subalgebra of "invariants" of the normal subgroup scheme.) Then 1.10

takes on the classical form : " a  normal (closed) subgroup scheme of a
fully reducible affine group scheme is fully reducible."

1 . 1 1  Exam ple. Suppose B  is  a com m utative Hopf algebra in
characteristic p >  O . L et B (P9 =-- b  E  B} . T h is  is a  subHopf algebra

o f  B  i f  k  is p e r fe c t . I f  kB (P9  i s  th e  k  span o f B (P9  then kB (P9  is

always a  subHopf algebra. By 1.10 we see that B/B kB (P ) +  is  co -

semi-simple i f  B  is co-semi-simple.

Let B " = E  B I  then t h e  idea l BkB (P'9 '  is equal to

13/3+ ( P9  a n d  so
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1.12 B/B./3 + ( t" ) i s  a co - semi - simple Hopf algebra i f  B  is.

§ 2. The intersection theorem.

Example 1.11 w ill provide one of the k e y  s te p s  in  proving our
main theo rem . In order to use the example we will need the fact that
B  can be approxim ated by {B/B/3 ± ( P9 } ,  i .e .  the intersection of the

id ea ls  B B + ( P") i s  zero, (under suitab le conditions). This will follow
from our intersection theorem.

For a commutative algebra A  over the ground field k  let Sep A
(o r  SepkA) denote the subalgebra of A  consisting o f elements which
satisfy a non-zero separable polynomial in k[.X ].

W e shall use the following standard facts about Sep :

2 .1  If K  is  a field extension of k  then

(S epkA ) K = Sepic (A OK ).

2 .2  I f  k  is algebraically closed then Sep A  i s  the span  of the idem-

potents of A.

2 .3  I f  A  is finitely generated then Sep A  is finite dimensional.

2 .4  I f  /  i s  an id ea l in  A  consisting o f nilpotent elements and 7 r: A
A / I i s  the natural algebra m ap then r  restricted to Sep A  carries

Sep A  isomorphically onto Sep (A//).

2 .5  I f  B  is  a subalgebra of A  then Sep B = B nSep A.

Suppose A  is  a commutative Hopf algebra over a  perfect field k,
let .A/-  b e  the id ea l o f all nilpotent elem ents in  A  so  th a t A t i r  i s  a

reduced  algebra. S ince k  is  p erfect A/.ir Ø  A/dr is reduced and

lies in the kernel of the composite

A 4  A O A — > 21/./r ® A tA f.

Thus .d.ir C A O.ir • A t  A .  C le a r ly  X ' Ker e and S (X )  ./r, so that

X  is  a Hopf ideal and A / 1V  has a natural Hopf algebra structure where
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7t: A - ->A tir is a  Hopf algebra map.

2 .6  Lem m a. I f  A  i s  a com m utativ e Hopf  algebra an d  V  i s  a

f inite dim ensional subspace o f  A  o r V  i s  a  f in ite  subse t o f  A  then

the subHopf  algebra o f  A  generated by  V  is f initely  generated as  an

algebra.

P ro o f. Let C  be the subcoalgebra o f A  generated by V .  By [7 ,

p. 47, 2.2.2 1 C  is finite dimensional. Since A  is commutative SS= /,

[7 ,  p. 74, 4.0.1 1. Thus i f  D -=C + S (C ) then D  is a  finite dimensional

subcoalgebra o f  A  containing V  and S ( D ) C D .  (D  is a  subcoalgebra

since S  is  a  coalgebra antimorphism, [7, p. 7 4 , 4 .0 .1 ] .)  I f  B  is  the

subalgebra o f  A  generated by D  then  B  i s  th e  subHopf algebra

generated by V  and B  is finitely generated as an algebra. q.e.d.

In the above proof we used the fact that A  was commutative to

insure SS-= /. I f  w e  do  not assume that A  is commutative but that

fo r  some n, S = I  th en  the conclusion remains va lid . T h e  proof is

changed only in that D  is defined to be C± S(C)d- • • • + Sn - l (C).

2 .7  Lem m a. I f  A  is  a com m utative Hopf  algebra ov er a  perfect

f ie ld  k  and  Sep A = k then A /./V is a  domain.

P ro o f .  By 2 .4  Sep A /X =k  and so it suffices to prove: if A  is

a commutative reduced Hopf algebra over a  perfect field k  then A  is

a domain. Since k  is perfect if  we tensor A  with the algebraic closure

o f k  what we get is still reduced. Thus by 2 .1  we may assume that

k  is algebraically closed.

T o  show that A  is a  domain it suffices to show that for any two

elements o f A  the subHopf algebra which they generate is a domain.

Such subHopf algebras are  finitely generated as  algebras by 2 .6  and

their Sep is k  by 2 .5 .  Thus we may also assume A  is finitely gener-

ated.

Now k  is algebraically closed and A  is a  finitely generated reduced
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Hopf algebra and so  is  th e  r in g  o f regular functions o n  a  classical

affine algebraic group. Such a  group is the disjoint union of finitely

many Zariski irreducible components. Thus A  is  the direct sum of a

finite number o f  domain k  algebras. Sep A = k  implies the number is

one and A  is a domain. q.e.d.

For a two-sided ideal J  in an algebra A  le t J
°
 denote A  and let

denote [ V n .

2 .8  Lem m a. S uppose A  is a H o p f  algebra containing two-sided

ideals J1, J2 and .13 . L et .4' =Ker . E.

a. If  4f1CT20A - FAØJ3 and J 2̀°  C .f l then J 7 C r .

b. Jr C .,1  i f  and  only if J7  C ie

P ro o f. By the hypothesis of a. we see that

Ain c.T An —  i OJLC M A + A ®
i= 0

Taking intersection yields

2.9 4J7C.TIO A+ A OF3'.

Since a is  the counit applying a®  I  to 2.9 shows that JrCr ,  which

proves a.

Since a is the counit

AL CJ10A+Ao. , ".

Thus i f  PI° ./g by a. it follows that J7 C

Clearly i f  J 7  .1C° then Jr c q.e.d.

2 .9  Lem m a. I f  A  is  a N oetherian com m utativ e algebra and

0 a E A then there is a m ax im al ideal .9  o f  A  w ith  a  ..°2—°. Thus

m a x im a l
ideals y
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P ro o f. L et I =  {b E Al ba = 0 } a n d  le t  .9-  b e  a  m ax im al ideal of

A  containing I. I f  a E Y  t h e n  b y  th e  Krull intersection theorem

there  is  x E.9-  w ith  x a -- a .  Thus x -1  E /C .67  a contrad iction . q.e.d.

2 .10  Theorem . Let A  be a finitely generated commutative Hopf

algebra with Sep A = k .  Then fo r  any proper ideal I of A,

P ro o f. L et k  b e  th e  algebraic closure o f  k. B y  2.1 Sep ( A  k)

-=1; a lso , JO  On = i n ® fc. Thus it suffices to prove the theorem for

A 0 -k and w e add the assumption that k  is algebraically closed.

W e  show th a t fo r  each  m axim al ideal „9". o f  A, Y  -=  O. B y  2.7

A/./1/' is  a  d o m a in . L e t 7r: A—* A/JP be the natural map. Since ..9" is

a m axim al ideal At C 5" and ir (5- )  is  a  proper ideal in  A/.)1/'. B y the

Krull intersection theorem—since A/../r is  a  domain—n. G ir =  O. Thus

r ( Y ) = O and

2.11 e.

B y  2.8, 1),

C

S in ce  A  is  fin ite ly  generated  an d  k  algebraically  c losed  by the

Hilbert nullstellensatz there is an algebra m ap 1: 21.—k with Ker =.9- .

If w e use C  denote OS th en  an  easy calculation shows that

6=(6 - 1 - 0 6 )4 : A—>kOk=k.

Thus if  , f  =Ker 6 - 1  w e  have

4 (,1 )C a f 0 A +A (g )g ".

B y  w h a t w e  have just show n fo r  ..9", 2.11, w e  k n o w  th a t o f — C ,i.
B y  2.8, a

T h u s  .% '= Y= ,.F "  f o r  e a c h  m axim al i d e a l  Y .  B y  th e  H ilb e r t  basis



62 Moss Eisenberg Sweedler

theorem and 2.9 0 = ' = 5 . q . e . d .

T h e assumption o f  A  being a  Hopf algebra is necessary in  2.10.

Otherwise we have the following simple counter-example.

k 1X , Y1/< X Y— Y, Y 2 > .

Let Y  d en o te  th e  coset o f  Y  a n d  X  th e  coset o f  X .  Then .47'  is

generated by ir an d  A/dr is isomorphic to a polynom ial ring in one
v a r iab le . Thus by 2.4, Sep A = k. But Y=  Y  and the ideal in  A
generated by X an d  Y  is maximal with YE

2.12  Corollary. I f  B  is  a  f initely  generated commutative Hopf
algebra w ith Sep B =k  then

n B B + 0 9 =  0.

P ro o f. B+ ( Pn )  B + P n = and so 2.10 implies the result. q.e.d.

§ 3 .  Structure of finite dimensional commutative local co-semi-

simple Hopf algebras.

3 . 1  Exam ple. Suppose G  is a  finite abelian p-group and k  is  a
fie ld  o f characteristic p > 0 .  T he group algebra k G  is  co-semi-simple
since it is the direct sum of the simple coalgebras Ike,„ G . The Hopf

algebra k G  is  commutative since G  is  abelian a n d  k G + consists of
nilpotent elements because G  is a  p-group. Thus k G is local.

Shortly we show  that 3.1 gives th e  only example o f  a  finite

dimensional commutative local co-semi-simple Hopf algebra when the
ground field is algebraically closed, and of positive characteristic. (Since

commutative Hopf algebras i n  characteristic z e r o  a r e  reduced the
assumption of positive characteristic is not necessary.)

3 . 2  Lem m a. A  f inite dim ensional com m utative Hopf  algebra A
is  local if  and only  i f  Sep A = k.
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Proo f. If A  is local then .,/=Ker a must be the maximal ideal.

By finite dimensionality c o n s i s t s  o f  nilpotent elements so that

k=Sepk=Sep A/.4e =S ep A , the last equality by 2.4.

Since A  is finite dimensional and commutative it is  the direct sum

o f finitely many primary algebras. I f  Sep A = k  there is just one, i.e.
A  is primary, hence local. q.e.d.

I n  a  Hopf algebra A  a non-zero element g  w ith  t i g = g 0 g  is

called group-like. One easily checks that a  product o f group-likes is

group-like an d  fo r a  group-like g  the inverse i s  S ( g ) .  Furthermore,

since S  is  a  coalgebra antimorphism S ( g )  is again group-like. Let
G(A) denote the set of group-like elements of A .  B y [7 , p. 55, 3.2.11

the elements of G (A )  a re  linearly independent and their span in  A  is
(isomorphic to) the group algebra kG (A ) a s  a  Hopf algebra.

3 .3  Lemma. Suppose k is algebraically  closed an d  A  i s  a  cocom-
m utative Hopf algebra.

a. A  i s  co-sem i-sim ple if  and on ly  i f  A  i s  th e  group algebra
kG (A ).

b. I f  t h e  characteristic is z e ro  an d  G  i s  a n  abelian group then
Sep kG =k if  an d  only  if  G  h as  no torsion.

c. I f  t h e  characteristic is p > 0  an d  G  i s  an  abelian group then
SepkG=k i f  an d  only  if  th e  to rs io n  elem ents o f  G  a l l  hav e p-power

torsion.

P roo f. By [7, p. 158, 8.0.1, a ] s im p le  coalgebras a re  finite di-

mensional so they are  th e  duals of finite dimensional simple algebras.

A  cocommutative simple coalgebra is  the dual o f a  finite dimensional

commutative simple algebra; i.e. a finite field extension. k is algebraical-

ly closed so these a re  all 1-dimensional. By [7, p. 158, 8.0.1., e l  a
1-dimensional coalgebra contains a  group-like. I f  A  is  co-semi-simple
i t  is  th e  sum of its  simple subcoalgebras and  so spanned by group-

likes. T h u s  A = kG ( A )  b y  th e  remarks preceding th e  lemma. The
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converse of a. is  clear.

b. and c. are easy to prove and we omit the proofs. q.e.d.

In the proof o f  Theorem 3.11 we shall have to discuss finite di-

mensional Hopi algebras U  which are cocommutative and with unique

simple subcoalgebra k. These Hopf algebras are studied extensively in

[5 ] a n d  [7 ]. A  co a lg eb ra  w ith unique simple subcoalgebra is called

irreducible. If a Hopf algebra is irreducible the unique simple subcoal-

gebra must b e  th e  simple subcoalgebra k. Here are  some facts we

shall need.

3 .4  I f  U  is  an  irreducible bialgebra then U  is  a  H opf algebra [7,

p. 193, 9.2.2, 31. (A bialgebra is a Hopf algebra which does not neces-

sarily have an antipode.)

3 .5  I f  V  is a subbialgebra of an irreducible Hopf algebra U  then V  is
a subHopf algebra. Th is is true because V  is irreducible so has an

antipode b y  3 .4 . The antipode is  the restriction of the antipode of U

b y  [ 7 ,  p. 81, 4.0.41.

A  sequence o f  elements {v} 1 0 in  a  H o p f  algebra is called a

sequence o f divided powers if v 3 =1  and

dy n =  2 vi y n _i, each n.
i=o

By induction they are easily shown to be linearly independent if y i *O .

In a Hopf algebra U, P(U) denotes the space 1u E Ul du =10u + u011,

and the elements in  P(U ) are  called p rim itive . In  a  sequence of

divided powers the element y 1 is  primitive.

3 .6  I f  U is a finite dimensional cocommutative irreducible Hopf algebra

and k  is a  perfect field of characteristic p> 0 then there is a  number

n (=dim P(U)) where for each 1 <j < n there is a sequence of divided

powers { 1 u } ' w ith  { 3 ui}7= 1 a  basis o f P(U) and the set of products

-(l ue ,... n ue I e i <p"i, for i = 1 ,  n } is a basis for U, [5, p. 521, Theorems

2 and 3].
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W e w ould like to mention here that Theorem 2 in  [5 ]  is  incorrect
a s  stated. I t  s h o u ld  r e a d : "A ssum e p> 0, k  perfect and  I x is prim i-
tiv e . 1x  h as  co h e igh t n  if  an d  only i f  th e re  is  a  sequence o f  divided
powers f o r  n = 0 , 1 ,  . . . .  I f  th e r e  is  a n  infinite se-
quence of divided powers ° x, 1x, 2x, ...then  1x has in fin ite coheigh t. If
ix  has in fin ite coheigh t and the H opf  algebra has f inite dim ensional
primitives then there is an infinite divided power sequence ° x , 1x , 2x, ...."

The proof of Theorem 2 in  [5 ]  proves all but the last statement which
is not needed for our present purposes. A  proof of the last statement
w ill appear in  a  subsequent paper.

3 . 7  T he d im ension of a finite dimensional cocommutative irreducible
H opf algebra over a  perfect field k  o f characteristic  p> 0 is a power

of p .  This follows from counting the basis in 3.6.

A t  tw o  p o in ts  in  th e  proof o f  T h eo rem  3 .11  w e  sh a ll have to
show th a t certain subHopf algebras a re  c e n tra l. W e  w ill do  this by

using the ad jo in t o r in n e r action  of a H opf algebra on itself. For a
Hopf algebra H  containing elements g, h  define

hg= E gm hS(g(2)).
( g )

B y  [1 , p. 207, 1.7.2 1  th is  action makes H  a  left H-module a lg eb ra . An
algebra A  w hich is an H-module is called an H-module algebra if

3.8 1'4 = s (h) 1 a ll  hE H ,

h .(ab)= 0 0(h(1)• (h(2)•b) 1, a , b E A.

3 . 9  I f  U  i s  a n  irreducible Hopf algebra and A  is  a commutative U-
module algebra where A =S ep A  then  the action of U  on A  is  trivial,
i.e. u•ct-=a(u)a fo r  a l l  u E  U , a E A .  T h is  is  t ru e  b e c a u se  b y  [ 7 3
p. 193, 9.2.2 1 , [7 ,  p. 200, 10.0.1 1 and  [7 , p . 201 , 10 .0 .2 11 U  has a  fil-
tration k=UoCU1C• • •where U ,=U , U 1 = k  P (U ) and  fo r u E
-= Un nKer 6

3.10 4 (u )= 1 0 u +  u01-1- y where yE
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By definition o f P(U ) and 3.8 the elements o f P(U )  ac t as derivations
on A .  Since a commutative separable algebra has no non-zero deriva-
tions the elements o f P(U )  a c t  as zero on A .  T hus l i t  ac ts  as zero

on A .  Say b y  induction U,'",_1 a c t s  as zero on A .  B y  3.10, 3.8 and

the induction hypothesis the elements o f  U;', a c t  as derivations, hence
as zero on A .  This proves 3.9.

3.11 Theorem . Suppose k  i s  a  f ie ld  o f  characteristic p > 0  and
A  is  a com m utative f inite dim ensional local co-semi-simple Hopf algebra,
th e n  A  i s  cocommutative. I f  k  is algebraically  closed then A  is  the
group algebra o f  an  abelian p-group.

P ro o f. B y  [3 , p. 9, Lemma 1.31 A  tensored w ith  the algebraic
closure is co-semi-simple. Since ./i=Ker a consists of nilpotent elements
A  tensored w ith  the a lgeb ra ic  c lo su re  is  s till local. T hus w e m ay
assume k  is algebraically closed in  proving the first sta tem en t. The

second statement then follows by 3.2 and 3.3.

Since A  is finite dimensional A* .==. 0  is  a finite dimensional cocom-
mutative Hopf a lg e b ra . .4 '  i s  the unique maximal id ea l o f  A  implies
that k  is  the unique minimal or simple subcoalgebra o f  U .  Thus U  is
irreducible. Proving A  is  cocommutative is equivalent to proving that
U is  commutative.

T h e  Hopf a lgeb ra  injection A ( P' ) .— A  induces a  Hopf algebra
surjection

U = A*  > A( Pm ) *.

The Hopf kernel of r  is defined in [7, p. 3121 as  UE,,,] = {u E Ul (1-07 -0

u 0 1} and is shown to be a subHopf algebra in [7, p. 312, 16.1.11 .
It is easily shown that

3.12 UDni= lu E Ul < u , A A -
1
-

( Y9 > _= 01 .= AA+0"9 - L

and that for the inner action of a cocommutative Hopf algebra on itself
(defined between 3.7 and 3.8)
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3.13 zlhg= E  hg(i) o h g m(1) (2)

for all h  and g  in  th e  Hopf algebra. Thus fo r u E U, v E

( /  70 4 v u = E  vm  7 r (vn ))
(u) (y)

= E  uv,11) 7T(U(2)Yr ( v ( 2 ) ) =  E u,v(o g  r ( v ( 0
(u),(v) - (y)

E uv(i) e(v(2))1= u  0  1.
(v)

Thus Ui n i j  is a  submodule under the inner action.

B y  3.12 Upn i  is naturally isom orphic a s  a  Hopf algebra to

(A /A A + ( ''' ) )*. B y 1.12 A/A.21 + ( b" ) is  co-semi-simple and thus U [ ,,,] is

semi-simple.

We now proceed by induction on dim U  to  show that U  is com-

m utative. By the induction assumption we can assum e that U E „ ,3  is

commutative if U [ m ] U.

Structure of Um.

B y  3.12 P ( U )  P (U L i i )  since derivations vanish on  p th powers.

The opposite inclusion is clear and so P (U )= P (U m ). I f  U[ i i  U  we

have that Um  i s  commutative by the induction assumption.

If U 11 -= U then by 3.12 th e  elements in the augm entation ideal

of A  raised to the pt h p o w e r  a re  z e ro . Thus by [5 , p. 519, Lemma 3
and second line above Lemma 4 11 U = U [ 1 1  i s  th e  restricted universal

enveloping algebra of P (U ) .  Since U =U [ i ]  is  semi-simple Hochschild's
result [2 , p. 603, Theorem] implies that U = U [ 1 3  i s  commutative and
w e are  done.

So U [ l ]  is  com m utative. By 3.12 UL i i  ( A / A i l + ( P) ) * .  Since k is
algebraically closed 3.2 a n d  3.3 im ply that A/A.21 ± ( P) i s  th e  group

algebra o f  a n  abelian p-group. Since every element in  th e  augmenta-

tion ideal o f  A /A A + ( P) h a s  pt h p o w e r  z e ro , th e  abelian p-group is
Z/pZ0...0Z/pZ (finitely many times.) Thus

( g),(10
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(i?). k (Z /pZ ).

This shows that U [ l ]  is  the tensor product of subHopf algebras {
where for each i.

V1 is generated by v i subject to the relation

3.15 v =  vi,

zi vi = v i 01 -I- 1 v s (v i ) = 0, S (v i ) = — vi .

In each V i the element vi i s  a  basis for P( V i) so by [7 ,  p. 222,
11.0.7]

3.16 is a  basis for P(U [ 1 ] ) =P(U ).

Next we show that U E .3  is central in U i f  Uc„,]  U .  By the in-

duction assumption U E .3  is  a commutative semi-simple algebra. Since

k  is algebraically closed Uc„,i  is isomorphic to the sum of finitely many

copies of k. Thus UE„,]  =Sep U E .D .  W e have shown that U E .3  is  a
submodule under th e  inner action so that U E .3  is a  U-module algebra

under the inner action . By 3.9 the inner action of U on U E .3  is trivial
thus for u E U , v E [Tim ]

uv = E (v400 um = E  (u ( i ) ) vu ( 2) =
(u) (u)

and U E .3  is cen tra l in  U.

Now suppose dim P(U ) >  1 . The ideal UV P is two-sided because 17 1
is central in U and is a  Hopf ideal by [7 ,  p. 871,  so that Wi= U/UV;!"
is  a quotient Hopf algebra. Thus fr7 i is  semi-simple, cocommutative,
irreducible [7 , p. 168, 8.0.8,d] and of lower dimension than U .  By the
induction hypothesis W i is commutative.

L e t 7r: U— ). Wi b e  the natural map an d  le t C  denote th e  "com-

mutator map"

C: U--> U 5 /1 V —* U (i)  V (1 ) S  (U (2 )) S  (V (2 ))•
(u),(y)
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Since U  is cocommutative C  is  a  coalgebra map a n d  Im C  is  a
subcoalgebra o f  U .  Since W i i s  commutative the composite 7rC is
equ a l to  e  e . Th u s fo r  x E Tm C, r  (x )=  s (x ) and since ImC is a
subcoalgebra (n• 0 I)  4x  =10 x.

By [7, P. 304, (16.0.1,d) and p. 309, (16.0.3)1 V i= E Ul (7t0 / ) d u
= 1 0  u l  and thus Im CC V1. Since ViO• • •O V r= Uri3 and r>1 , (by

3.16), we have that Im C C n V 2 =  k. T h u s  C =  s  s ,  because eC
= O N  and Im CC k  implies sC =-C . For u, v E U we calculate

uv= E c(u ( 1 ,0 V(1)) V(2) U(2)
(u ) ,( v )

_ E  e(u ( 1 ) ) e (V(i)) V(2) i i (2 ) =  VU
(u),(v)

and U is commutative and we are done.

We now consider th e case  when dim P(U) < 1 . B y  3 .6  i f  dim

P (U )=0  then U =k  and we are done.
Say dim P (U )= 1 .  By 3.6 U has a  basis consisting o f a  sequence

o f divided powers {d1} . ' .  I f  is  a  dual basis fo r  A  then

s (x i ) =O i„ 1= x ° , x i xi= x i + l so that A  is generated by x 1 subject to

the relation (x 1 )P'.= 0. The ideal AA + ( i'' 1 ) has a  basis {xi) " ,  •• • xPs - 1 }

so that by 3.12, U [ s _11 h a s  a  basis consisting of {d 1 } '[ 1 . Thus
Ur s _ i j  U  and dim U[ s _i] =p s - 1 . S in ce  U [ s _ i]  is  cen tra l in  U  the
subalgebra W  generated by Uc s _11 i s  commutative. Since
U[ s _ i ]  e k d p s _ , is  a  subcoalgebra o f U, W is a  subbialgebra. By 3.4

W is a  Hopf algebra and thus by 3.7 the dimension of W  is a power
of p .  We have

ps - 1 =dim U Es _ 13 <d im  W d im  U =p s

so that W must equal U  and U  is commutative. q.e.d.

§ 4. The main theorem.

4 .1  Theorem . Suppose k is a f ield of  characteristic p> 0 and A
i s  a  commutative co-semi-simple Hopf algebra over k w here SepA=k.
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T h e n  A  is cocom m utativ e. I f  k  is  algebraically  c losed  then  A  is
(isomorphic to )  th e  g roup  algebra o f  an  ab e lian  g ro u p  G  w here the
torsion elem ents of  G have p-power torsion.

P ro o f. It suffices to prove the first statement; then the second

will follow from 3.3.
B y  2.6 w e m ay assume that A  is finitely generated. Let a E A

and C be the subcoalgebra o f A  generated by a. B y [7 , p. 46, 2.2.11

C  is finite dimensional. Thus by 2.12 there is a n  integer n with

C nAA ± ( P") = 0.

Let 7r: A—> A / A A + ( P9  b e  the natural Hopf algebra m ap . B y  1.12
A/AA + ( P9  is  co-semi-simple. Since A  is finitely generated A/AA + ( P' )

satisfies the hypothesis o f  3.11 and therefore must be cocommutative.
Since 7r I C  is injective, C  must be cocommutative. q . e . d .

C O R N E L L  U N IV E R S IT Y
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A dded in  p ro o f : Nagata's results in [4 ]  characterize reduced affine
algebraic group schemes in positive characteristic which are fully reducible.

Recently Nagata's characterization has been extended to fully reducible

affine algebraic group schemes which are not necessarily reduced, [Groupes

Algebriques, M. Demazure and P. Gabriel, North Holland, 1970, p. 509,
theorem 3.61. This generalization o f Nagata's characterization leads to

an alternative method o f proof o f our theorem 4.1.


