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Introduction

This paper gives the broad middle ground of a theorem of which
the two extreme cases were known.

In [2] Hochschild proved that if L is a finite dimensional p-Lie
algebra all of whose p-Lie modules are completely reducible then L is
abelian. Let U be the p-universal enveloping algebra of L. U is a
finite dimensional Hopf algebra and its dual A4 is a finite dimensional
commutative local Hopf algebra. L being “fully reducible” is equivalent
to U being semi-simple and this is equivalent to A being co-semi-simple;
i.e., the (direct) sum of its simple subcoalgebras. By Hochschild’s result
if A is co-semi-simple it is cocommutative. It is then easy to show
that when the ground field is algebraically closed A4 is (isomorphic to)
the group algebra of a group of the form Z/pZ ><~~-><Z/pZ (a finite
number of times).

In [4] Nagata has shown that a fully reducible connected affine
algebraic group in positive characteristic is a torus. Thus if A4 is the
Hopf algebra of regular functions on the group and if the ground field

is algebraically closed A is (isomorphic to) the group algebra of a group
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of the form Zx ---x Z (a finite number of times).

Hochschild’s result and Nagata’s result are but opposite extremes
of the characterization of fully reducible (absolutely) connected affine
group schemes in positive characteristic. The complete result is that
if A4 is a commutative Hopf algebra representing a fully reducible
absolutely connected affine group scheme in positive characteristic then
A is cocommutative. If the ground field is algebraically closed then A
is the group algebra of an abelian group all of whose torsion elements
have p-power torsion. '

In order to prove this result we first engage in some general Hopf
algebra theory. This theory when applied to affine group schemes
generalizes a classical result and shows that a (closed) normal sub-
group scheme of a fully reducible affine group scheme is again fully
reducible. We use this to show that the “infinitesimal” normal sub-
group schemes of a fully reducibie group scheme are again fully
reducible. Using Hochschild’s result and some finite dimensional Hopf
algebra structure theory we show that these infinitesimal subgroup
schemes are commutative. It follows that the original group scheme is
commutative because we prove that the original group scheme can he
approximated by the infinitesimal subgroup schemes. This takes the
form of a (Krull type) intersection theorem for Hopf algebras.

The intersection theorem is that if A4 is a finitely generated com-
mutative Hopf algebra representing an absolutely connected affine group
scheme then for any proper ideal IC A the intersection [\ I” is zero.
We give an example to show that it is necessary to assumne that A is
a Hopf algebra.

(We use “fully reducible” to mean that all rational representations
are completely reducible. ‘“Absolutely” connected means that the group

scheme remains connected when raised to the algebraic closure.)

§1. Splittings of Hopf algebra maps.

We shall be working over a ground field, say k. By &), Hom,

End, etc. we mean over k. For a vector space ¥ we use V'* to denote
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the linear dual, Hom (¥, k). Often for feV*, veV we will write
<f,v> in place of f(v). We use the terms “coalgebra” and “Hopf
algebra” as they are defined in [7]. For a coalgebra the diagonal map
is usually denoted 4 and the counit &. For Hopf algebras S denotes
the antipode. We freely use the comultiplication notation for coalgebras,
(7, p. 10] or [6, p. 323-324]].

Primarily we shall be working with commutative Hopf algebras.
For such a Hopf algebra A the functor

G4( )={algebra maps from A4 to ( )}

is an affine group scheme. We usually shall work in Hopf algebraic
terms and (sometimes) indicate what the implications are for the group
scheme.

Given a comodule M4 MQ A, [7, p. 30] we have the functor
MQ( ). Given a commutative algebra B, the B-module M B be-
comes a Ga(B)-module as follows: for g€G4(B) the action of g on
M B is given by

MBI, MR AR BI®4®, MQ BRQ BI®™!, M B.

So a comodule is just an affine G4-module (functor).

In (7, p. 287, p. 290] we call a Hopf algebra or coalgebra co-semi-
simple if it is the sum of its simple subcoalgebras. This sum is neces-
sarily direct, [7, p. 166, 8.0.6]. A coalgebra being co-semi-simple is
equivalent to every comodule of the coalgebra being completely re-
ducible, [7, p. 288, 14.0.1]. A Hopf algebra 4 being co-semi-simple is
equivalent to there being a (unique) coalgebra CC A4 with A=kPC,
[7, p. 293, 14.0.3,c]. Using this characterization Larson has observed
[3, p. 9, Lemma 1.3] that a Hopf algebra being co-semi-simple is un-
changed by field extension.

For a commutative Hopf algebra A4 to be co-semi-simple it is
necessary and sufficient for all affine G4-modules to be completely

reducible.
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1.1 Theorem. Let B be a Hopf algebra with subHopf algebra A.
If C is a subcoalgebra of B with B=A@DC then ACCCDCA.

Proof. We shall use the “—” action of B* on B, [6, p. 328, 2.1]]
and the “~” action of B on B* [6, p. 328, 2.3]. For f€B* b,fEB

the actions are defined by
<feb, B>=<f, BS()>
f—‘bE(Z“baKfa biz>.
Let 4'={f€B*|<f, 4>=0}. We show
1.2 A e AC A,
1.3 A+*—BCC.
If f€ A%, a€ A then
<fea, 4>=<f, 4S(@)> =0

since A is a subHopf algebra and S(e) € 4. This establishes 1.2.
If b€ B write b=a+c with a€ A4, ceC. Then

f—‘b=§)a(1)<f, 0(2)>+§C(1)<f, c@>.

Since 4(a)€ AR A and 4(c)eCRC we have 1.3.

We can find & € B* where £€ 4+ and ¢|C is the counit of C
because B=AC. Then for c€C, c=&—=c. If a€ A4

ca=(¢—c)a= é}) (¢ —a@)) — (caqy)
by [6, p. 328, 2.5]. Say 4(a)=2 a;Ra; with {a;}\U{a;} CA4. Then
ca= Z‘I (¢ —ai) = (cay).

By 1.2 {§—a/} CA4* and then by 1.3 {(¢ —a})— (ca))} CC. Thus
caeC.
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The mirror proof shows ACCC. q.e.d.

If P is the projection from B to A4 with kernel C then 1.1 shows
that P is an A-bimodule map. In these terms the theorem can be
dualized.

Suppose 7w: A— B is a Hopf algebra map. Then
A5 ARQAL AQB
and
A5 AR A2 BRA
give A right and left B-comodule structures (resp.).
1.4. Theorem. Suppose m: A— B is a surjective Hopf algebra
map and IC A is an ideal where A=I@Kernw. If Q: B—> A is the

splitting of A5 B—0 with ImQ=I then Q is a right and left B-

comodule map.

Since the proof of 1.1 is not so easily dualized we include a proof
of 1.4.

Proof. Since A=I@PKerm is a direct sum of ideals we can
write 1=f+e with f and e orthogonal idempotents and f€I, e €Ker
n. We have

1.5 (IQ®n) 4 Kerr CKerr@B
since if x €Kerm
ERDHULQT)Adx=(rRr)dx=dnx=0
because 7 is a coalgebra map. Thus we can write
1.6 (IQRnr)de=2 e;Qb;, with{e;} CKer =, {b;} CB.

Next we show
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1.7 URn)dI)IRQB.

Since AY, A, a—>ae has kernel I it suffices to show that
MRSI)(IQn) dI=0. For a€cl,

MQr) da= (Z): ame®@ 71’(0(2))
a
=2 Q1) €(1) R (0(2) €(2) 5(6(3)))
(a)sle)
=2 amem@mlae em)m Sew)
al,\e

= é[(1® ) Aae(l)] [1® 571'(6(2))]-

We are using that 7 is an algebra map and 7S=S7n. By 1.6 the

above equals

; [(UQnm)dae ][1Q S(b:)]

which is zero since {e;} CKern implies ae;=0 for all i.

By 1.5 and 1.7 we see that A=I@PKerm is a direct sum of
right B-comodules. Thus the splitting map Q is a right B-comodule
map.

By the mirror proof Q is a left B-comodule map. q.e.d.

We return to the setting of 1.1 where B is a Hopf algebra with
subHopf algebra 4. Let A'=Ker ¢4, the augmentation ideal of A.
The two-sided ideal in B generated by A% is a Hopf ideal [7, p. 87
and [[7, p. 88, Exercise] so that B/BA*B has a quotient Hopf algebra
structure, [ 7, p. 87]. Under suitable “normality” conditions we have
that

1.8 BA*=BA*B or A*B=BA"B.

For example if B is a group algebra and A is the subgroup

algebra of a normal subgroup. Or if B is commutative 1.8 will hold.

1.9 Corollary. Suppose B is a Hopf algebva with subHopf
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algebra A and 1.8 holds. Then B/BA'B is a co-semi-simple Hopf
algebra.

Proof. Say BA*=BA'B. Then by 1.1 BA*=A*@ CA*. Thus
if 7: B—>B/BA* is the natural Hopf algebra map we see that

B/BA*=nr(A)P = (C).

n(A)=k and w(C) is a subcoalgebra so that by [6, p. 333, 3.2] or
(7, p. 293, 14.0.3, c¢]] the Hopf algebra B/BA" is co-semi-simple. q.e.d.

In a co-semi-simple coalgebra any subcoalgebra has a coalgebra

complement. Thus we have

1.10 Corollary. Suppose B is a commutative Hopf algebra with
subHopf algebra A. If B is co-semi-simple then B/BA* is also.

On the group scheme level we have the following interpretation
of 1.10. The inclusion A<, B gives an epimorphism G4<««Gp with
kernel Gg;pa*. Thus Gpgpa* is a normal subgroup scheme of Gg. By
1.10 we have that all affine Gg-modules are completely reducible implies
that all affine Gpg;pa*-modules are completely reducible. We shall show
in a subsequent paper that all closed normal subgroup schemes of Gg
are of the form Gpgpa* for suitable ACB. (Of course, A is the
subalgebra of “invariants” of the normal subgroup.scheme.) Then 1.10
takes on the classical form: “a normal (closed) subgroup scheme of a

fully reducible affine group scheme is fully reducible.”

1.11 Example. Suppose B is a commutative Hopf algebra in
characteristic p>0. Let BY"={b?"|b€ B}. This is a subHopf algebra
of B if k is perfect. If kB®™ is the k span of B®" then kB®" is
always a subHopf algebra. By 1.10 we see that B/BEkB®"* is co-
semi-simple if B is co-semi-simple.

Let B*®"={}?"|be€ B*} then the ideal BEB“™* is equal to
BB*®" and so
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1.12 B/BB*®" is a co-semi-simple Hopf algebra if B is.

§2. The intersection theorem.

Example 1.11 will provide one of the key steps in proving our
main theorem. In order to use the example we will need the fact that
B can be approximated by {B/BB*®"}, ie. the intersection of the
ideals BB*®" is zero, (under suitable conditions). This will follow
from our intersection theorem.

For a commutative algebra A4 over the ground field £ let Sep A4
(or SepzA) denote the subalgebra of A4 consisting of elements which
satisfy a non-zero separable polynomial in k[ X .

We shall use the following standard facts about Sep:

2.1 If K is a field extension of k£ then
(SeprA4) @ K=Sepx(ARQK).

2.2 If k is algebraically closed then SepA is the span of the idem-
potents of A.

2.3 If A is finitely generated then Sep A is finite dimensional.

2.4 If I is an ideal in A consisting of nilpotent elements and 7: 4
— A/I is the natural algebra map then 7 restricted to Sep A carries
Sep A isomorphically onto Sep (A4/I).

2.5 If B is a subalgebra of 4 then Sep B=BNSep 4.

Suppose A is a commutative Hopf algebra over a perfect field £,
let 4 be the ideal of all nilpotent elements in A4 so that A/4" is a
reduced algebra. Since k is perfect A/ 4" Q A/ A" is reduced and A4

lies in the kernel of the composite
AL AQA— A/ N Q A/ N

Thus AV CAQN + ¥ RQA. Clearly & CKere and S(A)C A7, so that
A is a Hopf ideal and 4/ has a natural Hopf algebra structure where
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n: A—> A/ is a Hopf algebra map.

2.6 Lemma. If A is a commutative Hopf algebra and V is a
finite dimensional subspace of A or V is a finite subset of A then
the subHopf algebra of A generated by V is finitely generated as an
algebra.

Proof. Let C be the subcoalgebra of A generated by V. By [7,
p. 47, 2.2.27] C is finite dimensional. Since A4 is commutative SS=1,
[7, p. 74, 4.0.1]. Thus if D=C+ S(C) then D is a finite dimensional
subcoalgebra of A containing ¥ and S(D)CD. (D is a subcoalgebra
since S is a coalgebra antimorphism, [7, p. 74, 4.0.1].) If B is the
subalgebra of A generated by D then B is the subHopf algebra
generated by ¥ and B is finitely generated as an algebra. q.e.d.

In the above proof we used the fact that 4 was commutative to
insure SS=1. If we do not assume that A4 is commutative but that
for some n, S”"=1 then the conclusion remains valid. The proof is
changed only in that D is defined to be C+ S(C)+ -+ S 1(C).

27 Lemma. If A is a commutative Hopf algebra over a perfect
field k and Sep A=k then A/Nis a domain.

Proof. By 2.4 SepA/ A4 =k and so it suffices to prove: if 4 is
a commutative reduced Hopf algebra over a perfect field & then A is
a domain. Since k is perfect if we tensor 4 with the algebraic closure
of £ what we get is still reduced. Thus by 2.1 we may assume that
k is algebraically closed.

To show that 4 is a domain it suffices to show that for any two
elements of A4 the subHopf algebra which they generate is a domain.
Such subHopf algebras are finitely generated as algebras by 2.6 and
their Sep is k by 2.5. Thus we may also assume A is finitely gener-
ated.

Now & is algebraically closed and A is a finitely generated reduced
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Hopf algebra and so is the ring of regular functions on a classical
affine algebraic group. Such a group is the disjoint union of finitely
many Zariski irreducible components. Thus A4 is the direct sum of a
finite number of domain k algebras. Sep A=k implies the number is

one and A is a domain. qg.ed.

For a two-sided ideal J in an algebra A4 let J° denote 4 and let
J™ denote N\ J".
n

2.8 Lemma. Suppose A is a Hopf algebra containing two-sided
ideals J1, J2 and Js. Let .# =XKere.

a. If 41 CJ2QRA+ARJ3 and J3 M then JTCJ3.
b. JTC A if and only if JT . A".

Proof. By the hypothesis of a. we see that
2z . .
AJ%"CZJOJ%"“ RJ5CT;RA+ AR JE.

Taking intersection yields

2.9 477 QA+ ARQI3.

Since ¢ is the counit applying €& I to 2.9 shows that JTCJ%, which
proves a.

Since ¢ is the counit

AL CliQ@A+AR .

Thus if J7C.# by a. it follows that JTC.#™.
Clearly if JTC#~ then JTC .. q.e.d.

29 Lemma. If A is a Noetherian commutative algebra and
0Xa€ A then there is a maximal ideal T of A with a § 7. Thus
N g~=0.

maximal
idealss
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Proof. Let I={b€ A|ba=0} and let J be a maximal ideal of
A containing I. If a€.9™ then by the Krull intersection theorem
there is x €7 with xa=a. Thus x —1&IC.Z a contradiction. q.e.d.

2.10 Theorem. Let A be a finitely generated commutative Hopf
algebra with Sep A=k. Then for any proper ideal I of A, I”=0.

Proof. Let & be the algebraic closure of k. By 2.1 Sep(4AXk)
=k; also, IQk)"=I"®k. Thus it suffices to prove the theorem for
ARk and we add the assumption that k is algebraically closed.

We show that for each maximal ideal  of A4, 9°=0. By 2.7
A/& is a domain. Let w: A— A/A" be the natural map. Since J is
a maximal ideal /" CJ and 7 (Z) is a proper ideal in 4/4". By the
Krull intersection theorem—since A/4" is a domain—n(J)*=0. Thus
7(7)=0 and

2.11 T*CH CM=Ker e.
By 2.8, b,
TC M.

Since A is finitely generated and £k algebraically closed by the
Hilbert nullstellensatz there is an algebra map ¢: 4A—k with Ker6=7.

If we use 0~ ! to denote ¢S then an easy calculation shows that
e=(0"1R0)4: A>kRk=E.
Thus if #=Kerc~! we have
A4 M) CIRQA+ART.

By what we have just shown for &, 2.11, we know that #~C.#.
By 2.8, a

MCT.

Thus #°=~ for each maximal ideal 4. By the Hilbert basis



62 Moss Eisenberg Sweedler

theorem and 2.9 0=.#/"=9". q.e.d.
The assumption of A4 being a Hopf algebra is necessary in 2.10.

Otherwise we have the following simple counter-example.
A=k[X, Y]/<XY-Y, Y*>.

Let Y denote the coset of ¥ and X the coset of X. Then 4" is
generated by Y and A/ is isomorphic to a polynomial ring in one
variable. Thus by 2.4, Sep4=k. But XY=1Y and the ideal v in A4
generated by X and Y is maximal with Ye 7™,

2,12 Corollary. If B is a finitely generated commutative Hopf
algebra with Sep B=k then

N\ BB+®"=0.
n

Proof. B*®"CB**"=_#?" and so 2.10 implies the result. g.e.d.

§3. Structure of finite dimensional commutative local co-semi-

simple Hopf algebras.

3.1 Example. Suppose G is a finite abelian p-group and k is a
field of characteristic p>0. The group algebra kG is co-semi-simple
since it is the direct sum of the simple coalgebras {kg},cc. The Hopf
algebra kG is commutative since G is abelian and kG™ consists of
nilpotent elements because G is a p-group. Thus kG is local.

Shortly we show that 3.1 gives the only example of a finite
dimensional commutative local co-semi-simple Hopf algebra when the
ground field is algebraically closed, and of positive characteristic. (Since
commutative Hopf algebras in characteristic zero are reduced the

assumption of positive characteristic is not necessary.)

3.2 Lemma. A finite dimensional commutative Hopf algebra A
is local if and only if Sep A=k.
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Proof. If A is local then .# =Kere must be the maximal ideal.
By finite dimensionality .# consists of nilpotent elements so that
k=Sepk=Sep A/ # =Sep A, the last equality by 2.4.

Since A4 is finite dimensional and commutative it is the direct sum
of finitely many primary algebras. If Sep A=¥k there is just one, i.e.

A is primary, hence local. q.ed.

In a Hopf algebra 4 a non-zero element g with 4g=g& g is
called group-like. One easily checks that a product of group-likes is
group-like and for a group-like g the inverse is S(g). Furthermore,
since S is a coalgebra antimorphism S(g) is again group-like. Let
G (A) denote the set of group-like elements of 4. By [7, p. 55, 3.2.1]]
the elements of G(A) are linearly independent and their span in A is

(isomorphic to) the group algebra kG (A) as a Hopf algebra.

3.3 Lemma. Suppose k is algebraically closed and A is a cocom-
mutative Hopf algebra.

a. A is co-semi-simple if and only if A is the group algebra
kG (A).

b. If the characteristic is zero and G is an abelian group then

SepkG=Fk if and only if G has no torsion.

c. If the characteristic is p>0 and G is an abelian group then
SepkG=Fk if and only if the torsion elements of G all have p-power

torsion.

Proof. By [7, p. 158, 8.0.1, a] simple coalgebras are finite di-
mensional so they are the duals of finite dimensional simple algebras.
A cocommutative simple coalgebra is the dual of a finite dimensional
commutative simple algebra; i.e. a finite field extension. £k is algebraical-
ly closed so these are all 1-dimensional. By [7, p. 158, 8.0.1.,¢] a
1-dimensional coalgebra contains a group-like. If A is co-semi-simple
it is the sum of its simple subcoalgebras and so spanned by group-
likes. Thus A=kG(A) by the remarks preceding the lemma. The
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converse of a. is clear.

b. and c. are easy to prove and we omit the proofs. q.e.d.

In the proof of Theorem 3.11 we shall have to discuss finite di-
mensional Hopf algebras U which are cocommutative and with unique
simple subcoalgebra k. These Hopf algebras are studied extensively in
[5] and [7]. A coalgebra with unique simple subcoalgebra is called
irreducible. If a Hopf algebra is irreducible the unique simple subcoal-
gebra must be the simple subcoalgebra k. Here are some facts we

shall need.

34 If U is an irreducible bialgebra then U is a Hopf algebra [7,
p. 193, 9.2.2, 3]. (A bialgebra is a Hopf algebra which does not neces-

sarily have an antipode.)

3.5 If V is a subbialgebra of an irreducible Hopf algebra U then V is
a subHopf algebra. This is true because V is irreducible so has an
antipode by 3.4. The antipode is the restriction of the antipode of U
by [7, p. 81, 4.0.4].

A sequence of elements {v;};-o in a Hopf algebra is called a

sequence of divided powers if vy=1 and
n
dv,= 2 v;Qv,_;, each n.
i=0

By induction they are easily shown to be linearly independent if v;=¢0.
In a Hopf algebra U, P(U) denotes the space {u € U|du=1Qu+ u®@1},
and the elements in P(U) are called primitive. In a sequence of

divided powers {v;};-o the element v; is primitive.

3.6 If U is a finite dimensional cocommutative irreducible Hopf algebra
and k is a perfect field of characteristic p>0 then there is a number
n(=dim P(U)) where for each 1 <{j<n there is a sequence of divided
powers {ju,-}{?:to‘l with {;u1}%-; a basis of P(U) and the set of products
{1te,-ntte, | €;<p", for i=1, ...n} is a basis for U, [5, p. 521, Theorems
2 and 3]
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We would like to mention here that Theorem 2 in [5] is incorrect

as stated. It should read: “Assume p>0, k perfect and 'x is primi-

1

tive. “x has coheight n if and only if there is a sequence of divided

1_ . . .
2" =1x for n=0,1,.... If there is an infinite se-

1

powers °x, 'x, ..
quence of divided powers °x, 'x, ’x,...then 'x has infinite coheight. If
lx has infinite coheight and the Hopf algebra has finite dimensional
primitives then there is an infinite divided power sequence °x, 'x, %x,....”
The proof of Theorem 2 in [5] proves all but the last statement which
is not needed for our present purposes. A proof of the last statement

will appear in a subsequent paper.

3.7 The dimension of a finite dimensional cocommutative irreducible
Hopf algebra over a perfect field k of characteristic p>0 is a power
of p. This follows from counting the basis in 3.6.

At two points in the proof of Theorem 3.11 we shall have to
show that certain subHopf algebras are central. We will do this by
using the adjoint or inmer action of a Hopf algebra on itself. For a

Hopf algebra H containing elements g, h define
h® = (Z) 8yhS(gey)-
I'4

By [[1, p. 207, 1.7.27] this action makes H a left H-module algebra. An
algebra 4 which is an H-module is called an H-module algebra if

3.8 hel=e(h)1 all heH,

h-(ab) = % (h(l)‘a) (h(g)'b) 1, a, b € A.

3.9 If U is an irreducible Hopf algebra and A4 is a commutative U-
module algebra where A=Sep 4 then the action of U on A is trivial,
i.e. uca=e(u)a for all u€U, a€ 4. This is true because by [7,
p. 193, 9.2.27, [7, p. 200, 10.0.1] and [7, p. 201, 10.0.2] U has a fil-
tration k=U,C U, C---where VU;=U, Uy=k@P(U) and for u€ U}
=U,NKer ¢

3.10 4w)=1Qu+u@1+ y where ye U;_,QU;_,.
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By definition of P(U) and 3.8 the elements of P(U) act as derivations
on A. Since a commutative separable algebra has no non-zero deriva-
tions the elements of P(U) act as zero on A. Thus U{ acts as zero
on A. Say by induction U;}_, acts as zero on 4. By 3.10, 3.8 and
the induction hypothesis the elements of U} act as derivations, hence

as zero on A. This proves 3.9.

3.11 Theorem. Suppose k is a field of characteristic p>0 and
A is a commutative finite dimensional local co-semi-simple Hopf algebra,
then A is cocommutative. If k is algebraically closed then A is the
group algebra of an abelian p-group.

Proof. By [3, p. 9, Lemma 1.3] A4 tensored with the algebraic
closure is co-semi-simple. Since .# =Kere consists of nilpotent elements
A tensored with the algebraic closure is still local. Thus we may
assume k is algebraically closed in proving the first statement. The
second statement then follows by 3.2 and 3.3.

Since A is finite dimensional 4*=U is a finite dimensional cocom-
mutative Hopf algebra. .# is the unique maximal ideal of A4 implies
that k is the unique minimal or simple subcoalgebra of U. Thus U is
irreducible. Proving A4 is cocommutative is equivalent to proving that
U is commutative,

The Hopf algebra injection A®™—> A4 induces a Hopf algebra

surjection
U= A*_=_5 A®™*,

The Hopf kernel of 7 is defined in [7, p. 3127 as Upmy={z € U|(IQ7)
du=u®1} and is shown to be a subHopf algebra in [7, p. 312, 16.1.17.

It is easily shown that
3.12 U[mjz{uEUl <u, AA+(pm)>:0}=AA+(pm)_L

and that for the inner action of a cocommutative Hopf algebra on itself
(defined between 3.7 and 3.8)
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3.13 4hf= 3, hEW QR

(g),(h)

for all A and g in the Hopf algebra. Thus for u €U, v € Upnm
(IQm) dv* ———(u)ZEv)v:‘I(’)’ R m(vig
= 2 u® (@)™ @) =3 urw Q@17 w)
u),(v) (v)

=(Z)u”“)®€(v(z))1=u”®1-
”
Thus Upny is a submodule under the inner action.

By 3.12 Ugmy is naturally isomorphic as a Hopf algebra to
(A/AA**™)* By 1.12 A/AA*®™ is co-semi-simple and thus Up,; is
semi-simple.

We now proceed by induction on dimU to show that U is com-
mutative. By the induction assumption we can assume that Up,q is

commutative if UpnySU.
Structure of Upi;.

By 3.12 P(U)CP(Upy) since derivations vanish on p'* powers.
The opposite inclusion is clear and so P(U)=P(Ury). If U< U we
have that Ui is commutative by the induction assumption.

If Up7=U then by 3.12 the elements in the augmentation ideal
of A raised to the p'" power are zero. Thus by [5, p. 519, Lemma 3
and second line above Lemma 4] U=Uq is the restricted universal
enveloping algebra of P(U). Since U=U(y is semi-simple Hochschild’s
result [2, p. 603, Theorem] implies that U=Up;; is commutative and
we are done.

So Upyy is commutative. By 3.12 Upy=(A/AA*P)*. Since k is
algebraically closed 3.2 and 3.3 imply that A/AA*® is the group
algebra of an abelian p-group. Since every element in the augmenta-
tion ideal of A4/AA*® has p'" power zero, the abelian p-group is
Z/pZQ.-.-QZ/pZ (finitely many times.) Thus
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A/ 44D = R k(Z/pZ).
i=1

This shows that Upiq is the tensor product of subHopf algebras {¥;}7.,

where for each i.

V; is generated by wv; subject to the relation
3.15 vi=v,,
4v;=0;Q1+1Qv;, e(0)=0, S(w)=—vs

In each V; the element wv; is a basis for P(V;) so by [7, p. 222,
11.0.7]

3.16 {vi}5-, is a basis for P(Up17)=P(U).

Next we show that Upny is central in U if Upny&U. By the in-
duction assumption U,y is a commutative semi-simple algebra. Since
k is algebraically closed Upnq is isomorphic to the sum of finitely many
copies of k. Thus Upny=SepUrn;. We have shown that U,y is a
submodule under the inner action so that Ups; is a U-module algebra
under the inner action. By 3.9 the inner action of U on Upp is trivial
thus for u €U, v € Upm;

Ly = (Z) (V*®) ugy= (Z; e(uqy) vupy=vu
u u

and Upn; is central in U.

Now suppose dim P(U)>1. The ideal UV} is two-sided because V;
is central in U and is a Hopf ideal by [7, p. 87, so that W;=U/UV}
is a quotient Hopf algebra. Thus W; is semi-simple, cocommutative,
irreducible [7, p. 168, 8.0.8,d] and of lower dimension than U. By the
induction hypothesis W; is commutative.

Let w: U— W; be the natural map and let C denote the ‘“com-

mutator map”

C: U® U— U, u®v—+( g )U(1)U(1)S(u(2))S(U(2)).
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Since U is cocommutative C is a coalgebra map and ImC is a
subcoalgebra of U. Since W; is commutative the composite 7C is
equal to ¢®e. Thus for x€ImC, 7w(x)=¢c(x) and since ImC is a
subcoalgebra (7 @ I) dx=1Q x.

By [[7, p. 304, (16.0.1,d) and p. 309, (16.0.3)] Vi={ue U|(#xQRI)du
=1Qu} and thus ImCCV; Since ViQ--QV,=Ur17 and r>1, (by
3.16), we have that InCCViN\V;=k. Thus C=c@e¢e, because eC
=e®e and ImCCk implies eC=C. For u, v€ U we calculate

wo= 2 Cuw®@va)ve v

(u), (v

=2 e(uay)e(vay veyuez=vu
(u),(v)

and U is commutative and we are done.

We now consider the case when dim P(U)<1. By 3.6 if dim
P(U)=0 then U=k and we are done.

Say dimP(U)=1. By 3.6 U has a basis consisting of a sequence
of divided powers {d;}?. If {x}?o! is a dual basis for A then

e(x9)=0i, 1=2° x'x’=x"* so that 4 is generated by x'

subject to
the relation (x')*'=0. The ideal 44*?"™ has a basis {x*", ... x?""'}
so that by 3.12, Ur,_;; has a basis consisting of {d;}?Z,"%. Thus
Ugs-13SU and dim Up,_13=p*'. Since Up_1j is central in U the
subalgebra W generated by U[s-1]€Bkd,s-1 is commutative. Since
U[s_lj@kdps_l is a subcoalgebra of U, W is a subbialgebra. By 3.4
W is a Hopf algebra and thus by 3.7 the dimension of W is a power

of p. We have
ps'1=dim U[s—l] <d1m nglm []=}7s

so that W must equal U and U is commutative. q.e.d.

§4. The main theorem.

4.1 Theorem. Suppose k is a field of characteristic p>0 and A
is a commutative co-semi-simple Hopf algebra over k where Sep A=k.
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Then A is cocommutative. If k is algebraically closed then A is
(isomorphic to) the group algebra of an abelian group G where the

torsion elements of G have p-power torsion.

Proof. It suffices to prove the first statement; then the second
will follow from 3.3.

By 2.6 we may assume that A4 is finitely generated. Let a€ A4
and C be the subcoalgebra of 4 generated by a. By [7, p. 46, 2.2.1]
C is finite dimensional. Thus by 2.12 there is an integer n with
CNAAT P =0.

Let 7: A—> A/AA*®" be the natural Hopf algebra map. By 1.12
A/AAT?®™ is co-semi-simple. Since A4 is finitely generated 4/A4A*®"
satisfies the hypothesis of 3.11 and therefore must be cocommutative.

Since 7 |C is injective, C must be cocommutative. q.ed.

CorRNELL UNIVERSITY
Itaaca, N.Y. 14850

Bibliography

1. R. Heyneman and M. Sweedler, Affine Hopf algebras, I, Journal of Algebra,
13, (1969) 192-241.

2. G. Hochschild, Representations of restricted Lie algebras of characteristic p,
Proceedings of the Amer. Math. Soc. § (1954) 603-605.

3. R. Larson, Characters of Hopf algebras, to appear.

4. M. Nagata, Complete reducibility of rational representations of a matric group,
Journal of Math. of Kyoto University 1 (1961) 87-99.

5. M. Sweedler, Hopf algebras with one grouplike element, Transactions of the
Amer. Math. Soc. 127 (1967) 515-526.

6. M. Sweedler, Integrals for Hopf algebras, Annals of Mathematics 89 (1969)
323-335.

7. M. Sweedler, Hopf Algebras, New York, W. A. Benjamin Inc. 1969.

Added in proof: Nagata’s results in [4] characterize reduced affine
algebraic group schemes in positive characteristic which are fully reducible.
Recently Nagata’s characterization has been extended to fully reducible
affine algebraic group schemes which are not necessarily reduced, [ Groupes
Algebriques, M. Demazure and P. Gabriel, North Holland, 1970, p. 509,
theorem 3.6]. This generalization of Nagata’s characterization leads to

an alternative method of proof of our theorem 4.1.



