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It is well known that if R is a Noetherian commutative ring, then
Ry, the localization of R at each maximal ideal M, is also Noetherian.
Any almost Dedekind domain® which is not Dedekind provides an ex-
ample for which the converse fails [1, App. 1, Ex. 1]. We shall say
that a ring R is locally Noetherian provided Ry is Noetherian for each
maximal ideal M of R. The goal of this paper is to characterize those
locally Noetherian rings which are also Noetherian.

Throughout this paper R will denote a commutative ring with
identity. Our notation and terminology are essentially that of [1] with
the following exception: if S is a multiplicatively closed subset of R
and if A is an ideal of R, then we shall denote by ARs the extension
of 4 to Rs.

1. The Characterization Theorem

Let A be any ideal of R and let S be the set of elements of R
which are not zero divisors modulo A. Then S is multiplicatively
closed and ANS=¢g. Any prime ideal containing 4 which is maximal
with respect to missing S is called a maximal prime divisor of A. A

prime ideal P of R is called a prime divisor of A if there is a multi-

1) If D is an integral domain with identity, then D is said to be an almost
Dedekind domain if D, is a Noetherian valuation ring for each maximal ideal M
of D [1, p. 408].
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plicatively closed subset S; of R such that ANS;=¢ and PRs, is a
maximal prime divisor of ARs [2, p. 19]. In the sequel the term
prime divisor will be used only in the above sense. It is clear that
any prime ideal of R which is minimal with respect to the property of
containing 4 is a prime divisor of 4 and such prime ideals are called
minimal prime divisors of A.

In order to prove our main theorem, we require some preliminary

results.

Lemma 1.1. Let R be a ring which satisfies the ascending chain
condition (a. c. c.) for prime ideals and suppose that each finitely
generated ideal of R has only finitely many minimal prime divisors. If
P is any proper prime ideal of R, then P is the unique minimal prime

divisor for some finitely generated ideal A of R.

Proof. Let P be a proper prime ideal of R and let x & P—{0}.
By assumption, (x) has only finitely many minimal prime divisors—say
Py, ..., P,, and since P2(x), P2 P; for some i. Suppose that P=~P;
for 1<i<r, where either r=n or r=n—1, and let x;€ P— P, If
A=(x, x1, ---, x,), then A has only finitely many minimal prime di-
visors—say Pj, ..., P,. Since P}2 A2 (x), P; contains a minimal prime
divisor of (x). If P;2P, then P is a minimal prime divisor of 4 and
P§=>P, since P;2P2A4. If P/2P; for some j, 1<j<r, then the
containment is proper for we have x;E P;—P;. But R satisfies a. c. c.
for prime ideals so it follows that, after finitely many repetitions of the
above procedure, we may obtain a finitely generated ideal A, having

unique minimal prime divisor P.

Corollary 1.2. Let R be a ring which satisfies the a.c.c. for
prime ideals. Then R is Noetherian if and only if each finitely
generated ideal A of R has only finitely many minimal prime divisors

and VA is finitely generated.
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Proof. By Lemma 1.1, if P is a proper prime ideal of R, then
P is the unique minimal prime divisor for some finitely generated ideal
A of R. Thus, P=VA4 and P is finitely generated. It follows that R

is Noetherian [1, p. 26]. The converse is clear.

Lemma 1.3. If R is a locally Noetherian ring, then R satisfies

a.c.c. on prime ideals.

Proof. let P, P,C...be a chain of prime ideals of R and set
P=U7_,P;, Then P is a prime ideal of R and R, is Noetherian
[2, 6.5 and 6.11]. Since PR, € P,R,C...S PR, is a chain of prime
ideals of R,, there is an integer n such that PR,=P,,;R, for each
nonnegative integer i. Hence, P=P, ; for each nonnegative integer i
and the lemma follows.

We are now able to prove our main theorem.

Theorem 1.4. The following conditions are equivalent in a locally
Noetherian ring R.

(1) Each finitely generated ideal of R wmay be expressed as a
finite intersection of primary ideals of R.

(2) Each finitely generated ideal of R has only finitely many
prime divisors.

(3) Each finitely generated ideal A of R has only finitely many
minimal prime divisors and VA is Sfinitely generated.

(4) R is Noctherian.

Proof. It is clear that (4)=(1)=(2). That (3) and (4) are
equivalent is an immediate consequence of Corollary 1.2 and Lemma
1.3. We now show that (2)=(4). Thus, let P be a proper prime
ideal of R. By Lemma 1.1 and Lemma 1.3, P is the unique minimal
prime divisor of some finitely generated ideal 4 of R. If pi, .-, p,ER
are such that PR,=(py, ---, p,) Ry, then P is the unique minimal prime
divisor of 4,=A+ (py,---, p,) and 4;Ry= PR,. Suppose that P, P, ..., P,
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are the prime divisors of A4; and let y;, ..., ¥im; € R be such that
PRy, =(¥i1, -+ ¥im;)) Rp,. For 1<i<n, P; is not a prime divisor of
A2=A1+i]l(y;1, <y ¥im;), since P;R, is not a prime divisor of AR,
=PR;.. iSuppose that Q is any proper prime ideal of R which contains
Ay and suppose that Q2 P; for any i. But Q24,2 4,, so Q2P and
it follows that PR, is the unique prime divisor of 4; Ro. Thus, A; Rg
is PRg-primary [2, p. 20] and, consequently, if (A4; Rg)°® is the ex-
tension and contraction of 4, Ry with respect to (RQ)qu, then A4; Rg
=(41Ro)**=[ A1 (Ro)rre]*=(41Rp)*=(PRq)*=PRq [2, p. 17]. But
A1 Rq<S A, Rg € PRy so we have A3 Ro=PR,. Hence, QR is not a
prime divisor of A4, Rg and it follows that Q is not a prime divisor of
A.. Therefore, if P, Pj, ..., P,, are the prime divisors of A, then for
1<i<m, P;DP; for some j, 1<j<n. Since R satisfies a.c.c. for
prime ideals, a finite number of repetitions of the above procedure
yields a finitely generated ideal A3 such that A3R,=PR, and P is
the unique prime divisor of A3. Then A3 is P-primary [2, p. 20] so
A3 R,=PR, implies that A3=P. Thus, P is finitely generated and the
theorem follows.

In general a ring can satisfy any of the conditions (1), (2) and
(3) of Theorem 1.4 without being Noetherian. In fact, if X={X;}7_;
is a countable collection of indeterminates over the field K, then K[ X ]
is a non-Noetherian ring in which each of these conditions is satisfied.
To see this, let A=(f1,.--, fr) be a finitely generated ideal of K[ X |.
For some integer n we have fi, ..., f, €D,, where D,=K[X, ..., X,,].
Since D, is Noetherian, A'=(f1, .-, fr)D, has a finite irredundant
primary representation in D,—say A'=QiN\..-N\Q,, and VA  is finitely
generated. Hence, A= A'[ X ] has the finite irredundant primary re-
presentation 4=0;[X]N...Q,[X] and VA=(NA)[X] is finitely gen-
erated.

No two of the conditions (1), (2) and (3) are necessarily equivalent
in an arbitrary ring R. Any rank one nondiscrete valuation ring
satisfies property (1) but not (3). For an example of a ring in which

(2) holds but neither (1) nor (3) holds, consider any rank two valuation
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ring V. Property (1) holds only if principal ideals of ¥ are primary,
but if P is the minimal prime ideal of ¥ and x € P— {0}, (x) is not
primary [1, p. 173]. If M is the maximal ideal of V' and ye M—P,
then either \/@=M is not finitely generated or \/(x_) =P is not finitely
generated [ 1, p. 73].
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