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O . Introduction.

We shall consider linear algebraic groups defined over an algebraical-

ly closed field k  with an  arbitrary characteristic p. For the simplicity,

we shall call them algebraic groups. Let G  be an algebraic group and
le t  V  be a  finite dimensional k-G-rational m odule. If G fixes a non-zero
vector e 0 o f  V , then th e  associated representation o f G  is called an
M-representation (o r  th e  representation o f M-type), an d  e 0 is ca lled

the associated fixed p o in t. Extend e 0 t o  a  basis {e o ,  e l , •••, en }  of V.
Then, w e  h av e  a  matric representation p ' :  GL (V ) under the basis

{e o ,  e l , •••, en }  of the following form

where u ( g )  is a (1 x n)-matrix and p (g )  is an (n X n)-matrix. Through

this representation of G , G  acts rationally on the projective space P„
1

=--an d  f ix es  a  p o in t e 0 ( . Therefore, G  acts rationally on the

polynomial ring k [X 0 , X7,1 in the following way ;

xg=xo+ u i ( g ) X i

1=1
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-1 pu(g)x, (1 <i .<n )

Under the above notation, the following conditions are equivalent
to each other.

(a) For any M-representation p': G--+GL(n +1, k), there exists a
G-invariant monic polynomial with respect to X o .

(b) For any M-representation p ' :  G--,GL (n +1, k ), there exists a
G-stable hypersurface in  P„ which does not go through the associated
fixed point e 0 (i.e. there exists a G-stable affine open subset in  Pn

which contains e o)•
( c )  Let R  and K  be any G-rational k-algebras such that there is

a surjective G-algebra homomorphism ça: R - ÷ R '. T h e n , fo r  any G-
invariant element x  o f R ', there exists a G-invariant element y  o f R
and a positive integer m  such that ço(y)= xm.

An algebraic group G which satisfies the above equivalent conditions

is called geometrically reductive (S e sh ad r i [1 2 1 ). In  connection with
the construction of moduli space o f  curves over an  arbitrary field,

D. M umford [51 conjectured that a connected reductive algebraic group

is geometrically reductive. Moreover, this conjecture concerns with the

14th problem of Hilbert (N agata [91), the moduli space of stable vector

bundles over a non-singular complete curve (Seshadri [121) and quotient

homogeneous spaces. In this paper, we shall prove the followings: Let

G be a connected reductive algebraic group. Then, for any M-represent-
ation p': G--÷ GL(n +1, k), there exists a G-stable closed subset in  Pn

(which may not be a hypersurface) which does not contain the associat-

ed fixed point. Furthermore, we shall discuss one question "Does this
property characterize reductive algebraic groups?" and consider one ap-

plication.

T h e  author likes to express his sincere thanks to Professor
M. Nagata and Professor H. Hijikata for many valuable comments and
discussions.
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1 .  Geometrically reductive groups and semi - reductive groups

Definition 1.1. L e t  G  b e  a n  algebraic g ro u p .  I f ,  f o r  an y  M-
representation p' : G— )GL(n +1, k), there ex ists a G-stable closed subset

in P„ w hich does not contain the associated fixed point, then G  is called

semi-reductive algebraic group.

Our aim of this section is to prove that a  connected reductive

algebraic group is semi-reductive. We shall prepare some lemmas for
the purpose.

Lemma 1.2. L et G  be a  connected algebraic group and le t B  and

T (B D  T )  be a B orel subgroup o f  G  and a m ax im al torus o f  G  respec-

tively. I f  p ' :  G  G L (n  +1 , k )  i s  a n  M-representation, then  there  is  a
m atrix  S ( E GL (n +1, k )) such that p"= S p' S '  satisf ies the following
conditions.

(1) p "  is  an  M-representation of  G.

(2) p"(B).= { p"(b)Ib E B}  consists only  o f  upper triangular m a-

trices and  p"(T )= { p"(t)It E T }  consists only  of  diagonal m atrices.

( 1  u )
P ro o f . Put p '=( . p  is a  representation of G.

0 p
Hence, there is a  matrix S i (E G L (n , k )) such that p = Si P:Y .

satisfies that o(B) (or p (T ) respectively) a re  upper triangular matrices
(A 1 (t)

)(or diagonal matrices respectively). L e t 0(0 22(0 0= for
0 2„(t)

1 0  •  0
any element t  o f  T  and put s  =  9 :5, Then  w e h ave  p'

u ye ih-=  p '  =  ( 0
1
 s i p  s o  -  0  0 )  ,  where n = u Si- 1 . L e t Qi b e  the

connected component of K er Ai a t the unit element and 1= { ilQ i = T} .
Take an element t o o f  T  such that th e closed subgroup o f T  which
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contains t o i s  T  itself.

Put

u ( t ) (iEE /)
a i =  2 1(t 0 ) - 1

0 (i E /

( 1  a,.., - ., an)

and S 2 =  9 En ,  where E n is  the unit matrix.

'o
Then S= S2Si satisfies the Lemma 1.2. q.e.d.

The following Lemma 1 .3 . is  a  key Lemma to prove that a  connected

reductive algebraic group is semi-reductive.

Lemma 1 .3 . L e t  G  b e  a  connected algebraic group, p ': G
GL (n +1, k ) an M -representation and let B  be a B o re l subgroup o f  G.
The follow ing conditions are equivalent to each other.

(1) T here ex ists a G -stable closed subset in P, w h ic h  d o e s  n o t
contain the  associated fixed point e o .

(2) T here ex ists a po in t x (  e o )  in P , w h ic h  is  a B- f ixed point

( 3 )  P u t  0 , (  1
p ) ' F o r  e ac h  e le m e n t g  o f . G ,  p u t  H ,

= {y E P _  u(g ) y = 0 }  ( th is  f o rm s  a hy perp lane  in  P u _ 1 ). Then,

( . 11-0* 0  ( B u be ing  the unipotent p art of  B )
beB'

Proof. T h e  equivalence of ( 1 )  and (2 )  is obvious. (2) —> (3). Let

x(-7L e 0)  be a  B-fixed point. Put x = ! )  ,  where x o is  an  element of
k  and x t (* 0 )  is  an  (n  x  1 )-m atrix . From th e hypothesis, there is a
rational character 2: B —> k* such that

71 u ( b ) T  0 ) x
= 2(b) for any element b  of B .

to ( b ) )  x' x'

Hence, x  + u(b)x 1 -= 2(b)x 0. B ut 2(b)=---- 1  fo r any element b  of
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B U . Thus x' E n H b  and  so n II b  is not empty. (3) ( 2 ) .  L e t  T  be
be.13' 6E13'

a  m a x im a l torus o f  G  contained in  B .  By virtue o f  Lemma 1.2, we

may assum e that t h e  M-representation p ' = (
1 u

)  satisfies t h e  condi-0  p
tions (1) an d  (2 ) o f  Lemma 1.2. F o r  any elements b, b' o f  B " a n d  t
o f  T,

u(bb')= u(b')+ u(b) p(b')

u(t - 1  bt)= u(t)+ u(t - 1 b) p(t)= u(t - 1  b) p(t)

= (u(b)-1- u(t - 1 ) p(b)) p(t)

= u(b) p(t).

P u t H = r\ H b ( *  0 ) .  F o r  any element x ' o f  H , we have  that
beau

0= u(bbi)x' = u(bi) x' + u(b)p(b')x' = u(b) p(b)x'

0= u (t 'b t )  x '=  u (b)p(t)x '

Hence, H  is  a  B-stable linear subvariety o f  P n _ i . By th e  theorem of

Lie-Kolchin, there exists a  B-fixed e lem en t x '(*0 ) i n  H .  P u t  x

= (  '
0  ) .  Then we have,x

(1  u (b )\ (  0 V . . . (u (b )x ) (  0 \

1:, p (b ) )  x /  ) p(b)x' ) p(b) x' )

f o r  any element b  o f  B , because u (b )x '= 0  fo r  any element b o f  B.
Thus, x  is a  B-fixed p o in t  which is different from th e  associated fixed

point. q.e.d.

Corollary 1 .4 .  F o r a  connected solvable alg eb raic  g ro u p  G, the
f ollow ing conditions are equiv alent to each other ;

(1) G  is geometrically reductive.

(2) G  is reductive.

( 3 )
 

G is semi-reductive.
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Proof. T h e  equivalence o f (1 )  and (2 )  is obvious. W e have only

to  prove that ( 3 )  implies (1). Let p ' :  G —*GL(n +1, k) b e  a n  M-
representation o f G .  By virtue of Lemma 1 .3 , p ' is  quivalen t to  an

/10  . . .  0  \

M -representation o f  t y p e  
0
.  Therefore, there exists a  G-

\ (.)
stable hyperplane which does not contain the associated fixed point.

q.e.d.

Corollary 1 . 5 .  L et G  be a connected algebraic group and let N  be
a  closed connected subgroup of  G  s u c h  th at  BuN  B u (B ik  being the
unipotent part o f  a B orel subgroup o f  N .)  I f  N  is semi-reductive, then
G  is sem i-reductiv e. I n  particular, if  N  i s  a  closed connected normal
subgroup o f  G , i f  G/ N i s  a  torus group  a n d  i f  N  is semi-reductive,
then G  is semi-reductive.

Proof. T h e  first p art follows directly from Lemma 1 . 3 .  Since

G/N is a  torus group, B V = B " and the second part is obvious. q.e.d.

Next we shall prove some propositions about semi-reductive groups.

Proposition 1 . 6 .  ( 1 )  L et G  and G ' be algebraic groups. I f  there
is  a surjectiv e homomorphism f ro m  G  to  G ' and  i f  G  is semi-reductive,
then G ' is semi-reductive.

( 2 )  L e t G  be  a  connected algebraic group an d  le t N  be a  closed
connected norm al subgroup of  G .  I f  N  is geometrically  reductive and  if
G/ N is sem i-reductive, then G  is semi-reductive.

Proof. ( 1 )  is obvious. (2). L e t p' : G G L  (n  + 1 , k ) b e  a n  M-
representation o f  G .  T h e re  is  a n  N -in v a r ia n t m o n ic  homogeneous

polynomial F(xo, • • •, xn) with respect to  x 0 because N  is geometrically

reductive. P u t  V = E F g k •  T h en  V  i s  a  finite dimensional G/N-
geG

rational m odule. Put TV= Vr\ ( x i •krx o , ,  x . 1 ) .  Then V  F - k  w
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and V gives an M-representation of G/ N .  Let a be the ideal generated

b y  { F g }  gaG in k Ex°, • • •, x , , l•  a  is  a G-stable ideal. If the associated

closed subset V (a ) in  P .  is non-empty, then V(a) is a G-stable closed

subset which does not contain the associated fixed po in t. Thus, we may

assume that V (a ) is  em p ty . Let IF 1, ,  F„3. b e  a  basis of W  and

F o =F . Then the map 9 : P n x  =  (x o : • • • : x ) — >(Fo(x ): • • • : F„,(x )) E P m

is a non-constant morphism. Hence, dim  (Im  9) n . F ( x ) = - F1(x)

(0 <i < m )  for any point x  o f P„ and any g ( E N ) ,  because F i is  N-
invariant. Thus the orbit N (x )  o f  x  is contained in  9 - 1 (9 (x )) fo r

any point x  o f P „ .  By the dimension theorem of morphisms, x
for a general po in t x  o f P n . Therefore, p' IN is  a unit representation

and so  p '  is  an M-representation of G /N . Hence, there exists a  G-
stable closed subset in  P„ which does not contain the associated fixed

point. q . e . d .

Remark 1.7. L e t G  b e  a  connected algebraic group and let N
be a  closed normal subgroups o f  G  (not necessarily connected). I f  N
is completely reducible (i.e. every rational representation o f  N  is com-

pletely reducible.) a n d  if G/N  is semi-reductive, then we can prove

that G  is semi-reductive by the same method as in the proof o f  Pro-

position 1.1 (2).

Proposition 1.8. Let G be a connected semi-simple algebraic group.
T hen G  is semi-reductive.

P ro o f . L e t B  and T  be a Borel subgroup o f  G  and a maximal

torus o f G  contained in  B  respcetively. Let  p ': G —> GL(n +1, k) be an

M-representation of G  which satisfies the conditions of Lemma 1.2.

Furthermore, Let r be dim T, E = { a}  (or E o = respectively)

be the positive root system o f G  (or fundamental root system respec-

t iv e ly ) a n d  le t  X  b e  th e  rational character group o f  T .  Then

• • • ,  a i l  is a  basis o f  X O Q  over Q  (Q  being the rational number
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/ 1 0 0
0  2 1field.). Put o '=( u )  and p '( t ) = ( . (0 for each element

•A n (t))
t  o f  T .  For any positive root a ,  there is a  one-parameter subgroup

r k — > Pa  such that tr a (x )t - 1  =  a (a(t) x ) (t E T , x E k ) .  Each element

b  of 13" can be written uniquely in the following way ;  b =  i l r a (x a )

(x a E k ) .  Hence, we have that

u i (b )-= E c j j e d “ where c;,, are elements of k  and m„ are non-
M =  (M “ )

negative integers. From this, we have the following ;

u 1(tb t - 1 ) = u i( h r a ( a ( t ) x c i ) ) =  E a(t) otng"on a )

i(tb  t -  1 ) - = 4 1 (t)u i (b)-= 27 1 ( 0  E cfixT-.
713-= (111 )

Thus, if some c;,, is not equal to zero, then - 2 i = E m a . a .  Put
a

Ai =  ri v a k (i. <i < n), where r,k  are rational numbers. I f  some rik  is
k= 1

Ê 
n

positive, then u 0 on  B " .  Since G  is semi-simple, A i= E (E Tik)aki=1k = 1  1=1

= 0 , and rik -= 0 for all k. If each rik  is not positive, then each rik

is  equa l to  zero . In  th is case, p ' is  a unit representation. By the

above argument, we can have that u 1 0 for some i  on B U .  This and

Lemma 1.3 imply that there exists a G-stable closed subset which does

not contain the associated fixed point. q . e . d .

Theorem 1.9. Let G  be a  connected reductive group. T hen G  is

semi-reductive.

P ro o f . B y vitue o f Corollary 1.5 or Proposition 1.6 (2), we can

easily prove Theorem 1.9.

Problem 1 .  Let G  be a connected reductive algebraic group and

let p': G— >GL (n +1, k ) be an M-representation of G . Assume that X

is a G-stable closed subvariety in P n which contains the associated fixed

point and dimension of X  is greater than one. Then, does there exist
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a G-stable closed proper subset Y  o f  X  which does not contain the as-

sociated fixed point?

Rem ark 1 .1 0 . I f  Mumford conjecture is true, then we can easily

prove that problem 1 is true.

2 .  Reductive algebraic groups.

In  this section, we shall consider the relation between reductive

algebraic groups and semi-reductive algebraic groups.

Lemma 2.1. (S teinberg [1 3 1 ) L et G ' be  a  connected sim ple alge-
braic  group an d  le t (G , g )  be  a central ex tension of  f in ite  ty pe of  G'
( ir ; G—> G ' is  a surjective hom om orphism , Ker n  i s  a c e n tral subgroup
of  G  and order o f  any  elem ent o f  Ker n  is bounded). T hen  there  is a
central ex tension (T , 70  of  G ' such that

(1) T here is a  group homomorphism  6: T  —> G
(2) F =[F ,  T ] and iv ': is  an isogeny.
(3) The follow ing diagram  is commutative

0  ---*K er - > G

We shall use this Lemma 2.1 to prove the following.

Proposition 2 .2 . L e t G  b e  a  connected algebraic group and le t
R  be its rad ic al .  I f  R =R u, d im R >1  an d  i f  R  is  a central subgroup
of  G , then G  I  [G, G].

P ro o f . I f  characteristic o f  k  is  zero, our assertion is obvious by

the Levi decomposition and we m ay assume that characteristic o f k  is
positive. We shall prove Proposition 2.2 b y  the induction on dim G.
I f  dim G = 1, then G-=R =R u  is  a commutative group, whence Proposi-

tion 2.2 is  true. Assume that dim G > 1  and put G'=- G /R . I f  G ' is a
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simple algebraic group, then G=o- (T)•R= R•o- (T ) by virtue of Lemma
2.1. Thus, [G, G ]=D Y (F), 6(T )]=6(F)*G . If G' =G /R  is not simple,
then G'-=Gi•G, where G;. i s  a  closed normal simple subgroup, G is a
closed normal semi-simple subgroup o f G ' and w here (G ln G )  i s  a
fin ite group. Furtheoremore G ; commutes w i t h  G .  L e t  7r: G --G 1

=G /R  b e  a  canonical homomorphism a n d  le t  H  b e  th e  connected
component o f 71. - 1 ( G )  a t  the un it elem ent. Then, dim H< dim G  and
R  i s  the rad ical of H .  Hence the induction hypothesis implies that
H *EH , H ] .  O n  th e  o th er hand , H = R •EH, H]. T h u s  w e  have
th a t  R E I -1 , H ]. P u t  G" -= G /[H , H ] and R" = R•EH, H i/E H , H ]
=H/EH, H I . T h e n  R "  i s  the radical of G", dim R"> 1  and G"/R"

Since G"/ R" is  simple, we have that G/EH, EG/E11, 111
G/EH, H]]=EG, G1/EH, H]. Therefore we have that G*EG, G].

q.e.d.

Corollary 2 .3 . L e t G  be  a  connected algebraic group an d  R  be
the  rad ical o f  G .  If  G -- -=- I G ,G ] an d  R  be  a c e n tral subgroup of  G,

then G  is  semi-simple.

P ro o f . P ut R= Ru• R s  where Ru (or R s )  i s  the unipotent part of

R  (or the semi-simple part of R  respectively). (R s n[G , G ])  is  a  finite

group, whence Rs ---- (e). I f  dim Ru =dim  R > l ,  then G=/=[G, G ] by

virtue of Corollary 2.3. Therefore R = R "=(e). q.e.d.

By virtue of Proposition 2.2, w e can  show  a necessary and suf-
ficient condition for semi-reductive algebraic groups to be reductive.

Theorem 2 .4 . L et G  be a  connected algebraic g ro u p . T h e  follow-

ing  conditions are equivalent to each other.

(1) G  is reductive.

(2) G  is semi-reductive and the unipotent radical of  G is  a central
subgroup.
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P ro o f . (1) -± (2) is obvious. W e shall prove (2) — >  (1) by the in-

duction on dim G .  Let R  b e  the radical of G  and R S  b e  the semi-
simple part of R .  I f  dim Rs 1 ,  t h e n  G/ R s  is reductive by the induc-

tion hypothesis. H ence Ru -= ( e ) .  I f  dim Rs = 0  and d im  R '> 1 ,  then

G G ]  b y  v ir tu e  of Proposition 2.2. But th is  c a n  n o t  occur,

because G-= R•EG, G ] and G/EG, G ] is  a torus group. q.e.d.

W e shall show another condition next.

Theorem 2 .5 . L e t G  be  a  connected algebraic group an d  R  be
the radical of  G .  The follow ing conditions are equivalent to each other.

(1) G  is reductive.
(2) G  is semi-reductive and  dim Ru <1.

P ro o f . (1) — > (2) is obvious. W e shall prove (2) -÷ (1) by the in-
duction on dim G .  If dim G =1, then our theorem is obvious. Assuming
that dim Ru -= 1 ,  w e sh a ll d eriv e  a contradiction. Put it: G g -
Int. g E Aut a ig .„ . R u =k * (Int. g  is  the inner automorphism of G b y  g).
Furthermore, let G ' be the connected component o f (Ker 7r) a t  the unit
e lem en t. T hen  G ' i s  a  closed connected normal subgroup o f G  and

codim G' < 1 .  Put R ' to be the connected component of (R n G ') a t the

unit elem ent. T hen  R ' i s  the radical of G ' and k u = R u . Since R' 24

is  a central subgroup of G ', R ' =R 1 ". R I ' is  commutative.

Hence R I ' i s  a closed normal subgroup o f G .  I f  dim R's> 1, then
G / R' 5  is  reductive  by the induction hypothesis and so  Ru -= (e). There-
fore, w e m ay assume that R " -= ( e ) .  Since dim R'" =1, G' *EG' , G'1 by
v irtue  of Proposition 2.2. On the other hand, if [G ',  G ']*  e ,  then

GY EG' ,G'1 is reductive and R '' gEG' , G '1. But G' = Riu ,  G '1 .  This
is  a contradiction. Hence G ' is  a commutative group and G is  solvable.
B y virtue of Corollary 1.4, G  is torus group. This is  a lso  a  contradic-
tion. q . e . d .

Next we shall prove that semi-reductive algebraic groups are reduc-
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tive in the case of characteristic ze ro . A t first, we shall prepare two

lemmas in order to prove it.

Lemma 2.6. (Mostow [6 1 ) L et G  be a  connected algebraic group
and  le t Ru be the  unipotent radical of  G .  I f  characteristic o f  k  is  zero,

then f o r an y  m ax im al closed connected reductive subgroup G ' o f  G , we

have that G= IV  ̀•G =G' • RU (semi-direct).

Therefore, fiber space n. : G G / RU has a global section which is a

group homomorphism.

Lemma 2.7. (Birula D I  L et G  be  a  connected algebraic group
an d  le t H  be a  closed connected unipotent subgroup o f  G  such that G / H

is  affine. Then, f o r an y  k — H— rational m odule M , there  is a  k —G —

rational module N  which satisfies,

(1) M  is  a  k — H —  rational submodule of  N,

and

(2) M i l = N G w here ___ E  mI m h = m f o r every  elem ent h  o f

H I and N G =  E N  I n g  n  f o r every element g  of G} .

Now we shall prove the following.

Theorem 2.8. I n  th e  c as e  o f  characteristic z e ro , the  following
conditions are equivalent to each other.

(1) G  is geometrically reductive.

(2) G  is reductive.

( 3 )
 

G  is semi-reductive.

Proof. It is well-known that (1 )  and (2 ) are equivalent to each

other (Nagata D C ) .  W e  have only to prove that (3 )  implies (2).

We shall prove it by the induction on dim G .  If dim G= 0 or 1, then

it is obvious. I f  every M-representation o f  two size o f Ru is  trivial,

then R „ is trivial. We shall prove that evely M-representation of two
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size of Ru is trivial. L e t  V=e 0k - ke 1k  be an  M-representation module
(1of Ru an d  le t K t  b v(b)) EGL(2, k )  b e  th e  associated re-V )  1

presentation. By lemma 2.7, le t  W =  ef•k  and  le t {e o,  e l ,  ef2,
g e G

e r } ( g i E G ) be a  basis o f W . F o r any element b of RU,

et -=v(b ) eo el

_L e gt( i = 2 , in).b g i b g i - ! g i =  v ( g i  g i  eoe t i  — e

Therefore, we have an M-representation =  ( 0
1 u

p )  ( E GL(m +1, k)) of

(p ,( b ) = 01 uE (b ))G and for any element b  of R U. P u t  Gt = pt(G) and

p (G ).  If y / 0  on RU, then C is reductive by the induction hypoth-
1 uesis. Let yo: G'D g' = (
0  g )  i

- - - gE&  be a  canonical homomorphism.

Then Ker ço-= R'' (Rtu being the unipotent radical of G' and R"= pt(Ru))
because characteristic o f k  is zero. Thus G'/R f u is isomorphic to C.

1By lemma 2.6, there exists a group homomorphism: g 1- - -
s ( g )

->( 0  g

E G ' and s(gi•g2)=s(g2)+ s(gi.)•g2 for every element g i a n d  g2 o f  C.
1  uLet g ' = (  g )  be an  elment of G '.

( 1  u ) = (1  s(g)V1 u —  s( g))

0  g 0  g  AO 1

(1  u — s(g) )
i3 an  element of R .

\O 1

I f  dim R 'u = r, then there is an isomorphism a: Rtu O r  as algebraic

groups because R "  is commutative.
L e t 0: g ' Int g' E Aut a ig .g r . (R 1 4 )=  A ut a ig .g r . (O r

) .  Since
characteristic o f  k  i s  zero , Aut a ig .,,.(kEBr)=GL(r, k). Th u s V , is  a
rational representation from G ' to  GL (r , k ) and  Ker Ø contains R ".
Hence we h ave  a  rational representation fi from C to GL(r, k ) such
that the following diagram is commutative.

g '=

and



540 Hideyasu Sumihiro

Gf/RfU C GL(r,

B y  th e  ab o v e , w e  h a v e  a  rational representation from  G ' to
GL (r +1, k ).

(11 u a
(10 ui — s(g)))(

G ' g '
o o (g)

E GL(r +1, k)

Then r• joi  i s  an M-representation of G  and p p ' has no Ru-fixed point
which is not the associated fixed point. This is  a contradiction. q.e.d.

Problem 2 .  I s  a  connected semi-reductive algebric group reduc-
tive?

3 .  Application.

W e shall show an application of Proposition 1.8 in  th is  section.
L et G  b e a  connected algebraic group . It is w ell know n that every
invertible regular function on G  i s  a  rational character up to a  non-
zero constant (Rosenlicht [111). A t  first, w e shall p rove th is fact
directly.

Lemma 3 .1 . Let T  be a torus g rou p . Then any invertible regular

function on  T  is a rational character up to a non-zero constant.

P roo f. We can easily prove Lemma 3.1 by the induction of dim T.
q.e.p.

Definition 3 .2 . L e t f  be a  regular function o n  G .  For an

element g of G, we define g f  (or f g  respectively) to be (g  f ) (g ') . f  (g' g)
(or fg(g').= f (8. -

1 g ')  respectively) fo r  any element g ' o f  G.

Lemma 3 .3 . L e t G  be a  connected semi-simple algebraic group.
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T hen any  inv ertible regular function on  G  is  a non-zero constant.

P ro o f . Let B , T  and B _ be a Borel subgroup, a maximal torus of

G  contained in  B  and the opposite Borel subgroup of B  respectively.

Put

ço: x T x (b', t, b)1.— )b%t•b EG.

Then 9  i s  a  morphism and Tm i s  an affine open subset o f G .  Let

9* : k [G] -----4c  [B x  T x  Bu] be the induced injective homomorphism.
I f  d i m  = n, then kr13t. x T x Bul -=k „  X ,  Y 1 „ ,1 7 „1, where
X i an d  Y i a re  indeterminates over k E T ].  Therefore, i f  f  i s  an in-
vertible regular function on G , th en  go *(f) is  an invertible element of

lt [ T ] .  In particular, bf  b i = f  for any element b  (or b ')  of B u (or B t
respectively). W e m ay assume f  ( e ) =1  where e  i s  the unit element
of G ,  in order to prove that f  is  a non-zero constant. If we restrict
f  on T , then  it is a rational character on T  by virtue of Lemma 3.1.
Put Q  to  b e  the connected component o f Ker ( f  T )  a t  e. For any
element b  o f if `, b ' o f B t  and t  o f T ,tb f b ' = f . Let E = a r l
be a fundamental root system of G  with respect to (B , T ), Ga ,  the root
subgroup o f  G  associated with a i (Ga i  b e in g  a  connected semi-simple

subgroup and dim G a,=-- 3), and 13 „, (or P_„, be a one-parameter subgroup
of G  corresponding to cei (o r — a 1). Furtherm ore, let r * „,: ka5 P± a i  b e
the isomorphisms and T a i  b e  a maximal torus o f Ga i  (dim Ta c=1).
Then,

(1) T =T a i ... T a ,

(2) P_ a  j •r a ,(1).P_ a ,•r a i (-1 ).P a i  contains 7 '
 ce e

Therefore, any element g  of Tm ço can be written in the following way ;

g=11.r a i (1)r_ a ,(x )r a ,( -1 ) .t .b ,

where b ' EB , b E Bu, t EQ and x E k. Thus f f (blrai(1) r_ a i (x)

ra,( - 1 )t•b)= f (t" a i (
1 )  r_.,(x) rcr i (1)). But i t  is  obv ious that an in-

vertible regular function on P_ a i  i s  a non-zero constant. Hence f  is  a
non-zero constant. q.e.d.
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Now we can show the following Theorem 3.4.

Theorem  3 .4 . L e t G  be  a  connected algebraic g ro u p .  Then any
inv ertible regular function o n  G  i s  a  rational character o f  G  u p  to  a
non-zero constant.

Proof. L e t  R  be the radical of G  and G' =G/ Ru , where Ru is  the

unipotent part of R .  T h e n  G  Ru )<G' as algebraic varieties (Rosenlicht

[10 ], Grothendieck [41). Thus, if n = dim R ", then we have that k [G ]
= k[G 11 [X i , . . . , X , ] ,  where X i  are indeterminates over k[G 11. Hence

w e m ay assume that G  is  a reductive algebraic group in  order to prove

Theorem 3.4. Then R  is  a central torus subgroup o f  G, G -.= REG, G]

a n d  [G , G ] is a semi-simple a lgeb ra ic  group. Put  q 3 : R  [G ,  G]
, g) '---> b• gE G .  Let q :  kEG]  k  ER x [G, G ] ]  be the injec-

tive homomorphism induced by ço. If f  is any invertible regular func-

tion on G , then e ( f )  is  an invertible element o f  k [R ]  by virtue of

Lem m a 3.3. T hus, f  i s  a  rational character o f G  u p  to  a non-zero

constant. q . e . d .

Corollary 3 .5 . L e t  G  b e  a  connected algebraic group w hose

unipotent radical is triv ial. T hen  any  inv ertib le  regular f unction  on G
is  a non-zero constant.

P ro o f .  It  is obvious.

N ext, w e shall show an application of Proposition 1.8.

Proposition 3 .6 . L et G be a  semi-reductive algebraic group and f

be a non-constant regular function on G .  T h e n  V fg•lc (or E g p k )
g .G g .G

has a  nonconstant Borel semi-invariant function on  G.

Proof. I f  V.= E fg .k  h as no constant function, then Proposition
geG

3.6 is  t ru e  b y  v ir tu e  b y  v ir tu e  of Lie-Kolchin's theorem . W e m ay
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assume that V  has a non-zero constant function. Let {6. 0= 1 , el, • • • , en}
be a  basis o f  V .  T h en  w e  have an M-representation o f  G .  I f  we

write x  x 0 e + x1 el + • • • + xn en(xi E k ) , then x  is a constant function,

if and  only i f  x 1 =-- • • -= x „  O. B y  v ir tu e  o f  Lemma 1 .3 , we have a

Borel semi-invariant point x -= x 0 e 0 + x i  ei + • • • + x n en w here som e x i

0  (1  <i < n ) .  Therefore, V  has a non-constant Borel semi-invariant

regular function on G. q.e.d.

Theorem 3 .7 .  L et G  be  a  connected sem i-sim ple algebraic group
a n d  f  b e  a non-constant regular f unction o n  G. T h e n  V - = E f g k  (or

g  G
E g f k )  has a  non-invertible Borel semi-invariant regular function on G.gEG

P ro o f . It is  obvious from  Proposition 1 .8 , Proposition 3 .6  and

Lemma 3.3. q.e.d.

Remark 3 .8 .  Unfortunately, in Theorem 3.7  we can not say the
following. There exist finite elements g n }  o f  G  and finite
elements {Xi, • x n }  o f k  such that

(1) { f g ' ,  •.., f }  i s  a  bassi o f  V.

(2) E x i f g i  is a non-constant Borel semi-invariant regular func-

tion on  G.

(3 ) x i*O .

In fact, we can easily make a  counter example.
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