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§ I. Introduction and summary

The non-existence of positive eigenvalues w ith  square integrable

eigenfunctions o f th e  Schriidinger operator —  4 + V, where d  i s  the

Laplacian and V  the multiplicative operator through the potential func-

tion  V (x ) ,  o r  some o f  its  variants, has been investigated by many

authors (see, e.g., [1 ]-1 3 1 , [5 1- 1 1 6 1 ) .  In  studying this problem some

authors assume, as seems physically natural, th a t V ( x )  decreases to

0  at infinity.' ) B ut when a  magnetic fie ld  is present so that the

Schriidinger operator becomes — (ai—  1  bi(x)) (a; + — 1 bi(x)) +  V,
0where ai = and the usual summation convention is used here and

ox i

in the sequel, it is not necessarily physically natural to assume that the

vector potential b(x )=(b i (x )) also vanishes at infinity. It might appear

more natural to assume that the magnetic field obtained by taking the

rotation of b(x ) (in the 3-dimensional case) diminishes at infinity. Our

aim  in  th e  present paper may be said from the physical viewpoint

1) For the many-particle Schrcidinger operator it cannot be expected that the
potential decays uniformly at infinity. For th e treatment o f  such potentials see
Agmon [1] and Weidmann [14], [15].
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to  show the non-existence of positive eigenvalues of the Schr&linger

operator with the magnetic field verifying the above-mentioned smallness
condition at infinity.

More generally, we shall consider the eigenvalue problem associated

with a  second-order elliptic differential operator :

(1.1) [— ( +  V —lb i (x ))a u (x )(0 1 +  — lb i (x ))+  c(x )1 u=  2 u ,

where (au(x)) is a positive definite matrix for each x (the precise con-

ditions on the coefficients will be given later). W e assume that a 1(x )
tends to di ;  (Kronecker's delta) as I x I tends to 00, though this is not

absolutely necessary, and that Oi l v ( x ) - 0 ; b i (x )  and c ( x )  tend to  0  as

I x I tends to 00• Then our result will be a  growth estimate at infinity

o f u  an d  its derivatives, from which will follow the non-existence of

positive eigenvalues to the eigenvalue problem (1.1).

Kato [7] considered the eigenfunction u(x) as a function o f I" —
x

w ith  a  parameter r =  x  and quadratic functionals o f  u ( r . )  and its

derivatives depending on  r  in the case when a u = d u  an d  b i O .  In -

vestigating the asymptotic properties o f  these functionals by use of

(1.1), he was able to  show the non-existence of positive eigenvalues.

The same goal was attained, on the other hand, by Roze [11] when

b i 0  th ro u g h  an extensive use of integration by parts, the starting

step being to integrate by parts equation (1.1) multiplied by the func-

tion I x "x i a u ai u  (this procedure in  fact leads to Kato's functionals if

one looks at the surface integrals obtained in  its course). Our method

m ay  b e  sa id  to  b e  a compromise between them, introducing some

relevant functionals b y  partial integration. One point which should be

noted in  our treatment may be that we try to regard the differential

operation 8  +V-1b1lb i a s  one entity as far as possible, not separating it

unless necessary. W h at is  n eeded  th en  is  an accumulation of shear

computation and some ideas borrowed from Kato [7], for instance.

Here we shall list the notation which will be used freely in the

sequel :

x  (xi, • • •, xn )  is a position vector in R ;
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I x I =( I xi I 2 + + I 2
)

1
'

2
 ;

(1x1 0 ) ;
I x I

Sr = {x E R n 1 I x l= r } for r > 0 ;

B s r= { x E R n Is lx1 < r } for 0<s<r;

E r = {x ER n l ix l> r } for r > 0 ;

0 0i —  ( i  =  1, • • •, n);
°xi

D 1=61+11 — lb i(X )

Bu = B u (x )=  D i —  D -= — 1(19 b J (x )—  b i (x ));

A = A (x )= (a u (x )) (i, j=1, • • ., n);

< f, g> =  f g i for f = ( f i ,  • • • ,  f , , )  and g= (gi, • • • ; g.);

Du =  (D i u (x ), Dnu(x));

ADu = (a i i  D i u, an i D i u);

the dot • indicates the end  o f a  differential operation as in D i u•v

=-EDiu(x)]v(x);

Sp A =Sp A(x)= a i i (x );

[5s, j s , i f  d 'S = s ,f  d S  j s , f dS;

ei ( r )  denotes a positive function fo r  r  >  0  which tends to  0  as

r -0 0 (i =1, 2, • • •);

L 2  denotes the class of square integrable functions, and thus L a R a)
is all L 2  functions over ER0 ;

H 2  denotes the class o f  L 2  functions with distribution derivatives

in  L 2  up to the second order inclusive;

L 2 ,I 0 c  and H2,10c denote the classes of locally L 2  and H 2  functions,
respectively;
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Cm denotes the class o f  m-times continuously differentiable func-

tions.

Now let us state the conditions to be imposed on the coefficients

of the differential operator appearing on the left side o f (1.1).

W e assum e that there  ex ists  a positiv e constant R o su c h  th at the
follow ing conditions are satisfied f o r  x l> R o :

(A l ) Each a 11( x )  is  a  real-valued C1 f unction and a ( x ) = a ( x ) .

(A2) There ex ist positive constants C1 a n d  C 2  such that 0<  C1 <C2

an d  C i 61 2  C 2 1  el 2 f o r any  com plex  n-vector Ç.

(A3) 8k au(X )-= 0(1 X 1 - 1
) ( I 00).

(A4) a u ( x )  aii a s  lx1 -00 .

(B1) Each b 1( x )  is  a  real-valued function.

(B2) B ii(x )=  o ( I x1 - 1 ) (1x1—> co).

(C1) c ( x )  is  a  complex-valued bounded function.

(C2) c (x )= -  o ( x1 - 1 ) (1 xj co).

(UC) The unique continuation property  holds. 2 )

By a solution u o f equation (1.1) is meant an H2,10c, hence L2,10,
function which satisfies (1.1) in the distribution sense in ER 0 .

Our principal aim is to prove the following theorem which restricts

the asymptotic behavior of a non-trivial solution of (1.1).

Theorem 1.1. I f  u is  a  not identically  vanishing solution of  (1.1)
i n  ER° w i t h  a positiv e  eigenvalue, A>0, th en  w e  hav e  f o r any  s >0

lim /1 < > { I u I 2 + < ADu, Du > } c/S = co.

A s  a  corollary to th e above theorem we can obtain a  theorem

2) See, e.g., 1-16rmander [4].
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which asserts that there are no positive eigenvalues with L 2  eigenfunc-
tions of the eigenvalue problem (1 .1 ), i.e., we have the next

Theorem 1 . 2 .  Let u  be a solution of (1.1) w ith 2 > 0  which also
belongs to L 2 (ER0). T hen u = 0 in ER 0 .

We shall prove Theorem 1 .1  in  § 2  and Theorem 1.2  in  § 3 .  In

the presentation of their proof we do not always follow a logical order.

I f  w e  did, we could have started in § 2 , for example, with Definition

2 .8  instead o f Definition 2 .4 , for the latter is  a  special case of the

former. We also inserted lemmas and propositions that may seem more

than necessary, for, logically viewed, many o f them could have been

included in the proof o f other lemmas or propositions. However, for

clarity's sake and in order to avoid too lengthy computation in  a proof

as well as possible, we thought it profitable to include seemingly even

superfluous statements.

Finally we remark that by assuming that the coefficient c (x ) is of
class C ' it would be possible to obtain a result similar to those of Odeh

or Simon [ 1 2 ] .  We did not enter into this problem, however.

§ 2. Proof o f Theorem 1.1

Let u  be a solution of (1.1):

(2.1) —DiauDiu

If we introduce the function v (x ) by

n-1
(2.2) v(x)=-1x1 2 u ( x ) ,

then the following result readily follows from (2.1).

Lemma 2 . 1 .  v (x ) satisf ies the equation

(2.3) —DiauDiv+  4
1

;

1
1 <AD v,"X ">+
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± { c ( x
)  +

n -1  -
21x I

(n — 1 )(n +3)  <A -i,3"c>4 1x1 2

—1 
+ 21xI2 

Sp A A v = 0 .

What we want, in  fac t, to  do for the present is to multiply (2.3)
with I x I " <  A D v >  a n d  integrate over B 0 r . W e w ill be led  to
Definition 2.4 by collecting th e  resulting surface integrals, and the
mentioned integration (by parts) over B 0 ,- will be carried out in  the
proof of Lemma 2.5. We now prepare two computational propositions.
Their proof can be obtained by (repeated, i f  necessary) application of
integration by parts and will be omitted.

Proposition 2 .2 . The following identity  holds:

Re D i a u D i v •Ix 1" A D v > dx =

-.-., 1 , — ss iil<A D v ,1 ">1 2 —

— 1
2 < A 1 - , ><A D v ,D v >1 1 x 1 "o lS -

- 11ADv1 2 — 2
1  ( S p A H - ( a - 1 ) < A ,1 - >) <A D v ,D v >+B„

+ (a —  < A Dv, 2 + Re auDiv•xkOiaki•Div+

1+R e ctuD i v•xkok i Bilv— xkOlaijak i•Div•Div} 1x1"-iclx .2

Proposition 2 .3  Let f  (x ), x  E ER0 ,  and g(t), t R o, be real-valued
C1 f unc tions. T hen  w e  have the follow ing identity  fo r  R o s <r:

Re f ( x ) g a x p v l x l a < " i ,  A D v > dx =

r f
2 3e>fglacl"Iv12dS-
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B „

-(1(ce — 1) < A Z, Z >  S p A + g+

oci ai pa i i g + Ix If g ' > 1  Iv121x
l a-1  dx.

L et u s  now define a  functional of v ( r . )  and Dv (r . ) ,  a motivation
of which will be seen, a s  we remarked before, in  the proof of Lemma

2.5.

Definition 2 .4 . L e t  a  be real. W e  pu t f o r r> R o

F(r, a)=-11 v, Dv)dS, 3 )

L.(x, v, Dv)-= I <ADv,1- > 12 + 21 < A "i", < ADv, D v > +

(n —1)(n+ 3) 1  
1 < A i ,  > 1 2 1v12 —81 x 1 2

n — 1 
xI 2

Sp A <A , '>11 )1
2 + <A i,  x>Iv1 2 .2

Lemma 2.5. W e have

(2.4)
d F  ( r ,  a )   = r 15 s  , {J2(x, Dv)+ (Ki(x)d K2(x))I v 1 2  +dr

J3(x, v, Dv)} dS, 4 )

J2(x, Dv)= I ADvI 2  —

1 — (S p A + (a -1 )< A Z , Z > )< A D v , D v > +2

+ (a + n -2 )I< A D v ,  > 1 2 ,

3) This surface integral certainly makes sense, because the solutions u and
y are seen  to  be in  Cl(ER O . The latter fact can be obtained through an  integral
representation o f u  in  terms o f  a  fundamental solution for the differential equa-
tion (1.1). The same remark will apply to Definition 2.8.

4) What we actually prove in Lemma 2.5 and Lemma 2.6, respectively, are that
F(r, a ) is absolutely continuous and (2.4) and d F(r,a) ld r, >0 hold almost everywhere,
respectively. The same remark will apply to Lemmas 2.9 and 2.10.
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Ki(x) .=  (Sp A+(a —1)< > ),2

2 K2(x)— xmaii2

+ 7 ; i 12 i n+8 3 (spA+(a-1)<A > )< A ,> +

n  3-  2
(I AX1 i>  12)4

1
— —

4
-  (Sp A+ (a - 1)< A3i, 3c" >)Sp A +

▪ 1 n + 3 SpA<A"i","i> +
8 x,a,ci d • +2 

It +  31 1 x k OrS p  Ax i Oi cti , xia; Sp A} ,8 4 4

J3 (x, v, Dv)=- Re au  Di  v. x k ai ak i • v  +  Re au  Di  v•ak i x kB i i —

1 
2- X k alauak i•D iv•D iv+

+ R e (Ix Ic + 11 1  x a t ai .)v<x , A D v>21x1

P ro o f. By Lem m a 2.1 w e have for R o s<r

Re A tt u  v  +   n
l

—
x 1

1 < ADv, "" > +cv+  n - 1  6,a,.,•x•v—B„ 21x1 j

( a  — 1 ) (n  + 3 )   <2a,4 1x1 2

+ 2 1 I2
—

 1 Sp Av-241x1"<i", ADv> dx=0.
x

A pply Proposition 2.2 to  th e  f irs t te rm  o f th e  in teg ran d ; leave  the
second, th ird  a n d  fourth term s untouched ; a n d  t o  th e  fifth, sixth
and  last term s app ly  Proposition 2.3 w ith  f ( x )=  " i >  an d  g (t )

—  (n —1)(
2

n + 3)  , n —1— with f (x ) —  Sp A and  g(t)=-- and with f ( x )4t 2t 2
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= 1  and g (t )=  —2, respectively . Then, gathering the resulting surface
integrals in  th e  left-hand side and the volume integrals in  th e  right-

hand, we obtain

F(r, a) — F (s, a) =  B . ,  1integrand of (2.4)1 1 x dx

whence follows the desired relation by differentiation in  r. Q.E.D.

Lemma 2 . 6 .  Giv en any  e, 0<e<1, there ex ists a n  R i> R o such

that

dF(r, a)  > 0

dr

fo r  r > R i and  for any  a  satisfy ing 1— n <a  < 3—n—e.

P ro o f. W e have Lemma 2.5, and therefore what we have to do
is to  estim ate (2 .4 ) from  below . L e t u s  first estim ate J3 (x, v, Dv).

B y (A2), (A3), (A4), (B2) and (C2) it follows that there is a  function

e i (r )  verifying

(2.5) v, D v ) › — ei(1 x1){1ADv1 2 - 1- 1v1 2 } .

Similarly, the following inequalities are seen to hold:

(2.6) K i ( x ) > /
2
1

 

— eza

(2.7) K 2(x )>  —e3(I x

where we have put

6 = n + a -1 .

In order to get an estimate of J2(x, D v ) w e note the inequalities

(2.8) i <ADv, D v > — I ADW ISe4(1x DI ADv1 2 ,

(2.9) I<ADv, 5-c> i< 1  Apv

(2.8) follows from (A4 ), and (2.9) from the fac t th at <ADv,"1- >  is
the 1"-component of the vector A D v . In view of (2.8) and (2.9), using
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(A4) again , a n d  choosing 77 such that a < < 6  < 7 7  <2 — e, we obtain2

J2(x , Dv)>.(1 — 72
2A p v  —  I <A D v , > 1 2 ) +

(2.10) + (6 — 71
2 )1  < A D v , > 2 + ( 77

2  ) A p v  2

1— 65(1 x1)1 Apv 1 2 >  —  6 )1  A D v I 2 E s(I x  DI Apv 1 2

2

Combining (2.5), (2.6), (2.7) a n d  (2.10) w ith  (2.4), a n d  tak ing  note of

th e  property o f  th e  e  functions, we get to th e  a sse r tio n  o f  th e  lemma.
Q.E.D.

O u r  n ex t task  is  to  estim ate  fro m  b e lo w  th e  functional F(r, a)
itself when  v [ u ]  i s  a  n o n - tr iv ia l so lu tio n  o f  (2 .3 ) [(2 .1 )]. To this
end  we further introduce th e  function W m ( x )  fo r  rea l m by

(2.11) wm(x)= e""" v(x).

T h e  equation fulfilled by  Wm(X ) can be easily derived from  (2.3) and

(2.11), th at is , w e have

Lemma 2 .7 . wr,i (x )  satisfies the equation

(2.12)

n  — 1   m  — D i al ;  Di  wi n -F(  )< ADwni, —

1 (  2 m (2n , +  1 ) (n  —  1 )(n  +  
 ) < „41x1 771- 1 1 '

+
S p A  n -1 +   m    \x , n +
2 1x1 ixi

1  (  i n n  —1 + i c +  
2 N/Ix1 

+ Awm=0.xi

>

W e shall m ultiply (2.12) with I x  I  <  ADw r n >  a n d  integrate by
p arts  over B , ,  w hich w ill be a n  essential p a r t  o f  th e  proof o f Lemma
2.9. T h e  resulting surface integrals p lu s  a n  additional surface integral
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form the following functional of wn i (r  .) and Dw,n (r .).

Definition 2 .8 . Let in , a and 8  be real. W e  put for r> R o

F (r, a, 8, = ra1 s D w „ , ) +  K 3 (x, a, 8, m)1w„,1 21 dS,

w here J1 is giv en in  Definition 2.4, and

K 3 (x, a, 8, m)— 81
1 x1  {m2 m(v2n, x+1 1) < > 2

M  SP A  < A > - - 1
4 ix  3 1 2 2

Lemma 2.9. W e have

d F  (r ,  a ,  8 ,  m )   _  r a  _1

1
s,.

{.12(x, u4n, DWm , m)d-dr

(2.13) +  m 2  (K 4(x)d- K s(x )) I wm1 2 + (K6(x)-FK7(x)) I Wm I 2 +
X 1 13 1 2

( K 1 ( X )  K2(X)) WM I 2 +./.3(X, Wm, Dwn ,)-F

J 5 (x , Wm , Dw,n , a, 8)} dS,

where J2, J3, K1 and K 2  are giv en in  L em m a 2.5 , and

J 4(x, w, Dw, m)=-mV1x11< ADw, I 2 +

M \11x1Re . f a , ADwni> ,2

K4(X)—
jia.,12+Ce —4 < A l.., 3c. > 2+  1   s r , A <

4 I 8 8 r

1 K5(x Az. 1 z..., 8 8

K6(x)— 2n+ 1  I.A ...i1 2+ ( a (2 n + 1 )9 n _   9   ) < A .i. , 3c-> z+
4 8 8 16

n— a+ 3
4s P  

A <  A l. , >  1  
r

( s r , A )2
4 
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2n +  1 1  
K 7 ( x ) =--

 8
< A i , a,, x t 8;  Sp A —

4

1
4  Sp Axiaiaii+  2n + 1 

8 a,, X ia  ja k l • -ik

J5(x, w, Dw, a, 8)= — Re w<".i, ADw> x I S - a + 1 —

( ( 1 3 - 1 ) <-2VX, 1- > +Sp A + X i a j a i M  X  S - a  IW12 .2

P ro o f. W e  f ir s t  n o te  the follow ing identity w hich follow s from

Proposition 2.3 w ith  f =  g  1 and a = 8:

(2 .1 4 )  Re1 W I xi A D w > d x =
B „

r (
2  Li s 3e>iw121xl8ds-

1 ( 1)< + Sp A-

B y L em m a 2.7 and (2.14) w ith  w=w,,, w e  have for R o <s <r

Re1 Diau
n - 1

Diwm+ x i +  x i ) < AD w., Z. > —

1 ( m (2 n  + 1 ) (n  — 1)(n + 3))
<A"i , "i" >W.+

41 xl VI xi 1x1

1 m    
)  Sp Alum+ cwni+21xi Vlx1

1  (    
± )  i a i i • J w . -

2 w 4  I x l " < ,  ADw7 > d x -

-1 {R e  I ADw.>
B „

1+ -
2  

( ( 3 -1 )</a ,:i>

+ 1 [ 5 l<241", 1- > lw„,1 2 Ix VdS=0.
2 s, s,



dF( 5 7r,  2   —n,  4   —n, m)
> 0 .dr
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Now we can proceed as in  the proof of Lemma 2.5: Apply Proposition
2.2 to  th e  first term ; to th e  third, fourth and seventh terms apply

1  
Propositon 2.3 with f ( x ) =  < ".. >  and g(t)—  —

(  2 m ( 2 n
4t \F

+1)
t

(n —1)(n + 3)  ) 1 (  m  
, with f  (x )—  Sp A and g ( t ) = -

2 t

n — 1
) andt '

with f ( x )=  1  an d  g (t) -=- — A , respectively ; and  leave th e  remaining

terms unchanged. Then collecting th e  resulting surface integrals we

obtain

F (r, a, /3, m) — F (s, a, 8, m)=5 [integrand of (2.13)11 x  "

whence follows the desired relation by differentiation in  r. Q.E.D.

Lemma 2 .10 . There exist an  R 2 > R 0 a n d  a n  m o > 0  such that

f o r any r > R 2 a n d  any m >m o w e  have

5 7  P ro o f. W e put in  Lemma 2.9 a= —n a n d  f i= n ,  and2 4
5then n o te  th e  inequality 1— n < — n <3— n so that th e  various
2

estimates worked out in the proof of Lemma 2.6 are applicable also in
the present c a s e . We thus have for J2, K 1 , K2 and J3 of (2.13)

(2.15) J2(x , Dw m )> 2
1 2 3 )1 A pw .1 2 e5(1  x A pw .1 2

[(2.10) w ith  =  3   and 0 < < 3 <7/ < 2 1,2 2 2

(2.16)

(2.17)

3  1C1(x)> Ez(i4

K 2 (x )> — s3(I x 1),

(2.18) J3(x , Wm , D w .)> —  ela x  Dli DA w m  I 2 +  w m  I 21.

Let us now estimate the rest of (2 .13 ). Using (A4) we have
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z

(2.19) rib  K 4(X )> n i

2

( 1  e 6 (  X  I )),xi 16IXI

Using (A 3 ) w e have

(2.20) m
2

M
2

K 5(X)> —6 7 ( 1 X 1 ) .I XI xi
Similarly

(2.21) Hi 

I X13 1 2  1 1 - 6 ( x ) —
1x 13

1
2  6 8(IXI),

(2.22)
1

K 7 (x )> — 
 x 3 1 2  

69(1x1),
31  

(2.23) Js(x, W m , Div m , a, i9) > —
3

 4
 7 . AlWm I 2 —

1 11 / 2IXiA D w . , —3 - r  A

3 
12— 1

8  x  3 1 4 m I XI 3 / 4  E 1 0 (IX D IW (0 < y < 3 ),

where in  (2 .23 ) w e have used the inequality

lab i < 6 la1 2 + 1  lb1 2( e > 0 ) . 2 2e

Let us employ (A 3 ) and the above inequality to obtain

( 2 .2 4 )  J 4 (x, w„„ Dw., m)> m(1— 611(1 x x I < >

ml x1 - 3 1 2  e120 x' W.1 2

2 Now let mo —  and choose R2 sufficiently la rg e . Then in viewr
o f  (2 .1 5 )  through (2 .2 4 ) [com pare, especially, (2 .2 3 )  w ith  (2 .1 6 ) and
(2.24)1 the assertion of the lemma follows without difficulty. Q.E.D.

5 7Remark 2 . 1 1 .  T h e  specia l cho ice a — —n a n d  13 =— n2 4
made in the above lem m a has no particular m eaning. It is enough to
have the assertion of the lemma valid for some a  and di'. This remark
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w ill also  apply to  the following two lemmas.

Lem ma 2.12. Assume that the solution u  (and hence v ) is not

identically equal to 0  in Es,.  Then there exist constants R 3  and mi

such that R 3 > R 2 and  mi > m 0 , and

57F (R 3 , — n n, m i )>  O.
2 4

57P r o o f .  Consider F r ,  
 2  

— n n , m )  and express Wm  therein
4

in terms o f y  using ( 2 .1 1 ) .  Then we obtain

5 7 (2.25) F  — n
2

2 4  — 7 1 '  tn ) —  e

2 m v 7

1.3, 
(
1 4 M1 XI I <A >  12

+11/J6(X, v, Dv)±,b(x, v, Dv)}dS,

v 1 +

w h ere  it is  n o t d ifficu lt to  see  th at J 6  and J 7  are quadratic in  y  and

D v , and independent o f  in , though  w e do not give their explicit ex-
pressions, because they are not needed in what follows. It now suffices
to  show th at there  is  an r >  R 2 such  th at the inequaliy

(2.26)
s ,

< "i">21v(x)12dS>0

h o ld s . For, then, we can choose fo r  such an r  a  sufficiently large m

so  that w e m ay have (2 .25 ) positive.

Let u s  p ro ve  th a t th ere  is  an  r> R 2 v e r ify in g  ( 2 .2 6 ) .  Suppose

th a t th is  is  n o t the case. Then, since A  i s  positive definite as (A2)

shows, y ( x )  and hence u ( x )  must vanish identically in ER 2 ,  which with
(U C ) leads to  u (x ) - - -- 0  in ER °. This i s  a contradiction.

Q.E.D.

Lem ma 2.13. L e t R 3  and mi  b e  as  in  Lemma 2.12. Then we

have
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57F ( r,   2   — n,  4   — a, tn i ) > 0 f o r r> R 3 .

P ro o f. Since R 3 > R 2 ,  the assertion is an immediate consequence

o f Lemmas 2.10 and 2.12. Q.E.D.

Here we insert a computational proposition that will be employed

in  th e  proof o f  Lemma 2 .1 5  concerning the monotonicity o r  non-

monotonicity of the integral
s  

< >21u12 dS  at infinity.

Proposition 2 .14 . The follow ing identity  holds f o r r> R o :

R er e 1
s

< A ,  >  < A D v ,  1 > i )  d S =

1 d  
 r 1 >'Iv I2 d S  —2 dr s,

1 0 _—  2   r A ± (0 — 1)<  A 1 , " i>  x iaicti;)< A 1,1> ±

xh3ta1i•1i1'iaki--1-21A11 2 - 2 < A -i ,1 >1 .1 1 , 12 dS.

P ro o f. Put in Proposition 2.3 f  (x )=  < >, g = 1  and a = O.
The obtained result can be differentiated with respect to  r  to yield the

above identity. Q.E.D.

Lemma 2.15. Suppose that the function

r
1-tz < A :i5 1- > 2  v  2 d s _ < A I-3 - > 21 u 12d s

s, s

is not m onotone increasing in  r E(R, co ) f o r any  R > R 0 . T h e n  th e re

ex ists an  R 4 >R 3  such that f o r any  real a  w e have

(2.27) F(R 4, a)> 0.

P ro o f. It suffices to show the existence of R 4  which satisfies



=e r22 m 1 V -7:i j i ( X ,  V , D V )  
<   >

s, 21x 1 3 1 4
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(2.27) for som e a , fo r w e  have from  D efinition 2.4

F(R 4 , a)=R 4 / F(R 4 ,

and express iv,„,

there in  in  te rm s o f v. T h e n  w e  h a v e ,  n o t in g  — a

F 57 — n  - - - n' 2

(N ow  let us consider F r ,
 2  

— a
' 
- -

7

 — n , m i )> 0
4

5 

(2.28) + m i

2
e 2mi Vr r 2-n R e <A D v ,-i>f )dS +

2m 5-n 2n + 1e rr2 m1
1 ( 81X 1312

< >2 _

Sp A - 2  <2 1 . . ,
1 41x136>2117)12dS. <A x , x > 41x1 3 / 2

Let us apply Proposition 2.14 to  the second in tegra l o f (2.28) to obtain

7
" '  4

e r22m 5-n

F
2
5 — n,

J 1 (X ,  2), Dv) —
1 _ 4
2  l oc i 4 <A -.", 3i >1v1 2 }d S +

(2.29) -- >21vi2dS-F2 dr. ) s ,

2m 5- 2 d S ,"  r K 8 ( x ,n

s ,  

w here K 8 (x, m) is g iven  by

2
K g (X , ra)=. M  < i ‘ a ,  > 2 '—

41 X I

in {(Sp A— n < >  x i a J a i i ) < >
4 1 x 1 3 1 2

x k Orau." Jak i+21  A  2 -2 < A -X " ,
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2n+1  < > 2  SP A  <A-i , > 1 .
8 4

We can take an  R5 so large that we have for I x >  R 5

(2.30) K8(x , m i ) < x1 - 3 1 4  < Ax , 33> 5 )

i.  : i-(note that mi is fixed). Since by assumption r1- <AT > 21 v 12d s-" ,
s ,

is not monotone increasing fo r r > R 5,  w e m ust have some R4>R5
such that

(2.31) d  
r

1 - n

1  < A 1
-  . . .

> 2 1v1 2 d Sdr s r
< 0 .

r-R4- -

Combining (2.29), (2.30), (2.31) and Definition 2.4, we see that

(2.32) F ( R A   5   — n 5 
7  — n, m i ) < e 2 m'vR4 F (R 4  

 5  — n ).24 2

Now by Lemma 2.13 th e  left member o f  (2.32) is  positive, whence

readily follows what we intended to show. Q.E.D.

Having prepared all th e  necessary tools for proving Theorem 1.1,
we now proceed to the

Proof o f  Theorem 1.1 . L e t u (x )  be a n  eigenfunction of the
eigenvalue problem (1.1) satisfying the assumption of Theorem 1.1.

First let us assum e that > 2 1 U 1 2 d S  is  monotone in-

creasing in  r E (R , 09) for some R> R 0 . T h e n  the assertion of the-

theorem is almost triv ia l if we note that

1  < 10 2 > .>21u12 2

for all sufficiently la rge  I x I . The above inequality is seen to hold in

5 )  Here we can see the reason why we introduced the I x  t e r m  in  Defini-
tion 2.8 (see K 3 (x , a, p , m ) )  that is the only part depending on the parameter p.
We can make use of the freedom in  th e  choice o f p  so that we can finally reach
the inequality (2.32) connecting the two functionals F(r, a ) and F (r, a, p,
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virtue of (A4).
N ext w e assume that 1 < A3e, > 2 1u1 2 d S  i s  not monotone in-

s,
creasing in r E (R , oc) for any R >R o. Let us put

s ,
>lu l2 d S ,

N (r)=1 s , <A 3-c, > < A D u , Du> d S.

Then what we have to show is that

(2.33) lim rE (M (r) N  (r))= 00

for any s >O.

M (r) and N  (r) can be rewritten in terms o f y  by use of (2.2) as
follows:

M (r)= 2 <A 36, >1v 1 2 dS,

N (r)=r 1 5
s  r

{ < "i" > < A Dv, D v> —

n -1 <A 1',1"> Re v<"i, A Dv> -1-

(n —1) 2  

31>21v12}dS.4r2

Making use of the inequalities

1
lab l.<—  (1a1 2 +1b1 2 ),2

1 <1- , A Dv>1 2 J R ,  1- > <A D v , D v>

and Definition 2.4, therefore, we have

M (r)+N (r)>r i - n  s  r {2 , >  102 +1 <3i, A Dv> 12 _

1  r  (n, —1)2 — ,K A Je A Dv > 12 1+2 L r2
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+ (n œ 1 ) 2 <
> 2 1 0 2 } d S4r2

s <, A D v > -21-< > < A Dv, D v> —

(11 -1-)2 <A -i-,1->2102-F,Z <A 1-,1->102} dS
4r2

2=F (r,l— n )+r l - n .1">2102—s, 2

( n - 1 ) ( 3 n + 1 )   <ja-, >211)12+8r2

+ n 14r2 SDA <A 3e,I">102} dS .

T he last surface integral turns out to be non-negative i f  we take r
large enough, say r R 6 . ( R 6 can be regarded not to be less than

any of the Ri 's  that have so far appeared.) Thus

(2.34) M (r)+N (r)>F(r,1— n) for r>R 6.

N ow  le t  e > O  b e  a s  in  Theorem 1.1, an d  le t v  be such that O<  v
< min (e, 2). The present hypothesis on S

s ,  
< 2 d S  tells us

that we can apply Lemma 2 .1 5 . Hence, Lemma 2.15 together with

Lemma 2.6 implies

(2.35) F(r,1 — n +v )>F(R 7 ,1 — n +v )> 0 for r> R 7

with some R 7  fulfilling R i  R 6 . L e t u s  multiply (2.34) b y  rE and
(2.35) by r 8 , and compare the results in  view of the relation F(r,a)

F (r, a'). (2.33) then follows immediately. T his completes the
proof of Theorem 1.1.

§ 3 .  Proof of Theorem 1.2

In this section the proof of Theorem 1.2 will be given on the basis

of Theorem 1.1, and for this purpose we start with proving a  lemma

which concerns itself with an  asymptotic behavior of an L 2  function.
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Lemma 3 .1 . Let u EL 2 (ER8)  for some R 8  >  R o . Assume, further,

that 1
s  r

<  , >  u  1 2  d S  is dif ferentiable in  r  for r>  Rs. Then we

have

d  liminf s r< >111,12 dS 0.

P ro o f. Assume the contrary, i.e., for all sufficiently large r( >R 8 )
le t there exist a positive number s  such that

d  
d J s , .

<21:i > d S >a>0 .

Then for s  and r( s <r)  large enough we have

"i>  I u 12 dS=

=  dt  d
d d S > ( r —s).

The left member goes to co a s  r tends t o  c o .  But th is  is  a  contradic-

tion, since u E L2(ER 8 )  implies

lim 'i >lul2dS-=-0.s r

This completes the proof of the lemma. Q.E.D.

Lemma 3 .2 . Let u  satisfy  the assumption o f Theorem  1.2. Then

w e have IDul EL2(ER'), R / > Ro•

P ro o f. It fo llo w s b y  partial integration applied to equation (1.1)

multiplied with u ( x )  th at for any r>1?'

(3 .1 ) Re1 ( — 01 ul 2 dx=
B R ,

uDiauDiu dx
 r-

-=— R e [ — 1  lu < 7 i ,  A D u > d S - F S  <A D , D u> dx.
S r S R ' B R 'r
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In o rder to  rew rite the surface integral
s r

u<Ti, ADu> dS i n  (3.1),

le t u s  app ly Proposition 2.3 w ith f=  g = 1 , a = 0  and v  =  u . We then
obtain

1  Re u < ,  A D u >  d x — > dS —

2 s,

1  (
(—<A, Z > + S p A -1 -x ia ic t iM x i- i lu rd x ,

2 J13„ 

which in  turn yields through differentiation in  r  that for r> R 0

Re
s r

u ADu> dS=

(3.2)
ddr s r < A 1 , 1 - > l u i ' d S —

1  F S p A - xia.faiMurdS.2 r  s

If we substitute (3.2) in  (3.1), w e have

Re1 (A — )1 u 12  d X =

(3.3) _  1   d  2  d r  s  r< ia , " i> lu i2 d S +

1  (Sp - xiaiaii— dS+
2r i s ,

-FRe u ADu> dS-F <A D u , D u > dx.
B R ',

S in ce  b y  (A 2 ) an d  (A 4 ) w e  have the second term  on the right-hand
side o f  (3 .3 ) non-negative fo r sufficiently la rg e  r ,  an d  since w e can
choose by Lem m a 3.1 a  sequence (rn )  tend ing to  cx) for n—"XD such

th a t th e  first te rm  o n  th e  right-hand side o f  (3 .3 ) tends to  a  non-

negative number along this sequence, the following inequality obtains:

co> Re (A— e )i  u  d x  R e .ç u ADu> d S>
ER ' SR '
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> 1  < A D u ,  D u > dx.

T o g e th e r  w ith  (A l) a n d  t h e  fa c t  u E L2(ER 0 )  t h e  above inequality

implies I Du I E L2(ER'). Q.E.D.

Proof of Theorem 1 .2 . Sup p o se  th a t u(x) 0  i n  E R  f o r  any

R > R o. Then by (A4), Lemma 3.2 a n d  th e  fact u E L 2(ER ) we have

lim inf r < A > 121u1 2 < ADu, Du>1 dS=---0,

which obviously contradicts Theorem 1.1 w ith  e = 1. Therefore, we

m ust have  u ( x )  0 in  E R  f o r  some R > R o. T he un ique continuation

property (UC) then implies that u ( x ) 0 i n  ER 0 . W e h a v e  thus com-

pleted th e  proof o f  Theorem 1.2.
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Added in p roo f: Theorem 1.1 admits of a slight improvement which

is sometimes more convenient for application:

Theorem 1.1'. U nder th e  sam e assum ption a s  T heorem  1 .1  we
hav e for any  c> 0

lim  r 0

s
< A1, >  { 2 1 0 2 +  <ADu,1">1 2 }c1S -=00.

The proof is not essentially different from that o f  Theorem 1.1
given  o n  pp. 4 4 2 -4 4 4 . W e  have on ly  to  replace N (r )  b y  N 'W =

s r
<A 1,1  > I <A Du, >12cIS .


