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§1. Introduction and summary

The non-existence of positive eigenvalues with square integrable
eigenfunctions of the Schrodinger operator —d4+V, where 4 is the
Laplacian and ¥ the multiplicative operator through the potential func-
tion V(x), or some of its variants, has been investigated by many
authors (see, e.g.,, [1]-[3], [5]-[16]). In studying this problem some
authors assume, as seems physically natural, that ¥ (x) decreases to
0 at infinity.”’ But when a magnetic field is present so that the
Schrodinger operator becomes —(8; +V—1b;(x))(0; +V—1b:(x)) + ¥,
where 6’,-=aix. and the usual summation convention is used here and
in the sequel,lit is not necessarily physically natural to assume that the
vector potential b(x)=(b;(x)) also vanishes at infinity. It might appear
more natural to assume that the magnetic field obtained by taking the
rotation of &(x) (in the 3-dimensional case) diminishes at infinity. Our

aim in the present paper may be said from the physical viewpoint

1) For the many-particle Schrédinger operator it cannot be expected that the
potential decays uniformly at infinity. For the treatment of such potentials see
Agmon [1] and Weidmann [14], [15].
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to show the non-existence of positive eigenvalues of the Schrédinger
operator with the magnetic field verifying the above-mentioned smallness
condition at infinity.

More generally, we shall consider the eigenvalue problem associated

with a second-order elliptic differential operator:
(1.1 L=V =1bi(x)) ai(x) (0;+Y —=1by(x)) + c(x)Ju = Au,

where (a;;(x)) is a positive definite matrix for each x (the precise con-
ditions on the coefficients will be given later). We assume that e;{(x)
tends to 0;; (Kronecker’s delta) as | x| tends to oo, though this is not
absolutely necessary, and that 9;b;(x)—;b;(x) and c(x) tend to O as
| x| tends to co. Then our result will be a growth estimate at infinity
of u and its derivatives, from which will follow the non-existence of
positive eigenvalues to the eigenvalue problem (1.1).

Kato [ 7] considered the eigenfunction u(x) as a function of %zl—z—l
with a parameter r=|x| and quadratic functionals of u(r-) and its
derivatives depending on r in the case when q¢;;=0;; and b;=0. In-
vestigating the asymptotic properties of these functionals by use of
(1.1), he was able to show the non-existence of positive eigenvalues.
The same goal was attained, on the other hand, by Roze [11] when
b;=0 through an extensive use of integration by parts, the starting
step being to integrate by parts equation (1.1) multiplied by the func-
tion |x|*x;a;;0;u (this procedure in fact leads to Kato’s functionals if
one looks at the surface integrals obtained in its course). Our method
may be said to be a compromise between them, introducing some
relevant functionals by partial integration. One point which should be
noted in our treatment may be that we try to regard the differential
operation 9;+V—1b; as one entity as far as possible, not separating it
unless necessary. What is needed then is an accumulation of shear
computation and some ideas borrowed from Kato [ 7], for instance.

Here we shall list the notation which will be used freely in the

sequel:

x=(x1, -, x,) is a position vector in R”";
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Lol =(lxa |24+ 2DV

r=—"" (Ix]|7£0);

%]
S,={x€R"||x|=r} for r>0;
B,,={xeR"s<|x|<r} for 0<s<r;
E,={x€R"||x|>r} for r>0;

0

D;=0;+V—1b,(x)

0; (l=1’s n);

Bi;=B;j(x)=D; D;—D; D;=\—1(0;b;(x) — 0;b:(x));
A=A@)=(aix) G, j=1, - n);

<f,g>=fig  for f=(f1,-- fu) and g=(g1, .-, gn);
Du=(Dyu(%), -, Dyu(x));

ADu=(a1;D;u, -, ayDiu);

the dot - indicates the end of a differential operation as in D;u-v
=[D;u(x)]v(x);

SpA=Sp A(x)=a;i(x);

Bs,_gs,]f‘“:L]_de—gssfds;

g;(r) denotes a positive function for r>0 which tends to 0 as

r— oo (i=1,2,...);

L; denotes the class of square integrable functions, and thus L;(Eg,)

is all L, functions over Eg;

H, denotes the class of L, functions with distribution derivatives

in L, up to the second order inclusive;

L3 1oc and H3oc denote the classes of locally L, and H, functions,

respectively ;
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C™ denotes the class of m-times continuously differentiable func-
tions.

Now let us state the conditions to be imposed on the coefficients
of the differential operator appearing on the left side of (1.1).
We assume that there exists a positive constant R, such that the

Jollowing conditions are satisfied for |x|>R,:
(A1) Each a;j(x) is a real-valued C' function and a;j(x)=a;(x).

(A2) There exist positive constants Cy and C; such that 0<C; <C,
and C|&|2<a;(x)&E <C;|€|% for any complex n-vector &.

(A3)  Oray(x)=o0(lx|™")  (Jx|—>o0).

(A4) a;i(x)—> 05 as |x|— oo,

(B1) Each b{x) is a real-valued C' function.
(B2)  By(x)=o(lx|™)  (Jx[—>o0).

(C1) c(x) is a complex-valued bounded function.
(C2)  exm)=o(lx|™)  (|x]—>00).

(uc) The unique continuation property holds.”’

By a solution u of equation (1.1) is meant an Hjy,0c, hence Lg joc,
function which satisfies (1.1) in the distribution sense in Eg,.
Our principal aim is to prove the following theorem which restricts

the asymptotic behavior of a non-trivial solution of (1.1).

Theorem 1.1. If u is a not identically vanishing solution of (1.1)

in Ep, with a positive eigenvalue, A>0, then we have for any €>0

1imregs < A%, 5> {A|u|*+ < ADu, Du>} dS= oo,

77—

As a corollary to the above theorem we can obtain a theorem

2) See, e.g., Hormander [4].
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which asserts that there are no positive eigenvalues with L, eigenfunc-

tions of the eigenvalue problem (1.1), i.e.,, we have the next

Theorem 1.2. Let u be a solution of (1.1) with A>0 which also
belongs to Ly(Er,). Then u=0 in Eg,

We shall prove Theorem 1.1 in §2 and Theorem 1.2 in §3. In
the presentation of their proof we do not always follow a logical order.
If we did, we could have started in §2, for example, with Definition
2.8 instead of Definition 2.4, for the latter is a special case of the
former. We also inserted lemmas and propositions that may seem more
than necessary, for, logically viewed, many of them could have been
included in the proof of other lemmas or propositions. However, for
clarity’s sake and in order to avoid too lengthy computation in a proof
as well as possible, we thought it profitable to include seemingly even
superfluous statements.

Finally we remark that by assuming that the coefficient c(x) is of
class C' it would be possible to obtain a result similar to those of Odeh
[97] or Simon [12]. We did not enter into this problem, however.

§2. Proof of Theorem 1.1
Let u be a solution of (1.1):
(2.1) —D;ai;Dju+c(x) u=2u.
If we introduce the function v(x) by
2.2) o= %7 u(x),

then the following result readily follows from (2.1).

Lemma 2.1. v(x) satisfies the equation

(23)  —DjayDjv+ =L < ADv, 3>+

| x|
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~ _ (n—1)(”n+3)

n—1 I
+{C(x)+maiaij X 4|xl2 <Ax,x>+
n—1
+ AT spA—2fv=o0.

What we want, in fact, to do for the present is to multiply (2.3)
with |x|*<%, ADv> and integrate over B,,, We will be led to
Definition 2.4 by collecting the resulting surface integrals, and the
mentioned integration (by parts) over B, will be carried out in the
proof of Lemma 2.5. We now prepare two computational propositions.
Their proof can be obtained by (repeated, if necessary) application of

integration by parts and will be omitted.

Proposition 2.2. The following identity holds:

RGSB D;a,'ij'U' x|“<?o, ADv>dx=

=[§S,—Ssx]{1 < ADv, 7> |*—

——;—<A%, %> < ADv, Dv>} |x|*dS—

—SB {14D0|? — - (Spd+(@—1)< 4%, 5>)< ADv, D>+
+(a—1)| <AD‘U, x> Iz-I—Rea,-ijv-xk@,-a“-Dl_v+

+ ReaijDjv- x4 aklm"';— %40, aijakl'Div’m} | x| tdx.

Proposition 2.3 Let f(x), x € Eg, and g(t), t = Ro, be real-valued
C' functions. Then we have the following identity for R, <s<r:

RegB F)g(l x| x| “<z, ADv>dx=

=%[Ss —S ]<Aa‘c,5¢>fg|xl“|vl2d8—

8
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~%SB {{(@—1)< Az, x>+ SpAd+x;0;a;]]f g+

+ ;0 foaig+ | x| fg' <Az, 2>} lv|?| x| % tdx.

Let us now define a functional of v»(r+) and Dv(r-), a motivation
of which will be seen, as we remarked before, in the proof of Lemma
2.5.

Definition 2.4. Let « be real. We put for r>R,

F(r, a)=r“SS Ji(x, v, Dv)dS,”

Ji(x, v, Dv)=| < ADv, > |2—%<A§, %> < ADv, Dv> +

n-1 NI PN
NFIE SpA< Az, x> |v|*+ 3 <Ax, x> |v|°.

Lemma 2.5. We have
@  HED el yx, Do)+ K +Kalw) o]+

+J3(x) v, DU)} ds’4)
Jo(x, Dv)=| ADv|*—

— 5 (Spd+(@=1)< 4%, ¥>)< ADv, Dv> +

+(a+n—2)| < ADv, 7> |2,

3) This surface integral certainly makes sense, because the solutions u and
v are seen to be in C!(ER,). The latter fact can be obtained through an integral
representation of u in terms of a fundamental solution for the differential equa-
tion (1.1). The same remark will apply to Definition 2.8.

4) What we actually prove in Lemma 2.5 and Lemma 2.6, respectively, are that
F(r, a) is absolutely continuous and (2.4) and dF(r, «)/dr >0 hold almost everywhere,
respectively, The same remark will apply to Lemmas 2.9 and 2.10.
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Ki()=—4- (SpA+(a—1)< 4z, 3>),
Kz(x)=% xi05ai+
i |2{n+3 (SpAd+(@—1)< dx, 2 >)< A%, &> +

+”—+—3(|Aa|2—2|<A;, > |%)—

— - (SpA+(@—1)< 43, 3>)Sp A+

+% SpA< Az, x>+ T3 10,05 < A%, 7> +
+ n—8|-3 xka,a;j-y“c,icjak;——i— Spr;f?ja;j——% a,-jx,-a,-SpA},

Ja(x, v, D‘U) =Re a;,-D,-v-x;,@,-a,,,-—D?:—i- Re a;jD,-v-a;,; ka—

——;— x301aia,Div-Div+

+Re<lx|c+ 2% [x,a a,,>v<x ADv>.

Proof. By Lemma 2.1 we have for Ry <s<r

ReSB { D;a;; D; v+——<ADv,x>+cv+ Oa,, xjv—

ﬂill)—(rzié)—</1x >0+

+2nl—;|12-SpAv—lv} |%|“<%, ADv>dx=0,

l |

Apply Proposition 2.2 to the first term of the integrand; leave the
second, third and fourth terms untouched; and to the fifth, sixth
and last terms apply Proposition 2.3 with f(x)=<A4Z%, 3> and g()

—=D@+3)  ih f(a)=Sp4 and g()=",1, and with f(x)
412 P g 2t?
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=1 and g(¢)= —A4, respectively. Then, gathering the resulting surface
integrals in the left-hand side and the volume integrals in the right-

hand, we obtain
FG,a)—F(s, )= SE [integrand of (2.4)]|x|* 'dx

whence follows the desired relation by differentiation in r. Q.E.D.

Lemma 2.6. Given any €, 0<e<1, there exists an Ry >R, such
that

dF(r, a)
S >0

for TR, and for any « satisfying 1—n+e<a<3—n—e¢.

Proof. We have Lemma 2.5, and therefore what we have to do
is to estimate (2.4) from below. Let us first estimate J3(x, v, Dv).
By (A2), (A3), (A4), (B2) and (C2) it follows that there is a function
e,(r) verifying

(2.5) Js(x, v, Do) >—ei(|x ) {| 4Dv|*+ | v|?}.

Similarly, the following inequalities are seen to hold:
(2.6) Ki(®) >4 0—ex(| %)),

(2.7) Ka(x)> —es(| %)),
where we have put
O0=n4+a—1.
In order to get an estimate of J,(x, Dv) we note the inequalities
(2.8) |<ADv,Dv>~IADvlzlge;(IxI)lADvV,
(2.9) | <ADv, > | <| ADv|.

(2.8) follows from (A4), and (2.9) from the fact that < ADwv, x> is
the %-component of the vector ADv. In view of (2.8) and (2.9), using
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(A4) again, and choosing 7 such that eg—7z7—<6<77§2—6, we obtain
T, Dy=(1=1) (| 4Do|*— | < 4D, 3> )+

@10)  +(0—-1-) 1 <dDv, 3> |*+(L =0 ) apv*-

—es(|x )| ADv| * > (7—0) | ADv|*—es(| 5]) | 4Dv |2

Combining (2.5), (2.6), (2.7) and (2.10) with (2.4), and taking note of
the property of the & functions, we get to the assertion of the lemma.

Q.E.D.

Our next task is to estimate from below the functional F(r, )
itself when v[u] is a non-trivial solution of (2.3) [(2.1)]. To this

end we further introduce the function w,(x) for real m by
(2.11) w(x)=e™ T y(x).

The equation fulfilled by w,(x) can be easily derived from (2.3) and
(2.11), that is, we have

Lemma 2.7. w,(x) satisfies the equation

—D.n D, n—1_ _m_ ~S
D,auD,wm+( B +\/|x|><ADwm,x>
1 2n+1 —1)(n+3
212)  —q75] (m2+ "‘(\/I”;l- ) | (n |)x(r+ )><Ao‘c, %> w4
SpA(n—1 m
tata) Clal +3Ta)ent

1 m n—1 - _
+{C+ 2 (\/l_xl + |x| >aiaii'xl}w7" Awp, = 0.

We shall multiply (2.12) with |x|*“<Z%, ADw,> and integrate by
parts over Bg,, which will be an essential part of the proof of Lemma

2.9. The resulting surface integrals plus an additional surface integral
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form the following functional of wy(r+) and Dw,(r-).

Definition 2.8. Let m, « and 8 be real. We put for r>R,
F(r,a, 8, m)=r"{  {]:(x, wn, Dum)+Ka(, @, B, m) |10 |2} S,
where J, is given in Definition 2.4, and

Ks(x,a, B, m)=—o7— 1 { +m(2n+1)

~ A2
8[x| NET }<Ax,x>

Sp A
m| }|73/2 <AF, F> | x| P < AR, B>
Lemma 2.9. We have

dF(r,a,8,m) _

dr lgs,{]Z(x’ Dw,) + Ju(x, wp, Dwn,, m)+

(2.13) +| | (K4(x)+K5(x))|w,,,| + P

+ (K1(%) + K5(2)) [ wn |2 + T3 (2, wpny D)+

| "oz (Ko(x) + Kr(2)) [wa |+

+J5(x, Wmy Dwm, «, B)} dS’

where J3, J3, K1 and K, are given in Lemma 2.5, and

Js(x, w, Dw, m)=m\/|_jx_| | <A4Dw, 2> |2+

+—"5—\/—|—§_|Re %;0; 01 Wn < %, ADwn>,
1 ~12, a—4 ~ o~ 2 1 ~ -
K4(x)——4—|Ax| +—8—<Ax,x> +T Sp A< A%, %>,

K:(x) =L< A%, x> x,-6;a,-,~+—1~ 0:10;j*%; Xj X Qs
8 8

Ko()=2" 0L gz (ACRED) 90 9 N gz, 524
+E%L§ SpA< A%, %> —% (SpA)?,
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1

Ky(x)=22 -+

<Ai,§>x,-0,~a;,-— a,-jx,-ajSpA——

2n+1

———i—- SP Axiaja;j—f- a;;x;@;a;.,-?ck .’E[,
Js(x, w, Dw, at, )= — Rew< %, ADw> | x|~ **1 —
— g (B—1)<AZ, &>+ Sp A+ x:9,a5) | x|~ |w]
Proof. We first note the following identity which follows from
Proposition 2.3 with f=g=1 and a=4:

(2.14) ReSB w|x|?<%, ADw>dx=

_L[S - —S :|<A?c, 5> |w|?|x|fds—
2 s, s,

By Lemma 2.7 and (2.14) with w=w, we have for Ry <s<r

ReSBM{ DiayD; w”‘+<¢lxl ] ><ADwm,x>

1 <2+m(2n+1) (n—1)(n+3)

~4[x] = T I« )<AE B>t

m_ p—1
+z|x|<4|x|+ E |>SPA’”'”+“"'"+

—{-%(\”n—LT >6 @ijo R j Wy — /lw,,,}lxl“ %, ADwy, > dx —

le

——S {Relxlﬁwm<§, ADw,,> +

sr

+_;,— (B—-1)< 47, j’E>'*‘SP1‘1'*'4’6:‘0;11;})|wm|2|x|ﬁ_1}dx+

3], [, Jean 5> ttstrasmo
2 S, S,
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Now we can proceed as in the proof of Lemma 2.5: Apply Proposition

2.2 to the first term; to the third, fourth and seventh terms apply

m(2n+1)
Jt

1 —
with f(x)=Sp4 and g(t)=§—(-\/n%‘—l—n71‘>, and

with f(x)=1 and g(¢)=—A4, respectively; and leave the remaining

Propositon 2.3 with f(x)=<A%, > and g(t)z__z}t—(mz-'_
(=D +3)
i,

terms unchanged. Then collecting the resulting surface integrals we

obtain
F(rya, B,m)—F(s,a, B, m’):SB [integrand of (2.13)]] x| a_ldx,

whence follows the desired relation by differentiation in r. Q.E.D.

Lemma 2.10. There exist an R, >Ry, and an my>0 such that
for any r>R,; and any m>m, we have
5 7
AF(r, 5= = m)
dr

=>0.

Proof. We put in Lemma 2.9 a=—g——n and B:—Z——n, and

then note the inequality 1—n <% —n<3—n so that the various

estimates worked out in the proof of Lemma 2.6 are applicable also in
the present case. We thus have for J;, Ki, K; and J; of (2.13)

(2.15)  Jo(x, Dw,,,)Z%(n———i-)]ADwmlz—es(lxl)[ADw,,,|2

[(2.10) with a:% and o<%<%<n<2],
(2.16) Ki(x) >0 d—ex(|x ),
(2.17) Kz(x)>—es(|x1),
(2-18) Ja(x; Wy Dwm)z_el(l X I){lADwm|2+ |wml2}

Let us now estimate the rest of (2.13). Using (A4) we have
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(2.19) | | Ky(x) >—— 16| | (1 —es(|x])).

Using (A3) we have

(2.20) I | Ks(x) >— | | er(x]).

Similarly

(2.21) z |3,2 Ke(x)>— P |3,2 es(| % 1),

(2-22) | |3/2 K7(x)2 | |3/2 Sg(lxl),

(2'23) Js(x Wiy Dwm;a 8)2_——l|wm|z
‘Ei_r—,lrlxl”zl<ADwm,%>|2—

3 2 1 2

_WIWM| —l—x|—3n—€10(|x|)|wm| (0<r<3),

where in (2.23) we have used the inequality
IablS—Ial toe Ibl2 (e>0).

Let us employ (A3) and the above inequality to obtain

(2.24)  Ju(x, wm, Dwm, m)=m(1—e11(| %)) | 2|'?| < ADwy, 7> |*—

—m| x| %er2(|x]) | wnl 2.

Now let my= and choose R, sufficiently large. Then in view

__z
B—r)4
of (2.15) through (2.24) [compare, especially, (2.23) with (2.16) and

(2.24)7] the assertion of the lemma follows without difficulty. Q.E.D.

Remark 2.11. The special choice a= % —n and A= % —n

made in the above lemma has no particular meaning. It is enough to

have the assertion of the lemma valid for some « and B. This remark



Asymptotic behavior of eigenfunctions of elliptic operators 439

will also apply to the following two lemmas.

Lemma 2.12. Assume that the solution u (and hence v) is not
identically equal to 0 in Eg. Then there exist constants Rs and m,
such that R3> R, and m,_>m,, and

F<R3, %—n,—i——n, m1>>0.

Proof. Consider F(r, —g——n, —Z—

in terms of » using (2.11). Then we obtain

—n, m) and express w,, therein

_ 2
(2.25) F(r,i—n,L—n, m>=ez"”/’g {LI<A5¢,&>|2|1;|2+
2 4 s, 14|«

+mJs(x, v, Dv)+J7i(x, v, Dv)} dSs,

where it is not difficult to see that Js and J; are quadratic in v and
Dv, and independent of m, though we do not give their explicit ex-
pressions, because they are not needed in what follows. It now suffices

to show that there is an r > R; such that the inequaliy
(2.26) [, <4z, 2> 0122550

holds. For, then, we can choose for such an r a sufficiently large m
so that we may have (2.25) positive.

Let us prove that there is an r_> R, verifying (2.26). Suppose
that this is not the case. Then, since A4 is positive definite as (A2)
shows, v(x) and hence u(x) must vanish identically in Eg, which with
(UC) leads to u(x)=0 in Eg,. This is a contradiction.

Q.E.D.

Lemma 2.13. Let R3 and m; be as in Lemwma 2.12. Then we

have
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F(r,—%——n,——i——n, m1>>0 for r=>Rj.

Proof. Since R3;> R, the assertion is an immediate consequence
of Lemmas 2.10 and 2.12. Q.E.D.

Here we insert a computational proposition that will be employed
in the proof of Lemma 2.15 concerning the monotonicity or non-
monotonicity of the integral S < A%, %>%|u|?dS at infinity.

57

Proposition 2.14. The following identity holds for r>R,:

Reregs < A%, %> <ADv, 3>5dS=

_1 4 ag ~ A%, (270
=5 T sr<Ax,x> |v]*dS
—%r""ss (SpA+(0—1)< A%, 3> + x.0,a;) < A%, F> +

—I—xkala;,--%,-?cjau-l—ZIA?clz—2<A?c, .’E>2} IvlzdS.

Proof. Put in Proposition 2.3 f(x)=<4%, 3>, g=1 and a=0.
The obtained result can be differentiated with respect to r to yield the
above identity. Q.E.D.

Lemma 2.15. Suppose that the function
ol <4z, 2>2[o|%ds= <4z, >*|ulds

is not monotone increasing in r € (R, o) for any R>Ry. Then there

exists an Ry>R3 such that for any real o we have

(2.27) F(Ry, a)>0.

Proof. It suffices to show the existence of R, which satisfies
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(2.27) for some «, for we have from Definition 2.4

F(Ry, 0)=R,*"“F(Ry, ).

Now let us consider F(r,%—n,—i——n, m1)>0 and express wp,,
therein in terms of v. Then we have, noting B—a:——i—,

P onomm)-

- S {1, v, Dy SABZ2 has
sr

I |SI4

eZm"/?

(2.28) +% ez”“"7r2‘"ReSS < A%, %> <ADv, x>9dS+

oo g 2, < 3

~ o~ 2
< Ax, z>)+m12%fl>_}|v|zds.

_ Sp A

Let us apply Proposition 2.14 to the second integral of (2.28) to obtain

Fofntnm)-

5

:ez”'l"7r§’”gs {]l(x, 2, Dv)—%ur% < A%, E> |v|2}ds+
(2.29) + ez'”"’7r7(;r—rl“"gs < A%, 7>2|v|2dS+

+em (K, mo)lol2ds,
where Kg(x, m) is given by

Kg(x, m)= < A%, %>

2
I |

{(SpA——n<Ax, I>+x;0j0;)< A%, x> +

4|x|3/2

+ 2,00 % Fjan+2| A% | —2< A%, >+
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2n+1
8

2_ Sp4

+ 4

< A%, %> <A§,§>}.

We can take an R; so large that we have for |x|>R;s
(2.30) Ky, my) <o 1| 7914 < Az, 39

(note that m, is fixed). Since by assumption rl‘”g < A%, >%|v|%dS
ST

is not monotone increasing for r>Rs, we must have some R;>R;

such that

(2.31) —d—rl‘”g < A, 5‘c>2|v|2dSl <o.
dr s, r=R,

Combining (2.29), (2.30), (2.31) and Definition 2.4, we see that

(2.32) F<R4, %— n, %— ny m1>£e2”‘l“EF(R4,%— n> .

Now by Lemma 2.13 the left member of (2.32) is positive, whence

readily follows what we intended to show. Q.E.D.

Having prepared all the necessary tools for proving Theorem 1.1,

we now proceed to the

Proof of Theorem 1.1. Let u(x) be an eigenfunction of the

eigenvalue problem (1.1) satisfying the assumption of Theorem 1.1.
First let us assume thatg < A%, %>%|u|?dS is monotone in-
s

creasing in r&€(R, o) for some R_>R,. Then the assertion of the-

theorem is almost trivial if we note that
<A§,?z>|u|22%</io~c,?c>2|u|2

for all sufficiently large |x|. The above inequality is seen to hold in

5) Here we can see the reason why we introduced the |x|#-* term in Defini-
tion 2.8 (see Ky(x, a, B, m)) that is the only part depending on the parameter B.
We can make use of the freedom in the choice of § so that we can finally reach
the inequality (2.32) connecting the two functionals F(r,«) and F(r, a, 8, m).
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virtue of (A4).
Next we assume that Ss < A%, %>%|u|%dS is not monotone in-

creasing in r € (R, o) for anyr R>R,. Let us put
M(r)=/ISST<A§, %> |u|?dS,
N(r)=SSr<A§,?c> < ADu, Du> dS.

Then what we have to show is that

(2.33) lim ré(M(r)+ N (r)) =0

for any ¢>0.
M() and N(r) can be rewritten in terms of v by use of (2.2) as

follows:

M(r):/lrl'”gs < A%, 7> |v|2dS,

N(r)=r1‘”gs {<A%, %> < ADv, Dv> —

r

- ":1 < A%, %>Rev<#, ADv> +

(n—1)°

v 4r?

<4z, z>%0|?}ds.
Making use of the inequalities
1 2 2
jab] <5 (lal*+1b]%),
| <%, ADv> |: << A%, %> < ADv, Dv>
and Definition 2.4, therefore, we have

M(r)+N(r)2r1'”S {/I<A§,%>|v|2—|—l<§,ADv>|2—

ST

Rty
_%[(Lr_zl)_<.4&, £>%0]2+| <%, ADv> |2]+
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_1\2
+ (D <z, 55201 ds

= {i<#, apo> 1= L <43, 5> < ADv, Do> -

—1)2
—£%—3)<A%, £>0]*+2< 4%, ?c>|v|2}dS

=F(, 1——n)+r1"‘gs {%-(AE, E>%|v|2—

4

_ (n—1%(r?;n+1) <AF, ¥>P[0|+

+ L Spa<az, 5> 0|2} ds.

The last surface integral turns out to be non-negative if we take r
large enough, say r—>Rs. (Rs can be regarded not to be less than
any of the R;’s that have so far appeared.) Thus

(2.34) M@)+NGE)>F(,1—n) for r= R.

Now let €>0 be as in Theorem 1.1, and let % be such that 0<y
<min (e, 2). The present hypothesis on Ss < A%, %> |u|%dS tells us
that we can apply Lemma 2.15. Hence, rLemma 2.15 together with

Lemma 2.6 implies
(2.35) Fr,1—n+9)>F(R;, 1—n+7)>0 for r>R;

with some R, fulfilling R;>Rs. Let us multiply (2.34) by r° and
(2.35) by r®77, and compare the results in view of the relation F(r, a)
=r*"* F(r, ). (2.33) then follows immediately. This completes the
proof of Theorem 1.1.

§3. Proof of Theorem 1.2

In this section the proof of Theorem 1.2 will be given on the basis
of Theorem 1.1, and for this purpose we start with proving a lemma

which concerns itself with an asymptotic behavior of an L, function.
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Lemma 3.1. Let u € Ly(Eg,) for some Rg>R,. Assume, further,
that Ss < A%, %> |u|*dS is differentiable in r for r>Rs. Then we

have

liminf—d—g <A x> |u|?dS <.
row drls,
Proof. Assume the contrary, i.e., for all sufficiently large r (> Rjs)

let there exist a positive number & such that

ig CAF, > |u|2dS>e>0.
dr)s,

Then for s and r(s<r) large enough we have

[g —S 1<Ag~c,a>|u|2ds=
s, Js

s

(a2 %, 2 _
—Ssdt dtSSl<Ax,x>|ul dS>e(r—s).

The left member goes to oo as r tends to oo. But this is a contradic-

tion, since u € Lp(Eg,) implies

lim infgs <A%, %> |u|?dS=0.

700

This completes the proof of the lemma. Q.E.D.

Lemma 3.2. Let u satisfy the assumption of Theorem 1.2. Then
we have |Du| € Ly(Eg-), R">R,.

Proof. It follows by partial integration applied to equation (1.1)
multiplied with w(x) that for any r>R’

@1 Re[  -olul*dv=—Re( uDiayDuds
R r T

R

=—re[{ —( Ju<s, dDu>as+(, <4, Du>adx
r R

Br’,
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In order to rewrite the surface integral Ss u<%, ADu>dS in (3.1),
let us apply Proposition 2.3 with f= gEl,ra=0 and v=u. We then

obtain
Ref, uect, au>aem L [( —{ J<az 2> ulas-
—“12_83,,(—<Ai"~G>+SPA+xi3iaij)|xl'llulzdx,

which in turn yields through differentiation in r that for r> R,

Regs u<%, ADu>dS=

—LLS > = 2 7q_
(3.2) = ST<Ax,x>|ul ds
_%Ss (—<A?U's x> +SpA+x,0,a,,)|u|2dS

If we substitute (3.2) in (3.1), we have

ReS (A—2)|u|2dx=
BR’r

33) =_L_d_g < A%, %> |ul?dS+
2 dr)s,
+%Ss (SpA+xi0j0— < A%, £>)|u|*dS+

+Regs u<k, ADu>dS+SB , < ADu, Du> dx.
R T

R

Since by (A2) and (A4) we have the second term on the right-hand
side of (3.3) non-negative for sufficiently large r, and since we can
choose by Lemma 3.1 a sequence (r,) tending to oo for n—oo such
that the first term on the right-hand side of (3.3) tends to a non-

negative number along this sequence, the following inequality obtains:

co>Re (—lul*ds—Re u<z ADu>ds>
R R
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ZSE ,<ADu, Du>dx.
R

Together with (Al) and the fact u €Ly(Egr) the above inequality
implies |Du| € Lo(Eg/). Q.E.D.

Proof of Theorem 1.2. Suppose that u(x)s%0 in Er for any
R>R,. Then by (A4), Lemma 3.2 and the fact u € Ly(Er) we have

liminerS < A%, %> {A|u|?+ < ADu, Du>}dS=0,

7—o0

which obviously contradicts Theorem 1.1 with eé=1. Therefore, we
must have u(x)=0 in Ep for some R>R,. The unique continuation
property (UC) then implies that u(x)=0 in Eg,. We have thus com-
pleted the proof of Theorem 1.2.
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Added in proof: Theorem 1.1 admits of a slight improvement which

is sometimes more convenient for application:

Theorem 1.1'.

Under the same assumption as Theorem 1.1 we

have for any ¢>0

given on pp. 442-444,.

700

lim ¢ Ss <Az, 2>{A|u|®*+|<ADu, > |*tdS=oo.

The proof is not essentially different from that of Theorem 1.1

We have only to replace N(r) by N'(r)=

SS < A%, &> | < ADu, &> |%dS.



