Some remarks on invariant eigendistributions on semisimple Lie groups

By
Takeshi Hirai

(Received, February 15, 1972)

Introduction

Let G be a connected real semisimple Lie group with Lie algebra g. Denote by $C_{0}^{\infty}(G)$ the set of all indefinitely differentiable functions on G which vanish outside some compact sets. For a differential operator D on G, we define its adjoint D^{*} as

$$
\int_{G} D f_{1}(g) f_{2}(g) d g=\int_{G} f_{1}(g) D^{*} f_{2}(g) d g \quad\left(f_{1}, f_{2} \in C_{0}^{\infty}(G)\right),
$$

where $d g$ is a Haar measure on G. For any distribution π on G, we put $(D \pi)(f)=\pi\left(D^{*} f\right)\left(f \in C_{0}^{\infty}(G)\right)$. A differential operator on G is called Laplace operator if it is invariant under both left and right translations. As usual, let us identify every $X \in \mathrm{~g}$ with a left-invariant differential operator on G. Then the center 3 of the universal envelopping algebra $U\left(\mathrm{~g}_{c}\right)$ of the complexification g_{c} of \mathfrak{g} is the algebra of all Laplace operators on G. The correspondence $D \rightarrow D^{*}$ on $U\left(\mathfrak{g}_{c}\right)$ is its anti-automorphism generated by $X \rightarrow-X(X \in \mathfrak{g})$.

A distribution π on G is called invariant if it is invariant under any inner automorphism of G. It is called eigendistribution if there exists a homomorphism λ of 3 into C such that $Z \pi=\lambda(Z) \pi(Z \in 3)$. Here λ is called the infinitesimal character of π. Let Z_{G} be the center of G.

If there exists a homomorphism χ of Z_{G} into C^{*} such that $\pi(z g)=$ $\chi(z) \pi(g)\left(z \in Z_{G}\right), \pi$ is called Z_{G}-simple.

Now let $g \rightarrow T(g)(g \in G)$ be a representation of G by bounded operators on a Hilbelt space \mathcal{H}. Put for any $f \in C_{0}^{\infty}(G)$,

$$
T(f)=\int_{G} T(g) f(g) d g
$$

A representation (T, \mathcal{H}) is called (topologically) irreducible if \mathscr{H} has no closed invariant subspace except $\{0\}$ and \mathscr{H} itself. An irreducible representation (T, \mathscr{H}) is called quasi-simple [2(a), I] if there exist homomorphisms χ of Z_{G} into C^{*} and λ of \mathcal{Z} into C such that

$$
T(z)=X(z) l_{\mathscr{H}}\left(z \in Z_{G}\right), \quad T(Z)=\lambda(Z) l_{\mathscr{H}^{\circ}}(Z \in \mathcal{B}),
$$

where \mathcal{H}^{0} is the Gårding subspace of \mathscr{H} spanned by all $T(f) v\left(f \in C_{0}^{\infty}(G)\right.$, $v \in \mathscr{H})$ and $l_{\mathscr{H}}{ }^{0}$ denotes the identity operator on \mathscr{H}^{0}. The character π of such representation can be defined as to be the distribution $\pi(f)$ $=\operatorname{tr}(T(f))\left(f \in C_{0}^{\infty}(G)\right)[2(\mathrm{a})$, II $]$. Then π is a Z_{G}-simple invariant eigendistribution corresponding to χ and λ. Call it simply irreducible character.

Denote by $\mathfrak{H}(\lambda)$ (or $(\mathbb{G}(\lambda)$) the set of all invariant eigendistributions on G (or linear combinations of irreducible characters) with infinitesimal character λ. Then $\mathfrak{U}(\lambda) \supset \mathfrak{C}(\lambda)$. One of the purposes of this paper is to study the problem whether $\mathfrak{H}(\lambda)=\mathfrak{C}(\lambda)$ for all λ or not. Here we give an elementary proof of existence on $S L(n, \boldsymbol{R})(n \geqslant 3)$ of tempered invariant eigendistributions which can not be expressed as linear combinations of irreducible characters. Moreover for $\operatorname{SL}(n, \boldsymbol{R})$, all irreducible characters and all invariant eigendistributions with certain infinitesimal characters λ are obtained. Therefore we know exactly the difference of $\mathfrak{A}(\lambda)$ and $\mathfrak{C}(\lambda)$ for such λ. For complex classical groups $S L(n, \boldsymbol{C}), S O(2 n+1, \boldsymbol{C}), S p(n, \boldsymbol{C})$ and $S O(2 n, \boldsymbol{C})$, we see that if $n \leqslant 3, \mathfrak{A}(\lambda)=\mathfrak{C}(\lambda)$ for any λ and that if $n \geqslant 4, \mathfrak{Y}(\lambda) \neq \mathfrak{C}(\lambda)$ for some λ.

§ 1. Preliminary results

Let us introduce some notations and make some general statements. Let G, \mathfrak{g} be as before and \mathfrak{h} a Cartan subalgebra of \mathfrak{g}. Denote by P the set of all positive roots of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ with respect to a lexicographic order. A root α is called real (or imaginary) if it takes only real (or imaginary) values on \mathfrak{h}. Denote by P_{R} (or P_{I}) the set of all real (or imaginary) positive roots. Let W_{c} be the Weyl group of ($\mathfrak{g}_{c}, \mathfrak{h}_{c}$). Let H be the Cartan subgroup of G corresponding to \mathfrak{h} and $W_{G_{F}}(H)$ the factor group of the normalizer of \mathfrak{h} in G by the center H_{0} of H. For any root α, let $X_{\alpha} \in \mathrm{g}_{c}$ be its non-zero root vector and put $\operatorname{Ad}(h) X_{\alpha}$ $=\xi_{\alpha}(h) X_{\alpha}(h \in H)$. Define for $h \in H$,

$$
\begin{equation*}
\Delta^{\prime}(h)=\prod_{\alpha \in P}\left(1-\xi_{\alpha}(h)^{-1}\right), \quad \Delta_{R}^{\prime}(h)=\prod_{\alpha \in P_{R}}\left(1-\xi_{\alpha}(h)^{-1}\right) . \tag{1.1}
\end{equation*}
$$

Replacing G, if necessary, by a certain covering group which covers G finitely many times, we may assume that there exists a connected complex semisimple Lie group G_{c} with the following two properties. (a) Let ρ be the half-sum of all $\alpha \in P$ and H_{c} the Cartan subgroup of G_{c} corresponding to \mathfrak{h}_{c}. Then $\xi_{\rho}(\exp X)=e^{\rho(X)}\left(X \in \mathfrak{h}_{c}\right)$ defines a one-valued function on H_{c}. (b) The injection j of \mathfrak{g} into g_{c} can be lifted up a homomorphism j^{\prime} of G into G_{c}. The function $\xi_{\rho} \circ j^{\prime}$ on H is denoted again by ξ_{ρ}. Now put

$$
\begin{equation*}
\nabla(h)=\xi_{\rho}(h) \operatorname{sign}\left(\Delta_{R}^{\prime}(h)\right) \Delta^{\prime}(h) \quad(h \in H) . \tag{1.2}
\end{equation*}
$$

Then for any $w \in W_{G}(H)$, there exists $\epsilon(w)= \pm 1$ such that $\nabla(w, h)$ $=\epsilon(w) \boldsymbol{\nabla}(h)$.

Let G^{\prime} be the set of all regular elements of G and put $H^{\prime}=H \cap G^{\prime}$, $G_{H}=\bigcup_{g \in G} g H^{\prime} g^{-1}$. Define for any $f \in C_{0}^{\infty}(G)$, a function F_{f} on H^{\prime} as

$$
\begin{equation*}
F_{f}(h)=\overline{\Gamma(h)} \int_{G / H_{0}} f\left(g h g^{-1}\right) d \tilde{g}, \tag{1.3}
\end{equation*}
$$

where $\tilde{g}=g H_{0}, d \tilde{g}$ is an invariant measure on G / H_{0} and \bar{a} denotes the complex conjugate of $a \in C$.

Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} and \mathfrak{a} a maximal abelian subalgebra of \mathfrak{p}. Moreover let \mathfrak{b}^{0} be a Cartan subalgebra of \mathfrak{g} such that $\mathfrak{G}^{0}=\mathfrak{a}+\mathfrak{h}^{0} \cap \mathfrak{f}$. Assume that the order in the set of roots of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ is compatible with one in the set of roots of $\left(\mathfrak{g}_{c}, \mathfrak{a}_{c}\right)$. Put

$$
\mathfrak{n}_{c}=\sum_{\alpha \in P, \alpha \mid \mathfrak{a}^{* 0}} C X_{\alpha}, \quad \mathfrak{n}=\mathfrak{n}_{c} \cap \mathfrak{g} .
$$

Let K, A and N be the analytic subgroups of G corresponding to \mathfrak{t}, \mathfrak{a} and \mathfrak{n}. Then $G=K A N$ is Iwasawa decomposition of G. The Cartan subgroup corresponding to \mathfrak{h}^{0} is denoted by H^{0}. We see easily that for $H=H^{0}$,

$$
F_{f}(h)=\overline{\xi_{\rho}(h)} \overline{\prod_{\alpha \in P_{I}}\left(1-\xi_{\alpha}(h)^{-1}\right)} \int_{N} \int_{K / Z_{G}} f\left(k h n k^{-1}\right) d k d n,
$$

where $k=k Z_{G}, d k$ and $d n$ denote appropriate invariant measures on K / Z_{G} and N respectively. Hence,

Lemma 1.1. For $H=H^{0}$, the function F_{f} on H^{\prime} can be extended to an indefinitely differentiable function on the whole H with compact support.

Now let $I\left(\mathfrak{h}_{c}\right)$ be the subset of $U\left(\mathfrak{h}_{c}\right)$ consisting of all W_{c}-invariant elements.

Lemma 1.2. (See [2(b), p. 118] and [2(c), Th. 3].) There exists unique isomorphism $\gamma=\gamma^{\natural}$ of $\mathfrak{3}$ onto $I\left(\mathfrak{h}_{c}\right)$ such that $F_{Z f}=\gamma(Z) F_{f}$ $(Z \in 3)$. This γ satisfies that $\gamma\left(Z^{*}\right)=(\gamma(Z))^{*}$.

A homomorphism of $I\left(\mathfrak{h}_{c}\right)$ into C is always induced by some $\mu \in \mathfrak{G}_{c}^{*}$, where \mathfrak{b}_{c}^{*} is the dual of \mathfrak{h}_{c}. Denote this one by λ_{μ}. Then $\lambda_{\mu}=\lambda_{\mu^{\prime}}$ if and only if $\mu^{\prime}=\sigma \mu$ for some $\sigma \in W_{c}$. We say λ_{μ} is regular if $\mu \neq \sigma \mu$ for all $\sigma \in W_{c}$ not equal to the identity. We sometimes identify the homomorphism λ of 3 into C and the one $\lambda \circ \gamma^{-1}$ of $I\left(h_{c}\right)$. For a fixed λ,
let us consider an analytic function κ on H^{0} satisfying for some $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ such that $\lambda=\lambda_{\mu} \circ \gamma$ the following equations:

$$
\begin{gather*}
\kappa(w h)=\epsilon(w) \kappa(h) \quad\left(w \in W_{G}\left(H^{0}\right), h \in H^{0}\right), \tag{1.4}\\
D \kappa=\lambda_{\mu}(D) \kappa \quad\left(D \in I\left(\mathfrak{h}_{c}^{0}(G)\right) .\right. \tag{1.5}
\end{gather*}
$$

Define a function π on G from κ as follows: for any $g \notin G_{H^{0}}, \pi(g)=0$; for $g \in G_{H^{0}}, \pi(g)=\left(\nabla\left(h_{g}\right)\right)^{-1} \kappa\left(h_{g}\right)$, where $h_{g} \in H^{0}$ is an element such that $g=g_{0} h_{g} g_{0}{ }^{-1}$ for some $g_{0} \in G$. Consider the distribution defined as

$$
\pi(f)=<\pi, f>=\int_{G} f(g) \pi(g) d g \quad\left(f \in C_{0}^{\infty}(G)\right)
$$

Then using the above two lemmas on F_{f}, we obtain

Proposition 1. The distribution π defined above is an invariant eigendistribution on G with the infinitesimal character $\lambda=\lambda_{\mu} \circ \gamma$ which vanishes identically outside the closure of $G_{H^{\circ}}$.

Proof. Chose a Haar measure $d h$ on a Cartan subgroup H appropriately, then for any integrable function φ on G_{H},

$$
\int_{G_{H}} \varphi(g) d g=\int_{H} \int_{G / H_{0}} \varphi\left(g h g^{-1}\right) d g \cdot|\nabla(h)|^{2} d h .
$$

Therefore applying this formula for $H=H^{0}$,

$$
\begin{aligned}
&<\pi, f>=\int_{H^{0}} F_{f} \cdot \kappa d h . \\
&<Z \pi, f>=<\pi, Z^{*} f>=\int_{H^{0}} F_{Z^{*} f^{\prime}} \cdot \kappa d h=\int_{H^{0}} \gamma\left(Z^{*}\right) F_{f} \cdot \kappa d h \\
&=\int_{H^{0}} \gamma(Z)^{*} F_{f} \cdot \kappa d h=\int_{H^{0}} F_{f} \cdot \gamma(Z) \kappa d h \\
&=\int_{H^{0}} F_{f} \cdot \lambda_{\mu}(\gamma(Z)) \kappa d h=\lambda(Z)<\pi, f>
\end{aligned}
$$

Q.E.D.

Denote by $\mathfrak{A}_{H^{\circ}}\left(\lambda_{\mu}\right)$ the set of all invariant eigendistributions π obtained from the analytic functions κ on H^{0} as above. Using Lemma 2.4 in §2, we can prove as in [3(b)] the following proposition (see [3(c)]). But this one is not used to prove that for $S L(n, \boldsymbol{R})(n \geqslant 3), \mathfrak{Y}(\lambda) \neq \mathfrak{c}(\lambda)$ for some λ.

Proposition 2. The set $\mathfrak{A}_{H^{0}}\left(\lambda_{\mu}\right)$ is equal to the set of all invariant eigendistributions on G with infinitesimal character $\lambda=\lambda_{\mu} \circ \gamma$ which vanish identically outside the closure of $G_{H^{\circ}}$.

§ 2. Review on known results

Here we summalize some known results in the form of a certain number of lemmas. Two quasi-simple irreducible representations T_{i} on $\mathscr{H}_{i}(i=1,2)$ are said to be infinitesimally equivalent [2(a), I, p.230] if the corresponding representations of $U\left(\mathrm{~g}_{c}\right)$ on $\mathscr{H}_{i}^{\infty}=\sum_{i} \mathcal{H}_{i}(\delta)$ (algebraic sum) are algebraically equivalent, where δ denotes an equivalent class of irreducible representations of K and $\mathscr{H}_{i}(\delta)$ denotes the subspace consisting of all vectors transformed under $T_{i}(k)(k \in K)$ according to δ. Then,

Lemma 2.1 [2(a), III]. Two quasi-simple irreducible representations of G have the same character if and only if they are infinitesimally equivalent. Two unitary irreducible representations have the same character if and only if they are unitary equivalent.

Let M be the centralizer of A in K. Take $\mu^{\boldsymbol{a}} \in \mathfrak{a}_{c}^{*}$ and a finitedimensional irreducible representation ν of M. Then $L=\left(\mu^{\mathfrak{a}}, \nu\right)$ defines canonically a representation of $M A N$. Inducing this one from $M A N$ to G, we obtain a representation T^{L} on a Hilbert space \mathscr{H}^{L} consisting certain vector-valued functions on K (see e.g., [3(a)]). Let \mathscr{H}_{1} and \mathscr{H}_{2} be two closed invariant subspaces of \mathscr{H}^{L} such that $\mathscr{H}_{1} \supset \mathscr{H}_{2}$. If the representation induced on $\mathscr{H}_{1} / \mathcal{H}_{2}$ is irreducible, it
is called irreducible constituent of T^{L}. Then we know from Th. 4 of [2(a), II] the following

Lemma 2.2. For $G=S L(n, \boldsymbol{R})$ or a connected complex semisimple Lie group, any quasi-simple irreducible representation of G is infinitesimally equivalent to an irreducible constituent of some T^{L}.

We use the following lemmas in $\S 5$.

Lemma 2.3. Let $T_{1}, T_{2}, \ldots, T_{d}$ be the set of quasi-simple irreducible representations of G any two of which are not infinitesimally equivalent. Then their characters are linearly independent.

Lemma 2.4 [2(d)]. Any invariant eigendistribution π on G coincides with a locally summable function on G which is analytic on G^{\prime}. Moreover for every Cartan subgroup H, the function $\kappa^{\mathfrak{h}}=\nabla \cdot\left(\left.\pi\right|_{H^{\prime}}\right)$ on $H^{\prime}=H \cap G^{\prime}$ can be extended to an analytic function on $H^{\prime}(R)=$ $\left\{h \in H, \Delta_{R}^{\prime}(h) \neq 0\right\}$.

Let λ be the infinitesimal character of π and chose $\mu^{\mathfrak{\eta}} \in \mathfrak{h}_{c}^{*}$ such that $\lambda=\lambda_{\mu} \eta^{\natural} \circ \gamma^{\natural}$. Then $\kappa^{\mathfrak{\eta}}$ on $H^{\prime}(R)$ satisfies the analogous equations as (1.4) and (1.5):
(2. 1) $\quad \kappa^{\mathfrak{\natural}}(w h)=\epsilon(w) \kappa^{\mathfrak{\natural}}(h) \quad\left(w \in W_{G}(H), h \in H^{\prime}(R)\right)$,

$$
\begin{equation*}
D \kappa^{\mathfrak{h}}=\lambda_{\mu} \mathfrak{\mathfrak { h }}(D) \kappa^{\mathfrak{\natural}} \quad\left(D \in I\left(\mathfrak{h}_{c}\right)\right) . \tag{2.2}
\end{equation*}
$$

Suppose that $\mathfrak{h}=\mathfrak{h}_{-}+\mathfrak{h}_{+}$, where $\mathfrak{h}_{-}=\mathfrak{h} \cap \mathfrak{k}, \mathfrak{h}_{+}=\mathfrak{h} \cap \mathfrak{p}$. Then putting $H_{-}=H \cap K, H=H_{-} \exp \mathfrak{G}_{+}$. For any connected component F of $H^{\prime}(R)$, take $h_{0} \in H_{-}$on the boundary of F. As a solution of (2.2), κ^{\natural} is expressed as

$$
\begin{equation*}
\kappa^{\mathfrak{\natural}}\left(h_{0} \exp X\right)=\sum_{\sigma \in W_{c}} p_{\sigma}(X) \exp \left\{\mu^{\mathfrak{\natural}}(\sigma X)\right\} \tag{2.3}
\end{equation*}
$$

if $X \in \mathfrak{h}$ is sufficiently small and $h_{0} \exp X \in F$, where p_{σ} 's are some
polynomial functions on \mathfrak{h}. If K is compact or π is Z_{G}-simple, all p_{σ} can be taken as not to depend on \mathfrak{h}_{-}, because $F=F \exp \mathfrak{h}_{-}$. Define $\mathfrak{A}^{\prime}(\lambda)$ (or $\mathfrak{U}^{\prime \prime}(\lambda)$, in case when K is compact) as the subset of $\mathfrak{Y}(\lambda)$ consisting of such π that for any F and H, all p_{σ} in the expression (2.3) can be taken as to be constants (or polynomials with constant terms zero).

§ 3. Invariant eigendistributions on $S L(n, \boldsymbol{R})$

In this section, let $G=S L(n, \boldsymbol{R})$ and H^{0} its Cartan subgroup consisting of all diagonal matrices in G. Let us calculate all analytic functions κ on H^{0} satisfying (1.4) and (1.5). Denote by $d\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the diagonal matrix with diagonal elements $a_{1}, a_{2}, \ldots, a_{n}$. For $h=$ $d\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in H^{0}$,

$$
\begin{equation*}
\nabla(h)=\left|\prod_{i<j}\left(a_{i}-a_{j}\right)\right| \tag{3.1}
\end{equation*}
$$

The Weyl group $W_{G}\left(H^{0}\right)$, simply denoted by W, is isomorphic to W_{c} and to the symmetric group \mathfrak{S}_{n} of order n as permutation group of a_{1}, a_{2}, \ldots, a_{n}. Let $\epsilon_{j}= \pm l(1 \leqslant j \leqslant n)$ such that $\epsilon_{1} \epsilon_{2} \ldots \epsilon_{n}=1$ and put $\epsilon=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)$. Denote by $H^{0}(\epsilon)$ the connected component of H^{0} containing $d\left(\epsilon_{1} e^{t_{1}}, \epsilon_{2} e^{t_{2}}, \ldots, \epsilon_{n} e^{t_{n}}\right)$, where $t_{j} \in \boldsymbol{R}$. Put $I_{k}=\{1,2, \ldots$, $2 k\}, J_{k}=\{2 k+1,2 k+2, \ldots, n\}$ and let $\epsilon^{(k)}$ be such row ϵ that $\epsilon_{j}=-1$ for $l \in I_{k}$ and $\epsilon_{j}=1$ for $j \in J_{k}$. Put $H_{k}^{0}=H^{0}\left(\epsilon^{(k)}\right)$. Any $H^{0}(\epsilon)$ is conjugate to some H_{k}^{0} under W. It is sufficient to determine the restrictions κ_{k} of κ on H_{k} for $0 \leqslant k \leqslant[n / 2]$ because for $h \in H^{0}(\epsilon)=w H_{k}^{0}$ $(w \in W), \kappa(h)=\kappa_{k}\left(w^{-1} h\right)$. The subgroup $W_{k}=\left\{w \in W ; w H_{k}^{0}=H_{k}^{0}\right\}$ is isomorphic to $\mathfrak{S}_{2 k} \times \mathfrak{S}_{n-2 k}$ and (1.4) is rewritten as

$$
\begin{equation*}
\kappa_{k}(w h)=\kappa_{k}(h) \quad\left(w \in W_{k}, h \in H_{k}^{0}\right) . \tag{3.2}
\end{equation*}
$$

Any element $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ is expressed uniquely as $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, where $\mu_{j} \in C$ and $\mu_{1}+\mu_{2}+\ldots+\mu_{n}=0$, in such a way that

$$
\begin{equation*}
\mu\left(d\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)=\sum_{1<j \leqslant n} \mu_{f} t_{j}=(\mu, t) \text { (put). } \tag{3.3}
\end{equation*}
$$

To study the equations (1.4) and (1.5), it is convenient to replace G by the reductive group $+G=\{g \in G L(n, \boldsymbol{R})$; $\operatorname{det} g>0\}$. The results in $\S 1$ can be translated for ${ }^{+} G$ word for word. Denote by $+\mathfrak{h}^{0},+H^{0}$, ${ }^{+} H^{0}(\epsilon),{ }^{+} H_{k}^{0},{ }^{+} \nabla,{ }^{+} \kappa$ and ${ }^{+} \kappa_{k}$ the analogous objects as $\mathfrak{h}^{0}, H^{0}, H^{0}(\epsilon)$, $H_{k}^{0}, \nabla, \kappa$ and κ_{k} respectively. Then for $h=d\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in{ }^{+} H^{0}$,

$$
\begin{equation*}
\left.+\nabla(h)=\left(a_{1} a_{2} \ldots a_{n}\right)^{-\frac{n-1}{2}} \prod_{i>j}\left(a_{i}-a_{j}\right) \right\rvert\, . \tag{3.4}
\end{equation*}
$$

The Weyl groups are the same for G and $+G$. Denote by $\boldsymbol{t}_{\boldsymbol{j}}$ the differential operator $\partial / \partial t_{j}$ on $+H^{0}$. Then $I\left({ }^{+} \mathfrak{h}_{c}^{0}\right)$, considered as the algebra of differential operators on $+H^{0}$, is nothing but the symmetric polynomials of $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{n}$. For any $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in\left({ }^{+} \mathfrak{h}_{\boldsymbol{c}}^{0}\right)^{*}$ and $D(\boldsymbol{t}) \in I\left({ }^{+} \mathfrak{h}_{\boldsymbol{c}}^{0}\right)$, $\lambda_{\mu}(D(t))=D(\mu)$. We restrict ourselves to treat μ such that $\mu_{1}+\mu_{2}+$ $\ldots+\mu_{n}=0$. Then for any such μ, there exists a one-one correspondence between the set of all solutions κ of the equations (1.4), (1.5) on H^{0} and that of ${ }^{+} \kappa$ of the corresponding equations on ${ }^{+} H^{0}$, by restricting ${ }^{+} \kappa$ on H^{0}. Therefore it is sufficient for us to study the following equations: for $0 \leqslant k \leqslant[n / 2]$,

$$
\begin{equation*}
{ }^{+} \kappa_{k}(w h)={ }^{+} \kappa_{k}(h) \quad\left(h \in+H_{k}^{0}, w \in W_{k}\right), \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
D(\boldsymbol{t})^{+} \kappa_{k}=D(\mu)^{+} \kappa_{k} \quad\left(D \in I\left({ }^{+} \mathfrak{h}_{c}^{0}\right)\right) . \tag{3.6}
\end{equation*}
$$

Put $W(\mu)=\{\tau \in W ; \tau \mu=\mu\}$ and $\bar{\sigma}=\sigma W(\mu)$ for $\sigma \in W$. Any solution of (3.6) is expressed uniquely as follows: for $h=d\left(\epsilon_{1} e^{t_{1}}, \epsilon_{2} e^{t_{2}}\right.$, $\left.\ldots, \epsilon_{n} e^{t_{n}}\right) \in{ }^{+} H_{k}^{0}$,

$$
\begin{equation*}
+_{\kappa_{k}}(h)=\sum_{\bar{\sigma} \in W / W(\mu)} p_{\bar{\sigma}}(t) \exp ((\sigma \mu, t)), \tag{3.7}
\end{equation*}
$$

where $p_{\bar{\sigma}}$'s are some polynomials of $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$. Let us rewrite (3.5) and (3.6) in terms of $p_{\bar{\sigma}}$'s. The equation (3.5) is written as

$$
\text { (3. 8) } \quad w p_{\bar{\sigma}}=p \overline{w \sigma} \quad\left(w \in W_{k}, \sigma \in W\right) \text {, }
$$

where $w p_{\bar{\sigma}}(t)=p_{\bar{\sigma}}\left(w^{-1} t\right)$. Take a complete system Σ of representatives
of the double coset space $W_{k} \backslash W / W(\mu)$. Then (3.8) means that it is sufficient to determin $p_{\bar{\sigma}}$ for $\sigma \in \Sigma$ and that for any $\sigma \in \Sigma$,

$$
\begin{equation*}
w p_{\bar{\sigma}}=p_{\bar{\sigma}} \quad\left(w \in W_{k} \cap W(\sigma \mu)\right) . \tag{3.9}
\end{equation*}
$$

Now let $a_{1}, a_{2}, \ldots, a_{n}$ be the set of different numbers in μ_{1}, μ_{2}, \ldots, μ_{n} and put $A_{r}=\left\{j ; \mu_{j}=\alpha_{r}\right\}$. Define $\sigma(i)$ as $\left(\sigma^{-1} \mu\right)_{i}=\mu_{\sigma(i)}$. Then $\sigma A_{r}=\left\{j ;(\sigma \mu)_{j}=\alpha_{r}\right\}$. For any subset A of $\{1,2, \ldots, n\}$, put

$$
D_{m}(A)=\sum_{i \in A} t_{i}^{m}, \quad W(A)=\{w \in W ; w A=A, w(i)=i \text { for any } i \notin A\}
$$

Using the same method as in [3(b), §9], we can prove the following

Lemma 3.1. The system of equations (3.5) and (3.6) is expressed in terms of $p_{\bar{\sigma}}(\sigma \in \Sigma)$ as
(3. 10) $\left\{\begin{array}{l}w p_{\bar{\sigma}}=p_{\bar{\sigma}} \quad\left(w \in W_{k} \cap W\left(\sigma A_{r}\right), \quad 1 \leqslant r \leqslant N\right), \\ D_{m}\left(\sigma A_{r}\right) p_{\bar{\sigma}}=0 \quad(m \geqslant 1,1 \leqslant r \leqslant N) .\end{array}\right.$

Fix $\sigma \in \Sigma$ and r and put $A=\sigma A_{r} \cap I_{k}, B=\sigma A_{r} \cap J_{k}, p=p_{\bar{\sigma}}$, then $A \cap B=\phi$ and the above equations for σ and r are

$$
\left\{\begin{array}{l}
w p=p \quad(w \in W(A) \cap W(B)) \tag{3.11}\\
D_{m}(A \cap B) p=0 \quad(m \geqslant 1)
\end{array}\right.
$$

if A or $B=\phi$, the polynomial p does not contain the variables $t_{j}(j \in A \cap$ B) explicitely (see [3(b), §9]). If $A \neq \phi$ and $B \neq \phi$, the equation (3. 11) has the following solution:

$$
\begin{equation*}
p(t)=(\# A)^{-1} \sum_{j \in A} t_{j}-(\# B)^{-1} \sum_{j \in B} t_{j}, \tag{3.12}
\end{equation*}
$$

where $\# A$ denotes the number of elements in A. Restricting this solution $p(t)$ from ${ }^{+} H_{k}^{0}$ to H_{k}^{0}, we always obtain non-zero function.

Now denote by $\mathfrak{Y}_{H^{0}}^{\prime}(\lambda)$ and $\mathfrak{H}_{H^{0}}^{\prime \prime}(\lambda)$ the sets $\mathfrak{A}_{H^{0}}(\lambda) \cap \mathfrak{H}^{\prime}(\lambda)$ and
$\mathfrak{A}_{H^{0}}(\lambda) \cap \mathfrak{A}^{\prime \prime}(\lambda)$. Then we obtain from the above arguments the following

Proposition 3. For $S L(n, \boldsymbol{R}), \mathfrak{A}_{H_{0}}(\lambda)=\mathfrak{U}_{H^{0}}^{\prime}(\lambda)+\mathfrak{U}_{H^{0}}^{\prime \prime}(\lambda)$ (direct sum). When $n=2$, always $\mathfrak{X}_{H^{0}}^{\prime \prime}(\lambda)=\{0\}$ and $\mathfrak{A}_{H^{\circ}}(\lambda)=\mathfrak{Y}_{H^{\circ}}^{\prime}(\lambda)$. When n $\geq 3, \mathfrak{X}_{H^{\circ}}^{\prime \prime}(\lambda)=\{0\}$ or $\neq\{0\}$ according as λ is regular or not.

§ 4. Irreducible characters of $S L(n, \boldsymbol{R})$

In this and the next sections, we calculate all irreducible characters of $G=S L(n, \boldsymbol{R})$ with certain infinitesimal characters λ. Let us apply Lem's 2.1 and 2.2. Put $\mathfrak{a}=\mathfrak{b}^{0}$ and $K=S O(n)$, then $M=$ $\left\{d\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)\right\}$ and $M A=H^{0}$. Take $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ and let $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right)$ be a row of $\nu_{j}=0$ or l. Then ν determines a character of M and the pair (μ, ν) determines a character $\chi^{\mu, \nu}$ of $H^{0}=M A$ as

$$
\begin{equation*}
\chi^{\mu, \nu}(h)=\prod_{1 \leqslant j \leqslant n}\left|a_{j}\right|^{\mu_{j}\left(a_{j}| | a_{j} \mid\right)^{\nu},} \tag{4.1}
\end{equation*}
$$

where $h=d\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Consider the induced representation of $\chi^{\mu, \nu}$ defined in $\S 2$ and denote it by $T^{\mu, \nu}$ (see also [1]). Then we see that $T^{\mu, \nu}$ and its character $\pi^{\mu, \nu}$ satisfy

$$
\begin{aligned}
& T^{\mu, \nu}(z)=\nu(z) 1 \quad\left(z \in Z_{G}\right), \quad T^{\mu, \nu}(Z)=\lambda_{\mu}(Z) 1 \quad(Z \in \mathcal{Z}) ; \\
& \pi^{\mu, \nu}(z g)=\nu(z) \pi^{\mu, \nu}(g) \quad\left(z \in Z_{G}\right), \quad Z \pi^{\mu, \nu}=\lambda_{\mu}(Z) \pi^{\mu, \nu} \quad(Z \in \mathbb{Z}) .
\end{aligned}
$$

This character is a function on G which vanishes identically outside $G_{H^{0}}$ and is given on $G_{H^{0}}$ as follows:

$$
\pi^{\mu, \nu}(h)=\nabla(h)^{-1} \kappa_{\mu, \nu}^{0}(h) \quad\left(h \in H^{0} \cap G^{\prime}\right),
$$

where putting $W=W_{G}\left(H^{0}\right)$,

$$
\begin{equation*}
\kappa_{\mu, \nu}^{0}(h)=\sum_{w \in W} \chi^{\mu, \nu}(w h) . \tag{4.2}
\end{equation*}
$$

Therefore it follows from the results in $\S 3$ that for any $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$, the
space $\mathfrak{X}_{H^{\prime}}^{\prime}\left(\lambda_{\mu}\right)$ is spanned by $\pi^{\mu, \nu}$, when ν runs over all possible rows, whence $\subseteq\left(\lambda_{\mu}\right) \supset \mathfrak{\mathfrak { X } _ { H ^ { 0 } } ^ { \prime }}\left(\lambda_{\mu}\right)$. Note that $\pi^{\mu, \nu}=\pi^{\mu^{\prime}, \nu^{\prime}}$ if and only if there exists some $w \in W_{G}\left(H^{0}\right)$ such that $\chi^{\mu^{\prime}, \nu^{\prime}}(h)=\chi^{\mu, \nu}(w h) \quad\left(h \in H^{0}\right)$.

To apply Lem. 2.2, we must decompose $T^{\mu, \nu}$ into irreducible constituents. We call $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ imaginary if it takes on \mathfrak{h}^{0} only pureimaginary values. If μ is imaginary, $T^{\mu, \nu}$ is unitary and its irreducibility is studied in [l]. Put $\tilde{G}=\{g \in G L(n, \boldsymbol{R})$; det $g= \pm l\}$ and let \tilde{H}^{0} be its subgroup consisting of all diagonal matrices in \tilde{G}. Extend $\chi^{\mu, \nu}$ from H^{0} to \tilde{H}^{0} by (4.1) and construct its induced representation $\tilde{T}^{\mu, \nu}$ of \tilde{G} analogously as $T^{\mu, \nu}$. Then the restriction of $\tilde{T}^{\mu, \nu}$ on G is exactly $T^{\mu, \nu}$.

Lemma 4.1 [1]. The representation $\tilde{T}^{\mu, \nu}$ of \tilde{G} is always irreducible if μ is imaginary.

Put $u_{0}=d(-1,-1, \ldots,-1)$ if n is odd and $u_{0}=d(1,1, \ldots, 1,-1)$ if n is even. Then $\tilde{G}=G \cap G u 0$. Using the general theory of group representations, we obtain from the above lemma the following

Lemma 4.2. When n is odd, $T^{\mu, \nu}$ is always irreducible. When n is even, if it is reducible, it is a direct sum of two inequivalent irreducible representations T and T^{\prime} such that T^{\prime} is unitary equivalent to the representation $g \rightarrow T\left(u_{0} g u_{0}^{-1}\right)(g \in G)$.

Note that $\lambda_{\mu}=\lambda_{\mu^{\prime}}$ if and only if $\mu^{\prime}=\sigma \mu$ for some $\sigma \in W_{c}$. Then,

Proposition 4. Suppose n is odd. If $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ is imaginary, the characters $\pi^{\mu, \nu}$ give all irreducible characters of G with infinitesimal character λ_{μ} and $\mathfrak{G}\left(\lambda_{\mu}\right)=\mathfrak{A}_{H^{0}}^{\prime}\left(\lambda_{\mu}\right)$.

Thus, Prop's 3 and 4 give us an elementary proof of the following theorem in the case when n is odd, because $\mathfrak{A}_{H^{\circ}}^{\prime \prime}\left(\lambda_{\mu}\right) \neq\{0\}$ for some λ_{μ}.

Theorem 1. For $S L(n, \boldsymbol{R})(n>3)$, there exist tempered invariant eigendistributions on it which can not be expressed as linear combinations of irreducible characters (for the definition of temperedness, see [2(e)]).

Note that for $S L(n, \boldsymbol{R})$, every element in $\mathfrak{X}\left(\lambda_{\mu}\right)$ is tempered if μ is imaginary.

Apply Lem. 2.4 and consider the equations (2.1) and (2.2) for every $H=H^{r}(0 \leqslant r \leqslant[n / 2])$. Then, using Prop. 2, we obtain

Proposition 5. When n is odd, $\mathfrak{A}\left(\lambda_{\mu}\right)=\mathfrak{A}_{H^{\circ}}\left(\lambda_{\mu}\right)$ if $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ is imaginary.

§ 5. Irreducible characters of $S L(n, \boldsymbol{R})$ for even n

Now suppose $n=2 s$ is even. To calculate all irreducible characters, we apply Lem's 2.3 and 2.4. Put

$$
u(\theta)=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

and let

$$
d\left(e^{\tau_{1}} u\left(\theta_{1}\right), e^{\tau_{2}} u\left(\theta_{2}\right), \ldots, e^{\tau_{r}} u\left(\theta_{r}\right), \epsilon_{1} e^{t_{1}}, \ldots, \epsilon_{2} e^{t_{2}}, \ldots, \epsilon_{n-2 r} e^{t_{n-2 r}}\right)
$$

be the blockwise diagonal matrix with r blocks of 2×2. Denote by H^{r} the set all such matrices in G. Then $H^{0}, H^{1}, \ldots, H^{r}$ form a complete system of Cartan subgroups of G which are not conjugate to each other under inner automorphisms.

Suppose that $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ is imaginary as before and $T^{\mu, \nu}$ is reducible. Let T, T^{\prime} be as in Lem. 4.2 and let π, π^{\prime} be their characters. Then,

$$
\begin{equation*}
\pi+\pi^{\prime}=\pi^{\mu, \nu}, \quad \pi^{\prime}(g)=\pi\left(u_{0} g u_{0}^{-1}\right) \quad\left(g \in G^{\prime}\right) \tag{5.1}
\end{equation*}
$$

When $0 \leqslant r<s, u_{0} h u_{0}^{-1}=h$ for any $h \in H^{r}$, whence $\pi^{\prime}(h)=\pi(h)$ on $H^{r^{\prime}}=H^{r} \cap G^{\prime}$. Therefore,

$$
\left\{\begin{array}{l}
\pi=\pi^{\prime}=2^{-1} \pi^{\mu, \nu} \text { on } H^{0^{\prime}} \tag{5.2}\\
\pi=\pi^{\prime}=2^{-1} \pi^{\mu, \nu}=0 \text { on } H^{r^{\prime}} \text { for } 0<r<s .
\end{array}\right.
$$

Moreover, since T is not equivalent to $T^{\prime}, \pi \neq \pi^{\prime}$. Hence $\pi=-\pi^{\prime} \neq 0$ on H^{s}.

We note here that it follows from (5.2) that any non-zero element in $\mathfrak{A}_{H^{0}}^{\prime \prime}\left(\lambda_{\mu}\right)$ can not be expressed as a linear combination of irreducible characters, which proves Th .1 in the case when n is even.

On the other hand, a study of the equations (2.1), (2.2) for $\lambda=$ $\lambda_{\mu}{ }^{\circ} \gamma$ on $H=H^{r}(0 \leqslant r \leqslant s)$ gives us more exact results. Denote in general a solution $\kappa^{\mathfrak{\natural}}$ on $H=H^{r}$ by κ^{r}. For $0<r<s$, always $\kappa^{r}=0$ on $H^{r^{\prime}}(R)$. Let M^{s} be the set of all $\mu^{\prime}=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}\right) \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ such that $\mu_{1}^{\prime}=\mu_{2}^{\prime}, \mu_{3}^{\prime}=\mu_{4}^{\prime}, \ldots, \mu_{2 s-1}^{\prime}=\mu_{2 s}^{\prime}$. When $\sigma \mu \notin M_{s}$ for any $\sigma \in W_{c}$, always $\kappa^{s}=0$ on $H^{s^{\prime}}(R)=H^{s}$. When $\mu^{\prime}=\sigma_{0} \mu \in M_{s}$ for some $\sigma_{0} \in W_{c}$, κ^{s} is a constant multiple of

$$
\begin{equation*}
\eta(h)=2^{s-1} \prod_{\sigma \in \mathscr{G}_{s}} \exp \left\{\left(\mu_{2 i-1}^{\prime}+\mu_{2 i}^{\prime}\right) \tau_{\sigma(j)}\right\}, \tag{5.3}
\end{equation*}
$$

where $h=d\left(e^{\tau_{1}} u\left(\theta_{1}\right), e^{\tau_{2}} u\left(\theta_{2}\right), \ldots, e^{\tau_{s}} u\left(\theta_{s}\right)\right)$.
Let $\pi^{\mu, \nu^{i}}\left(1 \leqslant i \leqslant N_{0}\right)$ be the set of all different $\pi^{\mu, \nu}$. Then it follows from the above arguments and Lem. 2.3 that $\operatorname{dim} \mathfrak{E}\left(\lambda_{\mu}\right) \leqslant N_{0}+1$ and that at most one $T^{\mu, \nu^{i}}$ is reducible.

Suppose $\mu \in M_{s}$ and $\nu^{1}=(1,0,1,0, \ldots, 1,0)$. Let us prove that $T^{\mu, \nu 1}$ is reducible. Put

$$
{ }^{+} G_{2}=\{\delta \in G L(2, \boldsymbol{R}) ; \operatorname{det} \delta>0\}, D_{s}=\left\{d\left(\delta_{1}, \delta_{2}, \ldots, \delta_{s}\right) \in G ; \delta_{j} \in+G_{2}\right\}
$$

and $P_{s}=D_{s} N$. Denote by $D_{1 / 2, c}^{ \pm}$the irreducible unitary representations of $+G_{2}$ with the following characters respectively: for $d\left(\epsilon e^{t_{1}}, \epsilon e^{t_{2}}\right)$ and $e^{\tau} u(\theta) \in+G_{2}$,

$$
\frac{\epsilon e^{c\left(t_{1}+t_{2}\right)}}{\left|e^{t_{1}-t_{2}} t_{2}^{2}-e^{-t_{1}-t_{2}}\right|} \quad \text { and } \frac{\mp e^{2 c \tau}}{e^{i \theta}-e^{-i \theta}} .
$$

Consider the representation L of D_{s} obtained from the Kronecker
product $\mathrm{D}_{1 / 2, \mu_{1}}^{\beta_{1}} \otimes \mathrm{D}_{1 / 2, \mu_{3}}^{\beta_{2}} \otimes \ldots \otimes \mathrm{D}_{1 / 2, \mu_{2 s-1}}^{\beta_{s}}$ with $\beta_{j}= \pm$. Extend L to the parabolic subgroup P_{s} and induce it from P_{s} to G, then we obtain a unitary representation T^{L} of G (see [3(a)]). Its character π^{L} is given by Th. 2 in [3(a)] as follows. Let q be the number of β_{j} such that $\beta_{j}=+$. Then,
(5. 4) $\quad \pi^{L}=\left\{\begin{array}{cc}(-1)^{q \nabla^{-1} \cdot \eta} & \text { on } H^{s} ; \\ 0 & \text { on } H^{r}(0<r<s) ; \\ 2^{-1} \pi^{\mu, \nu^{1}} & \text { on } H^{0} .\end{array}\right.$

Let $T_{ \pm}^{\mu}$ be the induced representations for which $\beta_{1}= \pm, \beta_{2}=\beta_{3}=\ldots$ $=\beta_{s}=+$ and let $\pi_{ \pm}^{\mu}$ be their characters. Then $\pi_{+}^{\mu}+\pi_{-}^{\mu}=\pi^{\mu, \nu^{1}}$. Therefore $T^{\mu, \nu^{1}}$ is equivalent to the direct sum of T_{+}^{μ} and T_{-}^{μ} and the latters are irreducible. Thus,

Proposition 6. Suppose $n=2 s$ is even and $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ is imaginary. (a) When $\sigma \mu \notin M_{s}$ for any $\sigma \in W_{c}$, all $T^{\mu, \nu}$ are irreducible and $\pi^{\mu, \nu}$'s give all irreducible characters of G with infinitesimal character λ_{μ} and $\mathfrak{G}\left(\lambda_{\mu}\right)=\mathfrak{A}_{H^{\prime}}^{\prime}\left(\lambda_{\mu}\right)$. (b) When $\mu \in M_{s}$, let $\pi^{\mu, \nu i}\left(1 \leqslant i \leqslant N_{0}\right)$ be all different $\pi^{\mu, \nu}$ and $\gamma^{1}=(1,0,1,0, \ldots, 1,0)$. Then $T^{\mu, \nu^{1}}$ is equivalent to the direct sum of T_{+}^{μ} and T_{-}^{μ} and all other $T^{\mu, \nu^{i}}$ are irreducible. All irreducible characters on G with infinitesimal character λ_{μ} are $\pi_{+}^{\mu}, \pi_{-}^{\mu}$ and $\pi^{\mu, \nu^{i}}(i \neq 1)$, and $\mathfrak{C}\left(\lambda_{\mu}\right)=\mathfrak{U}_{H^{\prime}}^{\prime}\left(\lambda_{\mu}\right)+C\left(\pi_{+}^{\mu}-\pi_{-}^{\mu}\right)$.

Analogously as Prop. 5, we obtain also

Proposition 7. Suppose that $\mu \in\left(\mathfrak{h}_{c}^{0}\right)^{*}$ is imaginary. In the case (a), $\mathfrak{A}\left(\lambda_{\mu}\right)=\mathfrak{A}_{H^{\circ}}\left(\lambda_{\mu}\right) . \quad$ In the case (b), $\mathfrak{H}\left(\lambda_{\mu}\right)=\mathfrak{U}_{H^{\circ}}\left(\lambda_{\mu}\right)+C\left(\pi_{+}^{\mu}-\pi_{-}^{\mu}\right)$.

Moreover we can prove for $S L(n, \boldsymbol{R})$ the following generalization of Prop. 3(cf. [3(c)]).

Proposition 8. For any homomorphism λ of 3 into C, $\mathfrak{A}(\lambda)=$ $\mathfrak{Y}^{\prime}(\lambda)+\mathfrak{X}^{\prime \prime}(\lambda)$ (direct sum) and $\mathfrak{G}(\lambda) \supset \mathfrak{A}^{\prime}(\lambda)$. Especially when $n=2$, always $\mathfrak{X}^{\prime \prime}(\lambda)=\{0\}$ and $\mathfrak{A}(\lambda)=\mathfrak{Y}^{\prime}(\lambda)=\mathfrak{C}(\lambda)$. When $n \geq 3, \mathfrak{Y}^{\prime \prime}(\lambda)=\{0\}$ or $\neq\{0\}$ according as λ is regular or not.

We proved in $\S 4$ and $\S 5$ that on $G=S L(n, \boldsymbol{R}) \sqrt{\S}\left(\lambda_{\mu}\right)=\mathfrak{X}^{\prime}\left(\lambda_{\mu}\right)$ for any imaginary $\mu \in\left(\mathfrak{h}_{\boldsymbol{c}}^{0}\right)^{*}$.

§ 6. The case of complex semi-simple Lie groups

In this section let G be a connected complex semisimple Lie group and $H=H^{0}$ its Cartan subgroup. Then we can apply Prop's 1 and 2. For any root α of $(\mathfrak{g}, \mathfrak{h})$, define $H_{\alpha} \in \mathfrak{h}$ as $a(X)=<H_{\alpha}, X>(X \in \mathfrak{h})$, where $<,>$ denotes the Killing form of \mathfrak{g}. Let $X \rightarrow \bar{X}(X \in \mathfrak{h})$ be the conjugation of \mathfrak{h} with respect to the real subalgebra spanned by $H_{\alpha}(\alpha \in P)$. Denote by \mathfrak{h}^{*} the dual space of \mathfrak{h} over \boldsymbol{C}. Then any character χ of H can be expressed uniquely as

$$
\chi(\exp X)=\exp \{p(X)+q(\bar{X})\} \quad(X \in \mathfrak{h}),
$$

where $p, q \in \mathfrak{h}^{*}$. (Note that H is connected.) Denote χ by (p, q) and consider it also as an element of \mathfrak{h}^{*}. Let W be the Weyl group of $(\mathrm{g}, \mathfrak{h})$. It operates on $\chi=(p, q)$ as $w \chi=(w p, w q)(w \in W)$. The Weyl group W_{c} of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ is isomorphic to $W \times W$ in such a way that $\sigma=\left(w, w^{\prime}\right)\left(w, w^{\prime} \in W\right)$ operates on $\chi=(p, q)$ as $\sigma \chi=\left(w p, w^{\prime} q\right)$. Let T^{χ} be the induced representation of χ on a Hilbert space \mathcal{H}^{χ} defined in $\S 2$ and π^{χ} its character. Let $J\left(\mathfrak{h}_{c}\right)$ be the set of W-invariant analytic differential operators on H. Then $I\left(\mathfrak{h}_{c}\right)$ is generated by $J\left(\mathfrak{h}_{c}\right)$ and $\overline{J\left(h_{c}\right)}$. We see from these facts that $Z \pi^{\chi}=\lambda_{\chi}(Z) \pi^{\chi}(Z \in B)$, and that $\pi^{\chi}=\pi^{\chi^{\prime}}$ (or $\lambda_{\chi}=\lambda_{\chi^{\prime}}$) if and only if $\chi^{\prime}=w_{\chi}$ (or $=\sigma \chi$) for some $w \in W$ (or $\sigma \in W_{c}$). A study of the equations (1.4) and (l.5) gives us the following

Lemma 6.1. For any character $\chi=(p, q), \mathfrak{A}\left(\lambda_{\chi}\right)=\mathfrak{A}^{\prime}\left(\lambda_{\chi}\right)+$
$\mathfrak{U}^{\prime \prime}\left(\lambda_{\chi}\right)$ (direct sum) and $\mathfrak{U}^{\prime}\left(\lambda_{\chi}\right)$ is spnned by $\left\{\pi^{\chi^{\prime}} ; \chi^{\prime}=(p, w q), w \in W\right\}$, whence $\mathfrak{(}\left(\lambda_{x}\right) \supset \mathfrak{X}^{\prime}\left(\lambda_{x}\right)$.

We want to prove $\mathfrak{c}\left(\lambda_{x}\right)=\mathfrak{Y}^{\prime}\left(\lambda_{x}\right)$. Meanwhile we obtain from [3(b), App. II] (*) the following

Proposition 9. Let G be any of $S L(n, C), S O(2 n+1, C), S p(n$, C) and $S O(2 n, C)$. When $n=2$ or $3, \mathfrak{X}^{\prime \prime}(\lambda)=\{0\}$ for any λ. When $n \geq 4$, there always exist some λ for which $\mathfrak{U}^{\prime \prime}(\lambda) \neq\{0\}$. Moreover $\mathfrak{U}^{\prime \prime}(\lambda)=\{0\}$ for any $\lambda=\lambda_{\chi}$ with imaginary $\chi=(p, q) \in \mathfrak{h}_{c}^{*}$.

As a corollary of the last assertion of this proposition, we obtain

Theorem 2. For any complex classical group G, a tempered invariant eigendistribution of G is always a linear combination of the characters of its irreducible unitary representations.

Now, to determine © (λ), we apply Lem's 2.1 and 2.2 and some results of D. P. Zhelobenko in [4(a), (b)]. Suppose, for simplicity, that G is simply connected. Then a pair of $p, q \in \mathfrak{h}^{*}$ defines a character of H if and only if $p_{\alpha}-q_{\alpha}$ is integer for any $\alpha \in P$, where $p_{\alpha}=2<p, a>/$ $\langle\alpha, a\rangle$. A character $\chi=(p, q)$ is called discretely positive if for any $\alpha \in P, p_{\alpha}$ and q_{α} are not negative integers at the same time. D. P. Zhelobenko [4(a), §ll] defined for any discretely positive character χ, "the minimal representation $\mu(\chi)$ " as the restriction of T^{χ} on an invariant subspace \mathscr{N}^{χ} of \mathcal{H}^{χ} with a stronger topology than the one induced from \mathscr{G}^{x} and proved the following facts.

Lemma 6.2. The representation $\mu(x)$ is completely irreducible in the sence of R. Godement and the two $\mu(\chi)$ and $\mu\left(\chi^{\prime}\right)$ are equivalent if and only if there exists some $w \in W$ such that $\chi^{\prime}=w \chi[4(\mathrm{a}), \S 11]$. Any quasi-simple irreducible representation of G is infinitesimally equivalent to some $\mu(\chi)$ [4(b), Th. 7].

Define the character of $\mu(\chi)$ as that of the restriction of T^{χ} on the closure of \mathscr{N}^{χ} in \mathscr{H}^{χ} and denote it by $\bar{\mu}(\chi)$. Then it follows from Lem. 6.2 that for any λ, the set of all irreducible characters with infinitesimal character λ does consist of all different $\bar{\mu}(\chi)$ with discretely positive χ such that $\lambda_{\chi}=\lambda$. This gives us the dimension of $\mathfrak{C}(\lambda)$. On the other hand, by Lem. 6.1, the dimension of $\mathfrak{X}^{\prime}(\lambda)$ is equal to the number of different π^{χ} such that $\lambda_{\chi}=\lambda$. Thus we see that $\operatorname{dim} \mathfrak{C}(\lambda)=\operatorname{dim}$ $\mathfrak{X}^{\prime}(\lambda)$, whence $\mathfrak{C}(\lambda)=\mathfrak{Y}^{\prime}(\lambda)$.

Theorem 3. Let G be a connected complex semisimple Lie group. For any $\lambda, \mathfrak{A}(\lambda)=\mathfrak{U}^{\prime}(\lambda)+\mathfrak{U}^{\prime \prime}(\lambda)$ (direct sum) and $\mathfrak{E}(\lambda)=\mathfrak{X}^{\prime}(\lambda)$.

This theorem and Prop. 9 give us the following

Theorem 4. For $S L(n, \boldsymbol{C}), S O(2 n+1, \boldsymbol{C}), S p(n, \boldsymbol{C})$ and $S O(2 n$, C), if $n \geq 4$, there always exist invariant eigendistributions on it which can not be expressed as linear combinations of irreducible characters. No such distribution is tempered.
(*) Errata. In [3(b), App. II]; p. 60, the 2 nd line from below should be " $p(t ; \rho)=p\left(\tau^{\prime} t ; \tau{ }^{\prime} \rho \tau\right)\left(\rho \in W, \tau \in \mathfrak{T}(c), \tau^{\prime} \in \mathfrak{T}(d)\right)$ "; p. 63, the right hand side of (17') should be multiplied by $\prod_{j=1}^{n}\left(e^{z_{j}}-e^{-z_{j}}\right)$; p. 66, the 4 th and 5 th lines from below should be "in another cases, $p(t)$ is symmetric with respect to the union of $t_{j}\left(j \in A_{k}^{+} \cap B_{l}^{+}\right)$ and $-t_{j}\left(j \in A_{k}^{-} \cap B_{l}^{-}\right)$and with respect to the union of $t_{i}\left(i \in A_{k}^{+} \cap\right.$ $\left.B_{l}^{-}\right)$and $-t_{i}\left(i \in A_{\bar{k}}^{-} \cap B_{l}^{+}\right)^{\prime}$.

Kyoto University

References

[1] I. M. Gel'fand and M. I. Graev: Unitary representations of the real unimodular groups (principal non-degenerate series). Izv. AN SSSR, Ser. Math., 17, 189-248 (1953).
[2] Harish-Chandra:
(a) Representations of semisimple Lie groups. I, II, III. Trans. Amer. Math. Soc., 75, 185-243 (1953), 76, 26-65, 234-253 (1954).
(b) The characters of semisimple Lie groups. Ibid., 83, 98-163 (1956).
(c) A formula for semisimple Lie groups. Amer. J. Math., 79, 733-760 (1957).
(d) Invariant eigendistributions on a semisimple Lie group. Trans. Amer. Math. Soc., 119, 457-508 (1965).
(e) Discrete series for semisimple Lie groups. II. Acta Math., 116, 1-111 (1966).
[3] T. Hirai:
(a) The characters of some induced representations of semisimple Lie groups. J. Math. Kyoto Univ., 8, 313-363 (1968).
(b) Invariant eigendistributions of Laplace operators on real simple Lie groups. I. Japan. J. Math., 39, 1-68 (1970).
(c) Characters of representations and invariant eigendistributions on real semisimple Lie groups (in Japanese). Sugaku, 23, 241-260 (1971).
[4] D. P. Zhelobenko:
(a) Operational culculus on a complex semisimple Lie group. Izv. AN SSSR, Ser. Math., 33, 931-973 (1969).
(b) Classification of extremely irreducible and normally irreducible representations of a complex semisimple Lie group. Ibid., 35, 573-599 (1971).

