J. Math. Kyoto Univ. (JMKYAZ) 12-2 (1972) 393-411

Some remarks on invariant eigendistributions on semisimple Lie groups

By

Takeshi HIRAI

(Received, February 15, 1972)

Introduction

Let G be a connected real semisimple Lie group with Lie algebra g. Denote by $C_0^{\infty}(G)$ the set of all indefinitely differentiable functions on G which vanish outside some compact sets. For a differential operator D on G, we define its adjoint D^* as

$$\int_{G} Df_{1}(g) f_{2}(g) dg = \int_{G} f_{1}(g) D^{*}f_{2}(g) dg \qquad (f_{1}, f_{2} \in C_{0}^{\infty}(G)),$$

where dg is a Haar measure on G. For any distribution π on G, we put $(D\pi)(f) = \pi(D^*f)(f \in C_0^{\infty}(G))$. A differential operator on G is called Laplace operator if it is invariant under both left and right translations. As usual, let us identify every $X \in \mathfrak{g}$ with a left-invariant differential operator on G. Then the center \mathfrak{Z} of the universal envelopping algebra $U(\mathfrak{g}_c)$ of the complexification \mathfrak{g}_c of \mathfrak{g} is the algebra of all Laplace operators on G. The correspondence $D \to D^*$ on $U(\mathfrak{g}_c)$ is its anti-automorphism generated by $X \to -X(X \in \mathfrak{g})$.

A distribution π on G is called invariant if it is invariant under any inner automorphism of G. It is called eigendistribution if there exists a homomorphism λ of \mathfrak{Z} into C such that $Z\pi = \lambda(Z)\pi$ ($Z \in \mathfrak{Z}$). Here λ is called the infinitesimal character of π . Let Z_G be the center of G. If there exists a homomorphism χ of Z_G into C^* such that $\pi(zg) = \chi(z)\pi(g)(z \in Z_G)$, π is called Z_G -simple.

Now let $g \to T(g)(g \in G)$ be a representation of G by bounded operators on a Hilbelt space \mathcal{H} . Put for any $f \in C_0^{\infty}(G)$,

$$T(f) = \int_G T(g)f(g)dg.$$

A representation (T, \mathcal{H}) is called (topologically) irreducible if \mathcal{H} has no closed invariant subspace except $\{0\}$ and \mathcal{H} itself. An irreducible representation (T, \mathcal{H}) is called quasi-simple [2(a), I] if there exist homomorphisms χ of Z_G into C^* and λ of \mathfrak{Z} into C such that

$$T(z) = X(z) l_{\mathcal{H}} \ (z \in Z_G), \quad T(Z) = \lambda(Z) l_{\mathcal{H}^0} \ (Z \in \mathfrak{Z}),$$

where \mathcal{H}^0 is the Gårding subspace of \mathcal{H} spanned by all T(f)v $(f \in C_0^{\infty}(G), v \in \mathcal{H})$ and \mathcal{H}_0 denotes the identity operator on \mathcal{H}^0 . The character π of such representation can be defined as to be the distribution $\pi(f) = \operatorname{tr}(T(f))(f \in C_0^{\infty}(G))[2(a), II]$. Then π is a Z_G -simple invariant eigendistribution corresponding to χ and λ . Call it simply *irreducible character*.

Denote by $\mathfrak{A}(\lambda)$ (or $\mathfrak{C}(\lambda)$) the set of all invariant eigendistributions on G (or linear combinations of irreducible characters) with infinitesimal character λ . Then $\mathfrak{A}(\lambda) \supset \mathfrak{C}(\lambda)$. One of the purposes of this paper is to study the problem whether $\mathfrak{A}(\lambda) = \mathfrak{C}(\lambda)$ for all λ or not. Here we give an elementary proof of existence on $SL(n, \mathbf{R})$ ($n \ge 3$) of tempered invariant eigendistributions which can not be expressed as linear combinations of irreducible characters. Moreover for $SL(n, \mathbf{R})$, all irreducible characters and all invariant eigendistributions with certain infinitesimal characters λ are obtained. Therefore we know exactly the difference of $\mathfrak{A}(\lambda)$ and $\mathfrak{C}(\lambda)$ for such λ . For complex classical groups $SL(n, \mathbf{C})$, $SO(2n+1, \mathbf{C})$, $Sp(n, \mathbf{C})$ and $SO(2n, \mathbf{C})$, we see that if $n \leq 3$, $\mathfrak{A}(\lambda) = \mathfrak{C}(\lambda)$ for any λ and that if $n \geq 4$, $\mathfrak{A}(\lambda) \neq \mathfrak{C}(\lambda)$ for some λ .

§1. Preliminary results

Let us introduce some notations and make some general statements. Let G, g be as before and \mathfrak{h} a Cartan subalgebra of g. Denote by P the set of all positive roots of $(\mathfrak{g}_c, \mathfrak{h}_c)$ with respect to a lexicographic order. A root \mathfrak{a} is called real (or imaginary) if it takes only real (or imaginary) values on \mathfrak{h} . Denote by P_R (or P_I) the set of all real (or imaginary) positive roots. Let W_c be the Weyl group of $(\mathfrak{g}_c, \mathfrak{h}_c)$. Let H be the Cartan subgroup of G corresponding to \mathfrak{h} and $W_G(H)$ the factor group of the normalizer of \mathfrak{h} in G by the center H_0 of H. For any root \mathfrak{a} , let $X_{\mathfrak{a}} \in \mathfrak{g}_c$ be its non-zero root vector and put $\mathrm{Ad}(h)X_{\mathfrak{a}} = \xi_{\mathfrak{a}}(h)X_{\mathfrak{a}}$ $(h \in H)$. Define for $h \in H$,

(1. 1)
$$\Delta'(h) = \prod_{\alpha \in P} (1 - \xi_{\alpha}(h)^{-1}), \quad \Delta'_{R}(h) = \prod_{\alpha \in P_{R}} (1 - \xi_{\alpha}(h)^{-1}).$$

Replacing G, if necessary, by a certain covering group which covers G finitely many times, we may assume that there exists a connected complex semisimple Lie group G_c with the following two properties. (a) Let ρ be the half-sum of all $a \in P$ and H_c the Cartan subgroup of G_c corresponding to \mathfrak{h}_c . Then $\xi_{\rho}(\exp X) = e^{\rho(X)}$ ($X \in \mathfrak{h}_c$) defines a one-valued function on H_c . (b) The injection j of \mathfrak{g} into \mathfrak{g}_c can be lifted up a homomorphism j' of G into G_c . The function $\xi_{\rho} \circ j'$ on H is denoted again by ξ_{ρ} . Now put

(1. 2)
$$\boldsymbol{V}(h) = \xi_{\rho}(h) \operatorname{sign}(\Delta'_{R}(h)) \Delta'(h) \qquad (h \in H)$$

Then for any $w \in W_G(H)$, there exists $\epsilon(w) = \pm 1$ such that $V(wh) = \epsilon(w)V(h)$.

Let G' be the set of all regular elements of G and put $H' = H \cap G'$, $G_H = \bigcup_{g \in G} gH'g^{-1}$. Define for any $f \in C_0^{\infty}(G)$, a function F_f on H' as

(1. 3)
$$F_f(h) = \overline{V(h)} \int_{G \neq H_0} f(ghg^{-1}) d\tilde{g},$$

where $\tilde{g} = gH_0$, $d\tilde{g}$ is an invariant measure on G/H_0 and \bar{a} denotes the complex conjugate of $a \in C$.

Let $g=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} and \mathfrak{a} a maximal abelian subalgebra of \mathfrak{p} . Moreover let \mathfrak{h}^0 be a Cartan subalgebra of \mathfrak{g} such that $\mathfrak{h}^0=\mathfrak{a}+\mathfrak{h}^0\cap\mathfrak{k}$. Assume that the order in the set of roots of $(\mathfrak{g}_c,\mathfrak{h}_c)$ is compatible with one in the set of roots of $(\mathfrak{g}_c,\mathfrak{a}_c)$. Put

$$\mathfrak{n}_c = \sum_{\alpha \in P, \alpha \mid_{\mathfrak{a}^{\pm 0}}} C X_{\alpha}, \quad \mathfrak{n} = \mathfrak{n}_c \cap \mathfrak{g}.$$

Let K, A and N be the analytic subgroups of G corresponding to \mathfrak{k} , a and n. Then G = KAN is Iwasawa decomposition of G. The Cartan subgroup corresponding to \mathfrak{h}^0 is denoted by H^0 . We see easily that for $H = H^0$,

$$F_f(h) = \overline{\xi_{\rho}(h)} \prod_{\alpha \in P_I} (1 - \xi_{\alpha}(h)^{-1}) \int_N \int_{K/Z_G} f(khnk^{-1}) dk \ dn,$$

where $k = kZ_G$, dk and dn denote appropriate invariant measures on K/Z_G and N respectively. Hence,

Lemma 1.1. For $H=H^0$, the function F_f on H' can be extended to an indefinitely differentiable function on the whole H with compact support.

Now let $I(\mathfrak{h}_c)$ be the subset of $U(\mathfrak{h}_c)$ consisting of all W_c -invariant elements.

Lemma 1.2. (See [2(b), p. 118] and [2(c), Th. 3].) There exists unique isomorphism $\gamma = \gamma^{\eta}$ of \mathfrak{Z} onto $I(\mathfrak{h}_c)$ such that $F_{Zf} = \gamma(Z)F_f$ $(Z \in \mathfrak{Z})$. This γ satisfies that $\gamma(Z^*) = (\gamma(Z))^*$.

A homomorphism of $I(\mathfrak{h}_c)$ into C is always induced by some $\mu \in \mathfrak{h}_c^*$, where \mathfrak{h}_c^* is the dual of \mathfrak{h}_c . Denote this one by λ_{μ} . Then $\lambda_{\mu} = \lambda_{\mu'}$ if and only if $\mu' = \sigma \mu$ for some $\sigma \in W_c$. We say λ_{μ} is regular if $\mu \neq \sigma \mu$ for all $\sigma \in W_c$ not equal to the identity. We sometimes identify the homomorphism λ of \mathfrak{Z} into C and the one $\lambda \circ \gamma^{-1}$ of $I(h_c)$. For a fixed λ ,

let us consider an analytic function κ on H^0 satisfying for some $\mu \in (\mathfrak{h}_c^0)^*$ such that $\lambda = \lambda_{\mu} \circ \gamma$ the following equations:

- (1. 4) $\kappa(wh) = \epsilon(w)\kappa(h)$ $(w \in W_G(H^0), h \in H^0),$
- (1. 5) $D\kappa = \lambda_{\mu}(D)\kappa \qquad (D \in I(\mathfrak{h}^{0}_{c}(G)).$

Define a function π on G from κ as follows: for any $g \notin G_{H^0}, \pi(g) = 0$; for $g \in G_{H^0}, \pi(g) = (V(h_g))^{-1} \kappa(h_g)$, where $h_g \in H^0$ is an element such that $g = g_0 h_g g_0^{-1}$ for some $g_0 \in G$. Consider the distribution defined as

$$\pi(f) = <\pi, f> = \int_G f(g)\pi(g)dg \qquad (f \in C_0^\infty(G)).$$

Then using the above two lemmas on F_f , we obtain

Proposition 1. The distribution π defined above is an invariant eigendistribution on G with the infinitesimal character $\lambda = \lambda_{\mu} \circ \gamma$ which vanishes identically outside the closure of G_{H^0} .

Proof. Chose a Haar measure dh on a Cartan subgroup H appropriately, then for any integrable function φ on G_H ,

$$\int_{G_H} \varphi(g) dg = \int_H \int_{G/H_0} \varphi(ghg^{-1}) dg \cdot |\overline{V}(h)|^2 dh.$$

Therefore applying this formula for $H=H^0$,

$$<\pi,f>=\int_{H^0}F_f\cdot\kappa dh.$$

$$<\!\!Z\pi, f\!\!> = <\!\!\pi, Z^*f\!\!> = \int_{H^0} F_{Z^*f'} \kappa dh = \int_{H^0} \gamma(Z^*) F_{f'} \kappa dh$$
$$= \int_{H^0} \gamma(Z)^* F_{f'} \kappa dh = \int_{H^0} F_{f'} \gamma(Z) \kappa dh$$
$$= \int_{H^0} F_{f'} \lambda_{\mu}(\gamma(Z)) \kappa dh = \lambda(Z) < \!\pi, f\!>.$$
Q.E.D.

Denote by $\mathfrak{A}_{H^0}(\lambda_{\mu})$ the set of all invariant eigendistributions π obtained from the analytic functions κ on H^0 as above. Using Lemma 2.4 in §2, we can prove as in [3(b)] the following proposition (see [3(c)]). But this one is not used to prove that for $SL(n, \mathbf{R})(n \ge 3)$, $\mathfrak{A}(\lambda) \neq \mathfrak{C}(\lambda)$ for some λ .

Proposition 2. The set $\mathfrak{A}_{H^0}(\lambda_{\mu})$ is equal to the set of all invariant eigendistributions on G with infinitesimal character $\lambda = \lambda_{\mu} \circ \gamma$ which vanish identically outside the closure of G_{H^0} .

§ 2. Review on known results

Here we summalize some known results in the form of a certain number of lemmas. Two quasi-simple irreducible representations T_i on $\mathcal{H}_i(i=1,2)$ are said to be infinitesimally equivalent [2(a), I, p.230] if the corresponding representations of $U(g_c)$ on $\mathcal{H}_i^{\infty} = \sum_{\delta} \mathcal{H}_i(\delta)$ (algebraic sum) are algebraically equivalent, where δ denotes an equivalent class of irreducible representations of K and $\mathcal{H}_i(\delta)$ denotes the subspace consisting of all vectors transformed under $T_i(k)$ ($k \in K$) according to δ . Then,

Lemma 2.1 [2(a), III]. Two quasi-simple irreducible representations of G have the same character if and only if they are infinitesimally equivalent. Two unitary irreducible representations have the same character if and only if they are unitary equivalent.

Let M be the centralizer of A in K. Take $\mu^{\mathfrak{a}} \in \mathfrak{a}_{\mathfrak{c}}^*$ and a finitedimensional irreducible representation ν of M. Then $L=(\mu^{\mathfrak{a}}, \nu)$ defines canonically a representation of MAN. Inducing this one from MAN to G, we obtain a representation T^L on a Hilbert space \mathcal{H}^L consisting certain vector-valued functions on K(see e.g., [3(a)]). Let \mathcal{H}_1 and \mathcal{H}_2 be two closed invariant subspaces of \mathcal{H}^L such that $\mathcal{H}_1 \supset \mathcal{H}_2$. If the representation induced on $\mathcal{H}_1/\mathcal{H}_2$ is irreducible, it

is called irreducible constituent of T^{L} . Then we know from Th.4 of [2(a), II] the following

Lemma 2.2. For $G=SL(n, \mathbf{R})$ or a connected complex semisimple Lie group, any quasi-simple irreducible representation of G is infinitesimally equivalent to an irreducible constituent of some T^L .

We use the following lemmas in § 5.

Lemma 2.3. Let $T_1, T_2, ..., T_d$ be the set of quasi-simple irreducible representations of G any two of which are not infinitesimally equivalent. Then their characters are linearly independent.

Lemma 2.4 [2(d)]. Any invariant eigendistribution π on G coincides with a locally summable function on G which is analytic on G'. Moreover for every Cartan subgroup H, the function $\kappa^{\mathfrak{g}} = \overline{V} \cdot (\pi|_{H'})$ on $H' = H \cap G'$ can be extended to an analytic function on $H'(R) = \{h \in H, \Delta'_R(h) \neq 0\}$.

Let λ be the infinitesimal character of π and chose $\mu^{\eta} \in \mathfrak{h}_{c}^{*}$ such that $\lambda = \lambda_{\mu^{\eta} \circ \gamma^{\eta}}$. Then κ^{η} on H'(R) satisfies the analogous equations as (1. 4) and (1. 5):

(2. 1) $\kappa^{\mathfrak{g}}(wh) = \epsilon(w)\kappa^{\mathfrak{g}}(h)$ $(w \in W_G(H), h \in H'(R)),$

(2. 2)
$$D\kappa^{\mathfrak{g}} = \lambda_{\mu}\mathfrak{g}(D)\kappa^{\mathfrak{g}} \qquad (D \in I(\mathfrak{h}_{c})).$$

Suppose that $\mathfrak{h}=\mathfrak{h}_{-}+\mathfrak{h}_{+}$, where $\mathfrak{h}_{-}=\mathfrak{h}\cap\mathfrak{k}$, $\mathfrak{h}_{+}=\mathfrak{h}\cap\mathfrak{p}$. Then putting $H_{-}=H\cap K$, $H=H_{-}\exp\mathfrak{h}_{+}$. For any connected component F of H'(R), take $h_{0}\in H_{-}$ on the boundary of F. As a solution of (2. 2), $\kappa^{\mathfrak{p}}$ is expressed as

(2. 3)
$$\kappa \mathfrak{p}(h_0 \exp X) = \sum_{\sigma \in W_c} p_\sigma(X) \exp \{\mu \mathfrak{p}(\sigma X)\}$$

if $X \in \mathfrak{h}$ is sufficiently small and $h_0 \exp X \in F$, where p_{σ} 's are some

polynomial functions on \mathfrak{h} . If K is compact or π is Z_G -simple, all p_σ can be taken as not to depend on \mathfrak{h}_- , because $F = F \exp \mathfrak{h}_-$. Define $\mathfrak{A}'(\lambda)$ (or $\mathfrak{A}''(\lambda)$, in case when K is compact) as the subset of $\mathfrak{A}(\lambda)$ consisting of such π that for any F and H, all p_σ in the expression (2. 3) can be taken as to be constants (or polynomials with constant terms zero).

§ 3. Invariant eigendistributions on SL(n, R)

In this section, let $G = SL(n, \mathbf{R})$ and H^0 its Cartan subgroup consisting of all diagonal matrices in G. Let us calculate all analytic functions κ on H^0 satisfying (1.4) and (1.5). Denote by $d(a_1, a_2, ..., a_n)$ the diagonal matrix with diagonal elements $a_1, a_2, ..., a_n$. For $h = d(a_1, a_2, ..., a_n) \in H^0$,

(3.1)
$$\boldsymbol{V}(h) = |\prod_{i < j} (a_i - a_j)|.$$

The Weyl group $W_G(H^0)$, simply denoted by W, is isomorphic to W_c and to the symmetric group \mathfrak{S}_n of order n as permutation group of a_1 , a_2, \ldots, a_n . Let $\epsilon_j = \pm 1(1 \leqslant j \leqslant n)$ such that $\epsilon_1 \epsilon_2 \ldots \epsilon_n = 1$ and put $\epsilon = (\epsilon_1, \epsilon_2, \ldots, \epsilon_n)$. Denote by $H^0(\epsilon)$ the connected component of H^0 containing $d(\epsilon_1 e^{t_1}, \epsilon_2 e^{t_2}, \ldots, \epsilon_n e^{t_n})$, where $t_j \in \mathbb{R}$. Put $I_k = \{1, 2, \ldots, 2k\}, J_k = \{2k+1, 2k+2, \ldots, n\}$ and let $\epsilon^{(k)}$ be such row ϵ that $\epsilon_j = -1$ for $l \in I_k$ and $\epsilon_j = 1$ for $j \in J_k$. Put $H^0_k = H^0(\epsilon^{(k)})$. Any $H^0(\epsilon)$ is conjugate to some H^0_k under W. It is sufficient to determine the restrictions κ_k of κ on H_k for $0 \leqslant k \leqslant [n/2]$ because for $h \in H^0(\epsilon) = w H^0_k$ $(w \in W), \kappa(h) = \kappa_k(w^{-1}h)$. The subgroup $W_k = \{w \in W; w H^0_k = H^0_k\}$ is isomorphic to $\mathfrak{S}_{2k} \times \mathfrak{S}_{n-2k}$ and (1. 4) is rewritten as

(3. 2)
$$\kappa_k(wh) = \kappa_k(h) \quad (w \in W_k, h \in H^0_k).$$

Any element $\mu \in (\mathfrak{h}^0_c)^*$ is expressed uniquely as $\mu = (\mu_1, \mu_2, ..., \mu_n)$, where $\mu_j \in C$ and $\mu_1 + \mu_2 + ... + \mu_n = 0$, in such a way that

(3. 3)
$$\mu(d(t_1, t_2, ..., t_n)) = \sum_{1 \le j \le n} \mu_j t_j = (\mu, t)$$
 (put).

To study the equations (1. 4) and (1. 5), it is convenient to replace G by the reductive group ${}^{+}G = \{g \in GL(n, \mathbb{R}); \det g > 0\}$. The results in §1 can be translated for ${}^{+}G$ word for word. Denote by ${}^{+}\mathfrak{h}^{0}, {}^{+}H^{0}, {}^{+}H^{0}(\epsilon), {}^{+}H^{0}_{k}, {}^{+}\mathcal{V}, {}^{+}\kappa \text{ and } {}^{+}\kappa_{k}$ the analogous objects as $\mathfrak{h}^{0}, H^{0}, H^{0}(\epsilon), H^{0}_{k}, \mathcal{V}, \kappa$ and κ_{k} respectively. Then for $h = d(a_{1}, a_{2}, ..., a_{n}) \in {}^{+}H^{0},$

(3. 4)
$$+ \nabla(h) = (a_1 a_2 \dots a_n)^{-\frac{n-1}{2}} \Big| \prod_{i>j} (a_i - a_j) \Big|.$$

The Weyl groups are the same for G and +G. Denote by t_j the differential operator $\partial/\partial t_j$ on $+H^0$. Then $I(+\mathfrak{h}_c^0)$, considered as the algebra of differential operators on $+H^0$, is nothing but the symmetric polynomials of $t_1, t_2, ..., t_n$. For any $\mu = (\mu_1, \mu_2, ..., \mu_n) \in (+\mathfrak{h}_c^0)^*$ and $D(t) \in I(+\mathfrak{h}_c^0)$, $\lambda_{\mu}(D(t)) = D(\mu)$. We restrict ourselves to treat μ such that $\mu_1 + \mu_2 +$ $\dots + \mu_n = 0$. Then for any such μ , there exists a one-one correspondence between the set of all solutions κ of the equations (1. 4), (1. 5) on H^0 and that of $+\kappa$ of the corresponding equations on $+H^0$, by restricting $+\kappa$ on H^0 . Therefore it is sufficient for us to study the following equations: for $0 \leq k \leq [n/2]$,

- (3. 5) $+\kappa_k(wh) = +\kappa_k(h)$ $(h \in +H^0_k, w \in W_k),$
- (3. 6) $D(t)^+ \kappa_k = D(\mu)^+ \kappa_k \qquad (D \in I(+\mathfrak{h}_c^0)).$

Put $W(\mu) = \{\tau \in W; \tau \mu = \mu\}$ and $\bar{\sigma} = \sigma W(\mu)$ for $\sigma \in W$. Any solution of (3.6) is expressed uniquely as follows: for $h = d(\epsilon_1 e^{t_1}, \epsilon_2 e^{t_2}, \ldots, \epsilon_n e^{t_n}) \in {}^+H^0_k$,

(3. 7)
$${}^{+}\kappa_k(h) = \sum_{\bar{\sigma} \in W \times W(\mu)} p_{\bar{\sigma}}(t) \exp ((\sigma \mu, t)),$$

where $p_{\bar{\sigma}}$'s are some polynomials of $t=(t_1, t_2, ..., t_n)$. Let us rewrite (3. 5) and (3. 6) in terms of $p_{\bar{\sigma}}$'s. The equation (3. 5) is written as

where $wp_{\bar{o}}(t) = p_{\bar{o}}(w^{-1}t)$. Take a complete system Σ of representatives

402

of the double coset space $W_k \setminus W/W(\mu)$. Then (3.8) means that it is sufficient to determin $p_{\bar{\sigma}}$ for $\sigma \in \Sigma$ and that for any $\sigma \in \Sigma$,

(3. 9)
$$wp_{\bar{\sigma}} = p_{\bar{\sigma}} \quad (w \in W_k \cap W(\sigma\mu)).$$

Now let $a_1, a_2, ..., a_n$ be the set of different numbers in $\mu_1, \mu_2, ..., \mu_n$ and put $A_r = \{j; \mu_j = a_r\}$. Define $\sigma(i)$ as $(\sigma^{-1}\mu)_i = \mu_{\sigma(i)}$. Then $\sigma A_r = \{j; (\sigma \mu)_j = a_r\}$. For any subset A of $\{1, 2, ..., n\}$, put

$$D_m(A) = \sum_{i \in A} t_i^m$$
, $W(A) = \{ w \in W; wA = A, w(i) = i \text{ for any } i \notin A \}$

Using the same method as in $[3(b), \S 9]$, we can prove the following

Lemma 3.1. The system of equations (3.5) and (3.6) is expressed in terms of $p_{\tilde{\sigma}}$ ($\sigma \in \Sigma$) as

$$(3. 10) \quad \begin{cases} wp_{\bar{\sigma}} = p_{\bar{\sigma}} & (w \in W_k \cap W(\sigma A_r), \ l \leqslant r \leqslant N), \\ D_m(\sigma A_r)p_{\bar{\sigma}} = 0 & (m \geqslant l, \ l \leqslant r \leqslant N). \end{cases}$$

Fix $\sigma \in \Sigma$ and r and put $A = \sigma A_r \cap I_k$, $B = \sigma A_r \cap J_k$, $p = p_{\bar{\sigma}}$, then $A \cap B = \phi$ and the above equations for σ and r are

(3. 11)
$$\begin{cases} wp = p & (w \in W(A) \cap W(B)), \\ D_m(A \cap B)p = 0 & (m \ge 1). \end{cases}$$

if A or $B = \phi$, the polynomial ϕ does not contain the variables $t_j (j \in A \cap B)$ explicitly (see [3(b), §9]). If $A \neq \phi$ and $B \neq \phi$, the equation (3. 11) has the following solution:

(3. 12)
$$p(t) = (\#A)^{-1} \sum_{j \in A} t_j - (\#B)^{-1} \sum_{j \in B} t_j,$$

where $\sharp A$ denotes the number of elements in A. Restricting this solution p(t) from $+H_k^0$ to H_k^0 , we always obtain non-zero function.

Now denote by $\mathfrak{A}'_{H^0}(\lambda)$ and $\mathfrak{A}''_{H^0}(\lambda)$ the sets $\mathfrak{A}_{H^0}(\lambda) \cap \mathfrak{A}'(\lambda)$ and

 $\mathfrak{A}_{H^{0}}(\lambda) \cap \mathfrak{A}''(\lambda)$. Then we obtain from the above arguments the following

Proposition 3. For $SL(n, \mathbf{R})$, $\mathfrak{A}_{H_0}(\lambda) = \mathfrak{A}'_{H^0}(\lambda) + \mathfrak{A}'_{H^0}(\lambda)$ (direct sum). When n=2, always $\mathfrak{A}'_{H^0}(\lambda) = \{0\}$ and $\mathfrak{A}_{H^0}(\lambda) = \mathfrak{A}'_{H^0}(\lambda)$. When $n \ge 3$, $\mathfrak{A}'_{H^0}(\lambda) = \{0\}$ or $\neq \{0\}$ according as λ is regular or not.

§4. Irreducible characters of SL(n, R)

In this and the next sections, we calculate all irreducible characters of $G = SL(n, \mathbf{R})$ with certain infinitesimal characters λ . Let us apply Lem's 2.1 and 2.2. Put $\mathfrak{a}=\mathfrak{h}^0$ and K=SO(n), then M= $\{d(\epsilon_1, \epsilon_2, ..., \epsilon_n)\}$ and $MA=H^0$. Take $\mu=(\mu_1, \mu_2, ..., \mu_n) \in (\mathfrak{h}_c^0)^*$ and let $\nu=(\nu_1, \nu_2, ..., \nu_n)$ be a row of $\nu_j=0$ or 1. Then ν determines a character of M and the pair (μ, ν) determines a character $\chi^{\mu,\nu}$ of $H^0=MA$ as

(4. 1)
$$\chi^{\mu,\nu}(h) = \prod_{1 \le j \le n} |a_j|^{\mu_j} (a_j/|a_j|)^{\nu_j},$$

where $h=d(a_1, a_2, ..., a_n)$. Consider the induced representation of $\chi^{\mu,\nu}$ defined in §2 and denote it by $T^{\mu,\nu}$ (see also [1]). Then we see that $T^{\mu,\nu}$ and its character $\pi^{\mu,\nu}$ satisfy

$$T^{\mu,\nu}(z) = \nu(z) 1 \quad (z \in Z_G), \quad T^{\mu,\nu}(Z) = \lambda_{\mu}(Z) 1 \quad (Z \in \mathfrak{Z});$$

$$\pi^{\mu,\nu}(zg) = \nu(z) \pi^{\mu,\nu}(g) \quad (z \in Z_G), \quad Z\pi^{\mu,\nu} = \lambda_{\mu}(Z) \pi^{\mu,\nu} \quad (Z \in \mathfrak{Z});$$

This character is a function on G which vanishes identically outside G_{H^0} and is given on G_{H^0} as follows:

$$\pi^{\mu,\nu}(h) = \overline{\nu}(h)^{-1} \kappa^0_{\mu,\nu}(h) \qquad (h \in H^0 \cap G'),$$

where putting $W = W_G(H^0)$,

(4. 2)
$$\kappa^{\mathbf{0}}_{\mu,\nu}(h) = \sum_{w \in W} \chi^{\mu,\nu}(wh).$$

Therefore it follows from the results in §3 that for any $\mu \in (\mathfrak{h}_c^0)^*$, the

space $\mathfrak{A}'_{H^0}(\lambda_{\mu})$ is spanned by $\pi^{\mu,\nu}$, when ν runs over all possible rows, whence $\mathfrak{C}(\lambda_{\mu}) \supset \mathfrak{A}'_{H^0}(\lambda_{\mu})$. Note that $\pi^{\mu,\nu} = \pi^{\mu',\nu'}$ if and only if there exists some $w \in W_G(H^0)$ such that $\chi^{\mu',\nu'}(h) = \chi^{\mu,\nu}(wh)$ $(h \in H^0)$.

To apply Lem. 2.2, we must decompose $T^{\mu,\nu}$ into irreducible constituents. We call $\mu \in (\mathfrak{h}^0_{\mathcal{G}})^*$ imaginary if it takes on \mathfrak{h}^0 only pureimaginary values. If μ is imaginary, $T^{\mu,\nu}$ is unitary and its irreducibility is studied in [1]. Put $\tilde{G} = \{g \in GL(n, \mathbb{R}); \det g = \pm 1\}$ and let \tilde{H}^0 be its subgroup consisting of all diagonal matrices in \tilde{G} . Extend $\chi^{\mu,\nu}$ from H^0 to \tilde{H}^0 by (4. 1) and construct its induced representation $\tilde{T}^{\mu,\nu}$ of \tilde{G} analogously as $T^{\mu,\nu}$. Then the restriction of $\tilde{T}^{\mu,\nu}$ on G is exactly $T^{\mu,\nu}$.

Lemma 4.1 [1]. The representation $\tilde{T}^{\mu,\nu}$ of \tilde{G} is always irreducible if μ is imaginary.

Put $u_0 = d(-1, -1, ..., -1)$ if *n* is odd and $u_0 = d(1, 1, ..., 1, -1)$ if *n* is even. Then $\tilde{G} = G \cap Gu_0$. Using the general theory of group representations, we obtain from the above lemma the following

Lemma 4.2. When n is odd, $T^{\mu,\nu}$ is always irreducible. When n is even, if it is reducible, it is a direct sum of two inequivalent irreducible representations T and T' such that T' is unitary equivalent to the representation $g \rightarrow T(u_0gu_0^{-1})(g \in G)$.

Note that $\lambda_{\mu} = \lambda_{\mu'}$ if and only if $\mu' = \sigma \mu$ for some $\sigma \in W_c$. Then,

Proposition 4. Suppose *n* is odd. If $\mu \in (\mathfrak{h}^0_c)^*$ is imaginary, the characters $\pi^{\mu,\nu}$ give all irreducible characters of *G* with infinitesimal character λ_{μ} and $\mathfrak{C}(\lambda_{\mu}) = \mathfrak{A}'_{H^0}(\lambda_{\mu})$.

Thus, Prop's 3 and 4 give us an elementary proof of the following theorem in the case when *n* is odd, because $\mathfrak{A}'_{H^0}(\lambda_{\mu}) \neq \{0\}$ for some λ_{μ} .

Theorem 1. For $SL(n, \mathbf{R})(n \ge 3)$, there exist tempered invariant eigendistributions on it which can not be expressed as linear combinations of irreducible characters (for the definition of temperedness, see [2(e)]).

Note that for $SL(n, \mathbf{R})$, every element in $\mathfrak{A}(\lambda_{\mu})$ is tempered if μ is imaginary.

Apply Lem. 2.4 and consider the equations (2.1) and (2.2) for every $H=H^r(0 \le r \le \lfloor n/2 \rfloor)$. Then, using Prop. 2, we obtain

Proposition 5. When n is odd, $\mathfrak{A}(\lambda_{\mu}) = \mathfrak{A}_{H^{0}}(\lambda_{\mu})$ if $\mu \in (\mathfrak{h}_{c}^{0})^{*}$ is imaginary.

§ 5. Irreducible characters of SL(n, R) for even n

Now suppose n=2s is even. To calculate all irreducible characters, we apply Lem's 2.3 and 2.4. Put

$$u(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

and let

$$d(e^{\tau_1}u(\theta_1), e^{\tau_2}u(\theta_2), \ldots, e^{\tau_r}u(\theta_r), \epsilon_1e^{t_1}, \ldots, \epsilon_2e^{t_2}, \ldots, \epsilon_{n-2r}e^{t_{n-2r}})$$

be the blockwise diagonal matrix with r blocks of 2×2 . Denote by H^r the set all such matrices in G. Then H^0, H^1, \ldots, H^r form a complete system of Cartan subgroups of G which are not conjugate to each other under inner automorphisms.

Suppose that $\mu \in (\mathfrak{h}_{c}^{0})^{*}$ is imaginary as before and $T^{\mu,\nu}$ is reducible. Let T, T' be as in Lem. 4.2 and let π, π' be their characters. Then,

(5. 1) $\pi + \pi' = \pi^{\mu,\nu}, \quad \pi'(g) = \pi(u_0 g u_0^{-1}) \quad (g \in G').$

When $0 \le r \le s$, $u_0 h u_0^{-1} = h$ for any $h \in H^r$, whence $\pi'(h) = \pi(h)$ on $H^{r'} = H^r \cap G'$. Therefore,

(5. 2)
$$\begin{cases} \pi = \pi' = 2^{-1} \pi^{\mu,\nu} \text{ on } H^{0'}; \\ \pi = \pi' = 2^{-1} \pi^{\mu,\nu} = 0 \text{ on } H^{r'} \text{ for } 0 < r < s. \end{cases}$$

Moreover, since T is not equivalent to T', $\pi \neq \pi'$. Hence $\pi = -\pi' \neq 0$ on H^s .

We note here that it follows from (5. 2) that any non-zero element in $\mathfrak{A}'_{H^0}(\lambda_{\mu})$ can not be expressed as a linear combination of irreducible characters, which proves Th. 1 in the case when *n* is even.

On the other hand, a study of the equations (2. 1), (2. 2) for $\lambda = \lambda_{\mu} \circ \gamma$ on $H = H^r(0 \leq r \leq s)$ gives us more exact results. Denote in general a solution $\kappa^{\mathfrak{y}}$ on $H = H^r$ by κ^r . For 0 < r < s, always $\kappa^r = 0$ on $H^{r'}(R)$. Let M^s be the set of all $\mu' = (\mu'_1, \mu'_2, ..., \mu'_n) \in (\mathfrak{h}^0_c)^*$ such that $\mu'_1 = \mu'_2, \mu'_3 = \mu'_4, ..., \mu'_{2s-1} = \mu'_{2s}$. When $\sigma \mu \notin M_s$ for any $\sigma \in W_c$, always $\kappa^s = 0$ on $H^{s'}(R) = H^s$. When $\mu' = \sigma_0 \mu \in M_s$ for some $\sigma_0 \in W_c$, κ^s is a constant multiple of

(5. 3)
$$\eta(h) = 2^{s-1} \prod_{\sigma \in \mathfrak{S}_s} \exp\{(\mu'_{2i-1} + \mu'_{2i})\tau_{\sigma(j)}\},$$

where $h=d(e^{\tau_1}u(\theta_1), e^{\tau_2}u(\theta_2), \ldots, e^{\tau_s}u(\theta_s)).$

Let $\pi^{\mu,\nu^{i}}(1 \leq i \leq N_{0})$ be the set of all different $\pi^{\mu,\nu}$. Then it follows from the above arguments and Lem. 2.3 that dim $\mathfrak{C}(\lambda_{\mu}) \leq N_{0}+1$ and that at most one $T^{\mu,\nu^{i}}$ is reducible.

Suppose $\mu \in M_s$ and $\nu^1 = (1, 0, 1, 0, ..., 1, 0)$. Let us prove that T^{μ,ν^1} is reducible. Put

$$^{+}G_{2} = \{ \delta \in GL(2, \mathbf{R}); \det \delta > 0 \}, D_{s} = \{ d(\delta_{1}, \delta_{2}, ..., \delta_{s}) \in G; \delta_{j} \in ^{+}G_{2} \},$$

and $P_s = D_s N$. Denote by $D_{1/2,c}^{\pm}$ the irreducible unitary representations of ${}^+G_2$ with the following characters respectively: for $d(\epsilon e^{t_1}, \epsilon e^{t_2})$ and $e^{\tau}u(\theta) \in {}^+G_2$,

$$\frac{\epsilon_e^{c(t_1+t_2)}}{\left|\frac{t_1-t_2}{e^2}-e^{-\frac{t_1-t_2}{2}}\right|} \quad \text{and} \quad \frac{\pm e^{2c\tau}}{e^{i\theta}-e^{-i\theta}}.$$

Consider the representation L of D_s obtained from the Kronecker

product $D_{1/2,\mu_1}^{\beta_1} \otimes D_{1/2,\mu_3}^{\beta_2} \otimes \ldots \otimes D_{1/2,\mu_{2s-1}}^{\beta_s}$ with $\beta_j = \pm$. Extend *L* to the parabolic subgroup P_s and induce it from P_s to *G*, then we obtain a unitary representation T^L of G(see [3(a)]). Its character π^L is given by Th. 2 in [3(a)] as follows. Let q be the number of β_j such that $\beta_j = +$. Then,

(5. 4)
$$\pi^{L} = \begin{cases} (-1)^{q \overline{\nu}^{-1} \cdot \eta} & \text{on } H^{s}; \\ 0 & \text{on } H^{r}(0 < r < s); \\ 2^{-1} \pi^{\mu, \nu^{1}} & \text{on } H^{0}. \end{cases}$$

Let T_{\pm}^{μ} be the induced representations for which $\beta_1 = \pm$, $\beta_2 = \beta_3 = ...$ = $\beta_s = +$ and let π_{\pm}^{μ} be their characters. Then $\pi_{\pm}^{\mu} + \pi_{-}^{\mu} = \pi^{\mu,\nu^1}$. Therefore T^{μ,ν^1} is equivalent to the direct sum of T_{\pm}^{μ} and T_{-}^{μ} and the latters are irreducible. Thus,

Proposition 6. Suppose n=2s is even and $\mu \in (\mathfrak{h}_{c}^{0})^{*}$ is imaginary. (a) When $\sigma \mu \notin M_{s}$ for any $\sigma \in W_{c}$, all $T^{\mu,\nu}$ are irreducible and $\pi^{\mu,\nu}$'s give all irreducible characters of G with infinitesimal character λ_{μ} and $\mathfrak{C}(\lambda_{\mu})=\mathfrak{A}'_{H^{0}}(\lambda_{\mu})$. (b) When $\mu \in M_{s}$, let $\pi^{\mu,\nu^{i}}(1 \leq i \leq N_{0})$ be all different $\pi^{\mu,\nu}$ and $\gamma^{1}=(1, 0, 1, 0, ..., 1, 0)$. Then $T^{\mu,\nu^{i}}$ is equivalent to the direct sum of T^{μ}_{+} and T^{μ}_{-} and all other $T^{\mu,\nu^{i}}$ are irreducible. All irreducible characters on G with infinitesimal character λ_{μ} are $\pi^{\mu}_{+}, \pi^{\mu}_{-}$ and $\pi^{\mu,\nu^{i}}(i \neq 1)$, and $\mathfrak{C}(\lambda_{\mu})=\mathfrak{A}'_{H^{0}}(\lambda_{\mu})+\mathbf{C}(\pi^{\mu}_{+}-\pi^{\mu}_{-})$.

Analogously as Prop. 5, we obtain also

Proposition 7. Suppose that $\mu \in (\mathfrak{h}_c^0)^*$ is imaginary. In the case (a), $\mathfrak{A}(\lambda_{\mu}) = \mathfrak{A}_{H^0}(\lambda_{\mu})$. In the case (b), $\mathfrak{A}(\lambda_{\mu}) = \mathfrak{A}_{H^0}(\lambda_{\mu}) + C(\pi_+^{\mu} - \pi_-^{\mu})$.

Moreover we can prove for $SL(n, \mathbf{R})$ the following generalization of Prop. 3(cf. [3(c)]).

Proposition 8. For any homomorphism λ of \mathfrak{Z} into C, $\mathfrak{A}(\lambda) = \mathfrak{A}'(\lambda) + \mathfrak{A}''(\lambda)$ (direct sum) and $\mathfrak{C}(\lambda) \supset \mathfrak{A}'(\lambda)$. Especially when n=2, always $\mathfrak{A}''(\lambda) = \{0\}$ and $\mathfrak{A}(\lambda) = \mathfrak{A}'(\lambda) = \mathfrak{C}(\lambda)$. When $n \geqslant 3$, $\mathfrak{A}''(\lambda) = \{0\}$ or $\neq \{0\}$ according as λ is regular or not.

We proved in §4 and §5 that on $G = SL(n, \mathbf{R})$ $\mathfrak{C}(\lambda_{\mu}) = \mathfrak{A}'(\lambda_{\mu})$ for any imaginary $\mu \in (\mathfrak{h}_{c}^{0})^{*}$.

\S 6. The case of complex semi-simple Lie groups

In this section let G be a connected complex semisimple Lie group and $H=H^0$ its Cartan subgroup. Then we can apply Prop's 1 and 2. For any root a of $(\mathfrak{g}, \mathfrak{h})$, define $H_{\alpha} \in \mathfrak{h}$ as $a(X) = \langle H_{\alpha}, X \rangle (X \in \mathfrak{h})$, where \langle , \rangle denotes the Killing form of \mathfrak{g} . Let $X \to \overline{X}(X \in \mathfrak{h})$ be the conjugation of \mathfrak{h} with respect to the real subalgebra spanned by $H_{\alpha}(a \in P)$. Denote by \mathfrak{h}^* the dual space of \mathfrak{h} over C. Then any character χ of H can be expressed uniquely as

$$\chi(\exp X) = \exp \{p(X) + q(\bar{X})\} \qquad (X \in \mathfrak{h}),$$

where $p, q \in \mathfrak{h}^*$. (Note that *H* is connected.) Denote χ by (p, q) and consider it also as an element of \mathfrak{h}^* . Let *W* be the Weyl group of $(\mathfrak{g}, \mathfrak{h})$. It operates on $\chi = (p, q)$ as $w\chi = (wp, wq) (w \in W)$. The Weyl group W_c of $(\mathfrak{g}_c, \mathfrak{h}_c)$ is isomorphic to $W \times W$ in such a way that $\sigma = (w, w') (w, w' \in W)$ operates on $\chi = (p, q)$ as $\sigma \chi = (wp, w'q)$. Let T^{χ} be the induced representation of χ on a Hilbert space \mathcal{H}^{χ} defined in §2 and π^{χ} its character. Let $J(\mathfrak{h}_c)$ be the set of *W*-invariant analytic differential operators on *H*. Then $I(\mathfrak{h}_c)$ is generated by $J(\mathfrak{h}_c)$ and $\overline{J(\mathfrak{h}_c)}$. We see from these facts that $Z\pi^{\chi} = \lambda_{\chi}(Z)\pi^{\chi}$ ($Z \in \mathfrak{R}$), and that $\pi^{\chi} = \pi^{\chi'}$ (or $\lambda_{\chi} = \lambda_{\chi'}$) if and only if $\chi' = w\chi$ (or $= \sigma\chi$) for some $w \in W$ (or $\sigma \in W_c$). A study of the equations (1. 4) and (1. 5) gives us the following

Lemma 6.1. For any character $\chi = (p, q)$, $\mathfrak{A}(\lambda_{\chi}) = \mathfrak{A}'(\lambda_{\chi}) + \mathfrak{A}(\lambda_{\chi}) = \mathfrak{A}'(\lambda_{\chi}) + \mathfrak{A}(\lambda_{\chi}) = \mathfrak{A}(\lambda_{\chi})$

 $\mathfrak{A}''(\lambda_{\chi})$ (direct sum) and $\mathfrak{A}'(\lambda_{\chi})$ is spnned by $\{\pi^{\chi'}; \chi' = (p, wq), w \in W\}$, whence $\mathfrak{C}(\lambda_{\chi}) \supset \mathfrak{A}'(\lambda_{\chi})$.

We want to prove $\mathfrak{C}(\lambda_{\chi}) = \mathfrak{A}'(\lambda_{\chi})$. Meanwhile we obtain from [3(b), App. II] (*) the following

Proposition 9. Let G be any of SL(n, C), SO(2n+1, C), Sp(n, C) and SO(2n, C). When n=2 or 3, $\mathfrak{A}''(\lambda)=\{0\}$ for any λ . When $n \ge 4$, there always exist some λ for which $\mathfrak{A}''(\lambda) \ne \{0\}$. Moreover $\mathfrak{A}''(\lambda)=\{0\}$ for any $\lambda=\lambda_{\chi}$ with imaginary $\chi=(p, q)\in\mathfrak{h}_{c}^{*}$.

As a corollary of the last assertion of this proposition, we obtain

Theorem 2. For any complex classical group G, a tempered invariant eigendistribution of G is always a linear combination of the characters of its irreducible unitary representations.

Now, to determine $\mathfrak{C}(\lambda)$, we apply Lem's 2.1 and 2.2 and some results of D. P. Zhelobenko in [4(a), (b)]. Suppose, for simplicity, that G is simply connected. Then a pair of $p, q \in \mathfrak{h}^*$ defines a character of H if and only if $p_{\alpha}-q_{\alpha}$ is integer for any $a \in P$, where $p_{\alpha}=2 < p, a > /$ < a, a >. A character $\chi = (p, q)$ is called discretely positive if for any $a \in P, p_{\alpha}$ and q_{α} are not negative integers at the same time. D. P. Zhelobenko [4(a), §11] defined for any discretely positive character χ , "the minimal representation $\mu(\chi)$ " as the restriction of T^{χ} on an invariant subspace \mathfrak{N}^{χ} of \mathcal{H}^{χ} with a stronger topology than the one induced from \mathcal{H}^{χ} and proved the following facts.

Lemma 6.2. The representation $\mu(\chi)$ is completely irreducible in the sence of R. Godement and the two $\mu(\chi)$ and $\mu(\chi')$ are equivalent if and only if there exists some $w \in W$ such that $\chi' = w\chi[4(a), \S11]$. Any quasi-simple irreducible representation of G is infinitesimally equivalent to some $\mu(\chi)$ [4(b), Th. 7].

Define the character of $\mu(\chi)$ as that of the restriction of T^{χ} on the closure of \mathfrak{N}^{χ} in \mathfrak{H}^{χ} and denote it by $\overline{\mu}(\chi)$. Then it follows from Lem. 6.2 that for any λ , the set of all irreducible characters with infinitesimal character λ does consist of all different $\overline{\mu}(\chi)$ with discretely positive χ such that $\lambda_{\chi} = \lambda$. This gives us the dimension of $\mathfrak{C}(\lambda)$. On the other hand, by Lem. 6.1, the dimension of $\mathfrak{A}'(\lambda)$ is equal to the number of different π^{χ} such that $\lambda_{\chi} = \lambda$. Thus we see that dim $\mathfrak{C}(\lambda) = \dim \mathfrak{A}'(\lambda)$, whence $\mathfrak{C}(\lambda) = \mathfrak{A}'(\lambda)$.

Theorem 3. Let G be a connected complex semisimple Lie group. For any λ , $\mathfrak{A}(\lambda)=\mathfrak{A}'(\lambda)+\mathfrak{A}''(\lambda)$ (direct sum) and $\mathfrak{C}(\lambda)=\mathfrak{A}'(\lambda)$.

This theorem and Prop. 9 give us the following

Theorem 4. For SL(n, C), SO(2n+1, C), Sp(n, C) and SO(2n, C), if $n \ge 4$, there always exist invariant eigendistributions on it which can not be expressed as linear combinations of irreducible characters. No such distribution is tempered.

(*) Errata. In [3(b), App. II]; p. 60, the 2nd line from below should be " $p(t; \rho) = p(\tau't; \tau'\rho\tau)$ ($\rho \in W$, $\tau \in \mathfrak{T}(c)$, $\tau' \in \mathfrak{T}(d)$)"; p. 63, the right hand side of (17') should be multiplied by $\prod_{j=1}^{n} (e^{z_j} - e^{-z_j})$; p. 66, the 4th and 5th lines from below should be "in another cases, p(t) is symmetric with respect to the union of $t_j (j \in A_k^+ \cap B_l^+)$ and $-t_j (j \in A_k^- \cap B_l^-)$ and with respect to the union of $t_i (i \in A_k^+ \cap B_l^+)$ B_l^-) and $-t_i (i \in A_k^- \cap B_l^+)$ ".

KYOTO UNIVERSITY

References

 I. M. Gel'fand and M. I. Graev: Unitary representations of the real unimodular groups (principal non-degenerate series). Izv. AN SSSR, Ser. Math., 17, 189–248 (1953).

- [2] Harish-Chandra:
 - (a) Representations of semisimple Lie groups. I, II, III. Trans. Amer. Math. Soc., 75, 185-243 (1953), 76, 26-65, 234-253 (1954).
 - (b) The characters of semisimple Lie groups. Ibid., 83, 98-163 (1956).
 - (c) A formula for semisimple Lie groups. Amer. J. Math., 79, 733-760 (1957).
 - (d) Invariant eigendistributions on a semisimple Lie group. Trans. Amer. Math. Soc., 119, 457–508 (1965).
 - (e) Discrete series for semisimple Lie groups. II. Acta Math., 116, 1-111 (1966).
- [3] T. Hirai:
 - (a) The characters of some induced representations of semisimple Lie groups. J. Math. Kyoto Univ., 8, 313-363 (1968).
 - (b) Invariant eigendistributions of Laplace operators on real simple Lie groups. I. Japan. J. Math., 39, 1-68 (1970).
 - (c) Characters of representations and invariant eigendistributions on real semisimple Lie groups (in Japanese). Sugaku, 23, 241-260 (1971).
- [4] D. P. Zhelobenko:
 - (a) Operational culculus on a complex semisimple Lie group. Izv. AN SSSR, Ser. Math., 33, 931-973 (1969).
 - (b) Classification of extremely irreducible and normally irreducible representations of a complex semisimple Lie group. Ibid., 35, 573-599 (1971).