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Introduction

A  M arkov process M  over a  measure space ( X , g ,  m )  is

sa id  to  b e  m -sym m etric if t h e  equality R a f  (x ) g(x )m (dx)

f  (x ) R ag(x )m (dx ) holds for any non-negative measurable func-

tions f  and g  on X .  Here Ra  i s  the integral operator with the

resolvent kernel Ra(x , dy) on (X , associated with the process M.
The transition probability o f M  is denoted by P(t, x , dy).

We are mainly concerned with the equivalence of the following
two conditions: (0. 1 )  P ( t ,x ,• )  is absolutely continuous with respect

to m  for each t> 0  and x E X, (0.2) R a ( x ,• )  is absolutely continuous
with respect to m  for each a > 0  and x e  X.

The only thing one has to check is  the implication (0. 2)
(0. 1). T h is  is violated by some non-symmetric processes, for

instance, by the uniform motion on a line with a positive constant
velocity. We will show however that the equivalence in question is
valid if the process M  is symmetric and strong M arkov. More speci-
fically the following theorem will be established at the end o f §3.

Theorem 6. Let X  be  a Borel subset of a compact metric
space, g be the f ield of all Borel subsets o f X  and m  be a a-finite
m easure on g. C onsider an m-symmetric right continuous strong
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M arkov  process M  over (X, g ) .  Conditions (0. 1) and (O. 2) for
M  are then equivalent.

In  §1 we derive an inequality for general symmetric contraction
semigroups on D-spaces (Theorem 1).

In  §2 (Theorem 3), by making use of this inequality, we show
the equivalence o f  (O. 1) and (O. 2) especially for those processes
which are properly associated with regular Dirichlet spaces, the
term being specified in § 2 . Here we use the potential theory deve-
loped in I71.

Consider ( X, 29, m ) and M  in the statement o f Theorem 6 and
suppose that M  satisfies the condition (O. 2). W e  red u ce  in  §3
(Theorem 5) the stituation to that of §2  by embedding X  into the
underlying space of an  appropriate regular D-space. This amounts
to replacing the topology o f X  by a new one which is however still
coarser than the fine topology for the process M . Theorem 3 and 5
added up lead us to Theorem 6.

Theorem 6 is  clearly a generalization of A. D. Weritzell's results
( [14] and [15] ) that the transition probabilities of the one dimen-
sional diflusion on a regular interval and  o f the multi-dimensional
diffusion with Brownian hitting probabilities are always absolutely
continuous with respect to the corresponding speed measures. Theorem
6 also generalizes a  result in  [4 ] where a transition density of a
multi-dimensional reflecting barrier Brownian motion was constructed.
All three strong Markov processes above are known to be symmetric
and have the property (O. 2).

In the one dimensional case, H. Mckean [10] had constructed
smooth transition densities alerady by means of eigendifferential ex-
pansions. But W entzell [15] extended his own method o f [14 ] to
the multi-dimensional case and indeed the core o f his method was a
usage of an in eq u a lity  s im ila r to  (1. 5). H e r e  w e  u tiliz e  (1. 5)
differently and we derive from it the quasi - everywhere fine continuity
of the function .13 , f  for any non-negative universally measurable and
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square integrable function f  (Theorem 2). In this sense the transi-
tion functions attain almost the same degree o f  regularity as the
resolvents as far as symmetric strong Markov processes are concerned.
This is the reason why Theorem 6 becomes possible.

It has been proved in [7] that, given any regular D-space, there
exists a Hunt process which is properly associated with it. Theorem 5
of the present paper tells us to what extent and in what sense the
converse statement is true.

In the final section (§4), we will look at the well-known class
of one dimensional diflusions on a regular interval from oue viewpoint
o f  regular Dirichlet spaces. One of the special characters o f this
class is that each point of the underlying space has a positive capacity,
the capacity being evaluated by means o f the associated Dirichlet
form. This property makes the above mentioned regularity of the
transition function into the usual continuity.

It seems hard to treat the whole class of the multi-dimensional
diffusions with Brownian hitting probabilities directly within the
framework o f regular Dirichlet spaces, unless one appeals to some
sort of a modification or a reduction like the argument of §3.

1. An inequality f o r  symmetric semi-group

Let (X , m )  b e  a  a-finite measure space. Denote by ( , ) x  the
inner product for the real .1,2 (X ) = 1,2 (X  ; m ). A  linear operator T
on  1,2 (X )  is said to be sub-Markov i f  O < T u 1  m-a.e. whenever
uEL 2 (X ) and 0<u_1 m-a.e.

A  symmetric sub-Markov resolvent (on L z (X )) is  a family of
linear symmetric operators { G , a>0 ) such that aG a  i s  sub-Markov
and GŒ—Go + (a --(3)G a  G3 =  O.

A pair (g, g ) is said to be a Dirichlet space (relative to Lz(X ))
i f  it satisfies the following conditions: g  is  a linear subspace of
L 2 (X ), e  is a non-negative definite bilinear form on g ,  g  is a real
Hilbert space with respect to the inner product
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(1. 1) ea (u, y )  =  (u, y) + a (u, Y) x

fo r  each  a>0 , an d  finally u G g  implies v = (0 V u) A E 9" and
(v , v) E (u, u).

There is a one-to-one correspondence between all symmetric sub-
Markov resolvents and all Dirichlet spaces [5] .

Now let us consider a symmetric sub-Markov resolvent {G«, a>0}
and the corresponding Dirichlet space (g , E ) .  These are related to
each other by

(1.2)g =  { u  L 2 (X ) ; E (u, u) l i m [3G3u, u)x< + col

(1. 3) (Ga v, v) = (u, V)x , v G g,

u in  (1. 3) being an arbitrarily fixed element of L z (X ) .  We put

L,I(X )=  fu E L 2 ( X); aGau u in  L 2 (X)} .

According to Hille-Yosida theorem, {Ga, a>0}  is the resolvent of the
infinitisimal generator A o f a  strongly continuous contraction semi-
group {T„ t> 0 }  o n  .1, ( X ). — A  is  a  non-negative definite self-
adjoint operator and T, is symmetric and sub-Markov. Relation (1. 2)

means that g  is just the domain of 1/ — A  and C(u, = (1/ — ,

— )x  , uG g  . Therefore it is easy to see the following.

= I ( x ) ; u )< +  CX) 1
(1.4)

e(U, 11) = liMe ,(U, V t)u 9 ,

where Cs (u, v) —
1

(u — T,u, v), v

Notice that the function sr;(u)=- (T 0 u, u)x is a  non-negative non-
increasing convex function of t> 0  for each u EL ,(X ):

ft,.(u )= (T ,u , Tsu )x_i/1 -21 (u). f2(u)
1 < { f t (u) + J;,(u)} , s, t >0.2

Thus we have an inequality

1   {f, t (u) — fo (u)} f ;E 't (u) , t>0,
2t
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where f  + denotes the right derivative in t.
In  view  of (1 .4 )  and the identity f 1,(u) — lim e s(T ,u, T iu),sso

we have obtained the next theorem.

Theorem 1. T „ t>0 , t ran s f o rm s  L ( X )  in to  g  an d  T,u,
u  IA (X ) , satisfies

(1.5)g ( T , u , 21t  {(u, u)x —  ( Ttu, Ttu)x}

Inequality (1. 5 )  i s  a generalization of A. D. Wentzell's ( [15] ;
Theorem 3)

grad T,u1 2 ( x ) d x  7,
1

t Gu(x ) 2 m(dx)

which holds for the diffusion with Brownian hitting probabilities
under certain restrictions on the domain G and the speed measure m.

Starting with the inequality (1 . 5 ), w e can  go  along the line
analogous to [15 ] to get the equivalence o f (O. 1 ) and (O. 2 ) .  How-
ever we will take another course by deriving from (1 . 5 ) a sort of
continuity of the transition probability P(t, x , E ) in x.

2. Proof of the equivalence fo r  a  process properly associated
with a regular Dirichlet space

We say a Dirichlet space (X, m , ¶, e) to be regu lar if following
conditions are satisfied.

(2. 1) X  is  a locally compact Hausdorff and separable space,
(2. 2) m  is  an everywhere dense Radon measure on X,
(2. 3) g n C (X ) is dense in g  with metric ea and in C (X ) with

uniform norm, ao be ing a fixed positive constant and C (X )
being the space of all continuous functions on X  vanishing at
infinity.

Given a  regular Dirichlet space, we define the (a,,)-capacity  of
an open set: E c  X  by
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in f C°'°(u, u)
(2 .4 ) Cap(E ) = {IIE-r-E

+

i f  _CEch

otherwise

where

(2. 5) SE= fu g ; m-a.e. on E } .

The capacity of an arbitrary set F  is defined by:

C a p (F ) =  in f  C a p (E ).
F  E,E;opm

F c  X  is called polar i f  C ap (F ) = 0 . The expression "quasi-every-
where" o r  "q.e." means "except fo r  a  p o la r  s e t " .  A  function u
defined q.e. on X  is called quasi-continuous if fo r any e> 0  there is
an open set co with Cap(co)<€ such that the restriction of u to  X—co
is continuous there. It is easy to see that each element u  o f g
admits a quasi-continuous modification u* :u= u* m-a.e. 2 *  will stand
for the collection of all quasi-continuous modifications of elements
o f g .

Consider a universally measurable subset B  o f X  and denote by
g o the field of all universally measurable subsets o f X 0 =X — B . Let
M =  C, P ,)  be a standard Markov process over (X, go), namely,
M  is  a normal right continuous strong M arkov process with the
quasi-left continuity (up to C ) .  We assume that almost all sample

paths have left limits in  X , up to C.
W e ca ll M  a  M ark ov  process properly  associated w ith the

regular D-space ( X, n  g  e )  i f  furtLer B  is polar and if, for any

u e L 2 (X ; ni)C1C(X ), the function R au belongs to g *  and satisfies

the equation ( 1 .  3 ) .  Here R a is the resolvent o f M:

R au(x ) = Z ( o e- a'u(X i )dt), x  X 0 .

Let us assume throughout this section that we are given B  and

M  as above, M  being properly associated with (X, m, g ,  C ) .  Their

existence has been proved in  [7 ] where more specifically a  Borel set
B  and a Hunt process M  are constructed.
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The equivalence of (0. 1) and (O. 2) is now to be established
for the present process M .  Here are several related facts whose
proof can be found in [7].

1 °. If u  is quasi-continuous and u=0 m-a.e., then u =0 q.e.
2 °. I f  u„Eg*, n=1,2, •••, form a Cauchy sequence with metric CŒO

and converge q.e. on X  to a function u , then u e g *  and Ca°(u,—u,
u„—u)—.0 as n + 00.
3 °. I f  u  is a non-negative universally measurable function belonging
to 1,2 ( X ; m ), then Rau belongs to g *  and satisfies (1. 3).
4 °. Any quasi-continuous function is finely continuous q.e., the fine
topology being defind in  terms of the process M .  Conversely if a
function u Eg is finely continuous q.e. and equal q.e. to a universally
measurable function, then u e g * .
5 °. A  nearly Borel set A c X  is polar if and only if

(2. 6) P , ( X , E  A  for some t>0) =0

for m-a.e. x E X0 .

A  natural question arises: when is it possible to replace "m-a.e.
xe X o" by "all x E X0 "  in the statement 5°? Obviously our condition
(O. 2) is sufficient. Furthermore it is proved in  [7 ; Theorem 4. 6]
that (O. 2) is also a necessary condition for this.

Denote by P, the integral operator with the transition kernel

P(t, x, E )= P,(X ,EE), x  G X0 .

Theorem 2. For any non-negative universally measurable func-
tion u of  L 2 (X ; m ) and f or any t>0, the function P u  belongs to
the space g* and satisfies

(2. 7) ea° (Piu,  + ao)(u , u ) .

P ro o f. Let T, and GŒ b e  the semigroup and the resolvent on
L ( X )  associated with the present D-space (g  , E ) (see §1). Since
(g , 6 ')  is assumed to be regular, L ( X )  is the entire space 1,2(X).
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First we show that P,u  is a version of T,u for any non-negative

Eorel measurable function u E L 2 (X ) .  3 0 means that Rau is a version
-

o f  G a u . Hence we have e- at(Piu, v), dt= (Rau, v)x= (Gau, v)x0
ca t(T,u, v)x dt fo r any a > 0  and any non-negative continuous0

function y  with compact support. But (P,u, v) x= (u, P,v)x is right

continuous in t> 0 .  Therefore P,u= T,u m -a.e . Moreover, by virtue
o f Theorem 1, the function P,u belongs to the space g  and satisfies

inequality (2. 7).

Denote by St the collection o f all non-negative Borel measurable

functions u  o f  L 2 (X )  fo r  which 13 ,te 9* . I f  u i , u2Ec91 and if

c1 u1+c2u20 for some constant ç, , c2, then ci ui + c2u2eSt. I f  u.
increases to uE L 2 ( X ) ,  then u E S L  because o f  inequality (2 . 7) and

property 2°. Finally take a  function uEL 2 ( X )F IC (X )÷ .  Then

aRa P,u (x)=  aP,Rau(x) converges to P i u (x ) as a  tends to infinity

for each X E  X o . According to [6, Lemma 2. i i ,  aRaPtu  converges

to P ,u (E g )  in 6a°-norm as well. Since RaPtuG g* by 3°, we can

use 2° again to get .17 ,u g* , namely, uES/. Thus we have proved

Theorem 2 for every non-negative Borel measurable function u E 1,2 (X )
( [7 ; §3 , Proposition] ) .  The proof for the case that u is universally

measurable can be carried out in the same way as in [7 ; Lemma 3. 1] .

Theorem 3. Conditions (0 . 1 )  an d  (O. 2 )  are  equivalent for
the Process M  properly associated with the regular Dirichlet space.

Proof. F i x  1> 0  and suppose that E  is  art m-negligible Bord l
set. Then, by virtue o f Theorem 2  and property 1 ° , P(t /2, x, E)

=  1 3 ,12 111(x ) = 0 except on a polar set Cc X 0 . By taking a polar Gr
set containing C  if necessary, we can assume that C  is Borel. If we

assume the condition (0. 2), then (2. 6) is valid for every x E X 0 and

we obtain

P(t, x, E)= E r(P,01 .,(X,Iz); X, 121F C) = 0 ,

xE X 0 ,  getting the condition (0. 1).
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3. Embedding theorem fo r symmetric strong Markov processes

L e t (X, g , m )  be a  a-finite topological measure space in the
statement of Theorem 6  mentioned in the introduction. Let M =  (Xe,

x E X )  be an m -sym m etric right continuous strong Markov
process over (X, g ) .  M  is assumed to be normal in the sense that

P,(X0=x)=1 for every x  X.
We assume that M  satisfies condition (O. 2). Because o f this,

Rau(x)= Ra(x,dy)u(y) defines a Borel measurable function on X

for any uEL - ( X ; m ). Being a difference of a-excessive functions,
K u  is finely continuous. On the other hand, condition (0. 2) implies
the following:

(3. 1) m  is finely positive: m (A )>0 for every non-empty nearly
Borel finely open set A c  X .

Actually (0. 2) and (3. 1) are equivalent on account of the symmetry
of R .  Thus we can regard the space o f bounded Borel measurable
finely continuous functions on X  with uniform norm as a  closed
subalgebra of I, -  (X ; m).

As was stated in  [6; §21, the resolvent kernel {R„, a > 0 }  gives
rise to a symmetric resolvent on L 2 ( X; m), to which corresponds a
D-space (X, m, ¶, e). However the latter may fail to be a regular
one. We will rather take its strongly regular representation (

)  to work with in this section.
There is a sequence E ,E g  with m (E 1) < +  co , such that {E,}

generates g .  Put So = {R a o  1E,, = 1, 2, • • •} , h , being the indicator
function of E .  S tarting w ith  S 0 , we can exactly in  th e same
manner as in [ 5 ;  6 ]  construct a closed subalgebra L  of L - (X ; m)
satisfying the following. Denote by L 7 the set of all non-negative
elements of L - (X; m).

(3. 2) Ra(L) c L, a > 0 ,

(3. 3) L  is generated by a countable subfamily L o c L  such as

S0c L 0cRa(L7nL1).
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In view of the preceding remark, all functions in Lo are finely
continuous and Borel measurable, and so are all functions in L.

Denote by -X the character space of L , nam ely, X  is the space
o f all non zero real linear multiplicative functionals on L  endowed
w ith  the weak* topology. .TX-  i s  a  locally compact Hausdorff and
separable space. For each u GL, defines a function u  on je by

(3.4)i t ( x )  = X (u),

then the correspondence u -4 (  becomes an isometircal isomorph from
L  onto the space C (? )  (c .f . [6; §4] ).

Theorem 4. ( i )  There is a Borel measurable one to one trans-
form  H from  X  onto a dense subset o f  X .  17(A ) is  an analytic
set in X  fo r  any A E .0 .  In particular 17(X ) is analytic in X.

(ii) The induced measure W I on X  is  an everywhere dense
Radon measure on  X, where by definition -ni(724)—m(17- 1 ( -A- )) ,
A E:B.

(iii) The induced process H M = (HX „ C, iG H ( X ) )  is
a right continuous strong Markov process on 1 7 ( X ) .  The resolvent
of H M  is absolutely continuous with respect to

P ro o f. ( i )  Each x G X  defines a linear multiplicative functional
o n  L  by Uu)----, u(x ), u e L .  In view of the inclusion LDS ° ,  we
see that /,-/0 fo r any x G X  and th a t /,—/, only i f  x = y .  Since
each element of L  is  a Borel function on X , i t  is easy to see that
the m ap H  : x--->L i s  a Borel measurable one to one map from X
onto a dense subset o f  f (  (c .f . [6 ; Lemma 4. 2] ). Now the second
statement o f ( i )  follows from P. A. Meyer [12; III, T13], because
the space X, being a Souslin set in the terminology of Bourbaki, is
a continuous image of a Polish space.

( i i )  For uG L ,fiL l(X ; m ), we have

U ( i)  11-44(d X ) AI it( 11X) Im(dx) A lu (x )Im (d x )< + 0 °.
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This particularly means that i  is finite on each compact set of
because, L f lL 1 ( L0) being dense in L , the space « L n L 1 )  is dense
in C ( ) .  Here p denotes the isometry u—u from L  onto C (X ) .
Let us next prove that is everywhcre dense on .  Suppose that
ü = O  -a.e. for some u E L f lL 1 . Then, by the above identity,  u= O
m-a.e. and hence s u p ù ( )  = u by the isometry of 0, yielding

r, X

that u  is identically zero on X. Now we have, for any  uE(P(L f lL 1 ),
the equality s u p û ( )  = I — ess--supû(x)  because we can see

E X E X

that ü A a 0 ( L f l L 1 ) w h e n e v e r  ù E Ø (L f lL 1 ) and  a>O  and that
ù— ù/\a=O  i -a.e. i f  ù ( ) I < a  - a . e .  This equality is extended to
every û C ( ) ,  proving that is everywhere dense.

(iii) It suffices to show that Y, = lix , is right continuous on
HX CX , P -a.s., for any x E X .  For each  u E L ,  the process
= u (X ,) ,  O t < C ,  is right continuous P -a.s., because u  is finely
continuous and Borel measurable on X. Since  i  exhausts the space
C ( ) ,  the proof is finished.

Let us define the family of operators  { ,  a>O} o n  C ( )  by

(3.5)u L .

Owing to (3. 2) and (3. 3),  { ,  a>O} becomes a symmetric Ray
resolvent over Let ( ,  )  be a D-space generated by this re-
solvent. Then ( ,  ,  ,  Th turns out to be strongly regular. It is
in fact a strongly regular representation of the original D-space
(X, m, ¶ ,  ). This has been proved in 16; §6] in a more general
context.

(3. 5) implies that the kerneld y )  over .  is an extension
of the resolvent of J iM :

(3.6)A ) = R Œ ( r r 1 x ,  Ji A ) ,  . l J ( x ) ,  Aci,
(3.7)a ( . l i ( X ) ) = O , E H (X ).

Notice that X — H(X ) is universally measurable and ( X — li(X ))
=0. We have now a regular D-space (Z , ) with which the
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transformed process TIM on  17(X ) is associated. Unfortunately we
do not know whether this association is proper in the sense o f §2
because we are not able to prove that )7 -1 7 (X ) is  polar. Hence
we are forced to consider the extended process M = ( E X )
the Ray process on X  with the resolvent {ka, a> 0}  . I f  X EH( X ),
then the process (Xi, P;-)  i s  equivalent to (17X , z ) because
both o f them are right continuous and have the same resolvent. But
we still have trouble: t h e  entire space X  might be too large to
assure the absolute continuity o f  kc,(i, • ) with respect t o  l  for
i E X -17 (X ).

In order to get rid o f this difficulty, we consider the set' )

(3.8)Y R =  {xEY; L ( , - 1 1 ( x ) ) = 0 } .

The set YeR  contains 11(X ) according to (3. 7). Notice that all the
potential theoretical criterions 1°-5° work fo r  th e  present Ray

process _V ( [7 ; §31 ). Since )- e —17(x) is Vn--negligible and k û is
symmetric, 1° and 3° imply that

(3. 9) fe— YeR is polar.

By virtue o f  Lemma 3.1 ( i i i ) ,  it is further clear that k ( i ,  )  is
absolutely continuous with respect to Wt whenever x .  Combining
this with (3. 9) and 3°, we arrive at

(3. 10) ./-5; (2 -Y, G  —  R for some t O) = 0, x EYR

Here we used the fact that is nearly Borel. We can see this

from (3.8) because ka.0 (., _X-17- (x )) -excessive.

We finally put

(3.11)

where Y b denotes the branch set of M .  The properties (3. 9) and

(3. 10) are not violated by passing from Xi, to (c.f. Theorem 3. 2

1 ) T his subset has been considered already by D. Ray and H. Kunita-T. Watanabe.
See [6 ]  fo r th e  bibliography.
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o f [7 ] ). Denote by Mo the process M restricted to .Y0 . Almost all
sample paths of M o have left limits )7-, up to their lifetimes. This
can be verified by making use of the method o f time reversion [7;
3. 3] and the absolute continuity of the resolvent.

Summarizing what has been mentioned, we conclude as follows.

Theorem 5. Let the measure space ( X, g , m )  and the process
M =(X „C ,Px ; x G  X ) be those in the statement o f  Theorem 6  (see
Introduction). W e assume the condition (0. 2) f o r  M .  Then there
ex ist a locally  compact H ausdorf f  and separable space 5-f" and a
Borel measurable one to one map II f rom  X  into :5-C satisfy ing the
f o llo w in g : ( i )  (X I I )  has those properties o f  Theorem 4. In
particular the induced measure ih=m 11 - 1  i s  an everywhere dense
Radon measure on ( i i )  T here are a universally measurable
subset X- 0 of fe and a normal standard process ko= 
on X--

0 w ith properties (a ), (h ) and (c )  below.
(a) .17(X )c .k o . For each iG H ( X ) ,  the process (4  13 :;-)  is

equivalent to (n- X ,,Pu-iI).
(b) ko is properly associated with a regular D-s pace

over
( c )  IV° satisfies condition (O. 2) : the resolvent - )  of 140

is absolutely  continuous w ith respect to  -WI f o r  each :XE Y 0 and
a>0 .

Theorem 5 combined with Theorem 3 prove Theorem 6 stated
in the Introduction. In fact under the assumption of Theorem 5 we
see that A, also satisfies condition (0. 1): its transition probability
is absolute continuous with respect to WI. This in turn implies the
property (O. 1) for M  because of Theorem 4 (i) and Theorem 5 (ii)
(a).

4. One dimensional diffusions

Consider an open interval X = (r,, r,)c  R 1 . Let s (x ) be a strictly
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increasing continuous function on X  and m  be a  Borel measure on
X  finite on each compactum and positive on each non-empty open
interval.

Let us put

(4.1) e(u,2))_('',  du  dv 
 d s3 ,, d s  d s

(4. 2) ¶R = { ueL 2 (X ; m ); u  is absolutely continuous with
respect to s  and e(u, u)G + 001.

The space 9 . "  is complete with metric 8 C ' ( a > 0 )  and in fact
the convergence in this metric implies the uniform convergence on
each compactum. If l l E g R ,  then it is easy to see that y = (o Vu) Al
E g R  and e(v, u ) .  Hence (X , m, ¶ 5 e )  i s  a  D-space.

Any solution u  of the differential equation

(4.3)d  du
—  aU dmds

on a subinterval (a, b) c X  is called a-harmonic on (a, b ). a-harmonic
function on X = (r 1 , r 2 )  is simply said to be a-harmonic. The follow-
ing observation is useful: U E g R  is a-harmonic on ( a ,b ) c X  if and
only if

(4.4) ea (u, v) = 0

for a ll 1) E  Ka, b ) ,  where K“,b) denotes the space of those functions on
X  which are continuously differentiable with respect to s  and have
compact supports ir side (a, b). T h i s  is proved by m eans of the
"formal" integration by parts."

Denote by ,gla the space of all a-harmonic functions of ¶ R • L e t
¶ 0 b e  the c lo su re  of i n  (g", a 0 > 0  being fixed . The
above observation im plies that these two are  orthogonally comple-
mentary spaces of (E P?, 6") : In order to get a more
explicit expression of these spaces, let us call the boundary point r1

2 )  For the justification of this procedure, see §§54 of F. Riesz-B. St. Nagy, Func-
tional analysis, Ungar, New York, 1955.
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regular i f  both s ( r 1 ) =1im s ( r)  and m (r  c )  ( r i< c< rz )  are finite.

The regularity of r2 is defined similarly. I f  r ,  is regular, then any
function u  g R  has a finite limit u (r ,) = Ern u ( x ) .  I f  further u E  g

°
,

.v->r

then u(r,)=  O.

Let us show the following.

(4.5)¶ ° {u E T"; u (r 1) =0 i f  r , is regular) .

(4. 6) {c1 c2 k ; c , — 0  if r1 is non-regular) ,

where 12; (resp. k )  denotes a positive a-harmonic function strictly
decreasing (increasing) on (r1, r2). (4. 5) follows from (4. 6). (4. 6)
is the same as the statement

(4. 7) (le, le) is finite if and only if r  is regular.

But this in turn follows from the computation

a\
d l e  d s +  a V ( h ) , d m  rJ d s d s  a

for r1<a<b<r2 and from the well known boundary behaviours of
l e  (K . Ito [8; §60, §61] ).

In the following we only discuss the absorbing barrier and the
reflecting barrier processes. As for the formulation of the most
general symmetric bondary conditions within the present framework,
see the papers by J. Elliott and M. R. Silverstein [2 ] and by the
present author [5; §9] ."

( I )  T h e  absorbing barrier process

(X, m , g °  e )  is clearly a regular D-space. Before discussing the
associated process, let us notice two special properties of this regular

3 ) W. Feller [3 ; §10, 11] already determined the most general symmetric linear
operator G „ which, fo r  a  fixed a > 0 , associates with each f G L 2 (m )  an  element

du dG L 2(m ) such that au— 
 d m  d s  

u —  f  m - a .e .  Our formulation imposes an addi-

tional requirement o f th e  submarkovity of G .  T h e  role o f th e  regular boundary
in our argument corresponds to that of the active boundary in  Feller's [3].
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D-space. First o f  a l l  the Hilbert space (g ° , e ")  h as a reproducing
kernel, say g (x , y ),  since the map u eg°—)11( y )  R 1 is continuous
for each fixed y e  X:

(4.7)e a ( g ( 0 ) , ( • ,  y), y) =v(y ), V E T ) .

Second our D-space admits no non-empty polar set and indeed each
point y3 X  has a positive capacity:

(4. 8) Caf)( {y} )- 1  >0.g 1 0  (y, y)

Recall the definition (2. 4) of the capacity of open sets and observe
y 1 )Ca(E„) = ea(p„, p„) for open E„— (y 17, where p„ is charac-

terized as the element o f g °  such that p„=1 on E„ and ea°(P„, v) 0
for every 11G ¶ O non-negative on E „. We can show that p„ converges

to  a function p e g °  in 6'0-norm as well as in  pointwise sense and

that the limit function p ( a 0-equilibrium potential for {y} ) is charac-
terized as the unique element of g °  such that p( y) =1 and eao(p, y)

fo r  every v Eg° w ith  v(y) 0. 4 ) Comparing this with (4. 7),
we get

(4. 9) P(x) = gl e (x, y) / e o (y, y), x  X.

Since ours is  a Choquet capacity ( [6; 11),

n1C a (  {y} ) = lim Caii(Ly _ An, y  _4_ 1 ) lim  Caii(E „) =  eao(p, p),

which combined with (4. 7) and (4. 9), implies (4. 8).

Incidentally the above criterion for p implies that 0 p< 1 on X
and that p  is  ao-harmonic o n  (r1, y) and (y, r2) in  accordance with
(4 . 4 ). Hence we arrive at

p ( x) 
=  u 1 (y) u2((y) u2(y) ( i f  x . Y ) •

Here u ,  (resp. u2) i s  a positive strictly increasing (resp. decreasing)

4) See the proof of (1.28) of [7].
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a o-harmonic function on  X  obeying the condition u 1 (r 1 )  =0  (resp.

uz (r 2) = 0 ) i f  r ,  (resp. r 2 ) is regular. This condition uniquely deter-

mines u, up to a constant factor (  [8 ; Th. 61. 2] ). In  particular p

is strictly positive everywhere. Furthermore (4. 9) and the symmetry

of g ,  lead us to

icu1(x)u2(Y), x y
(4. 10) eco(x, y )

c u z ( x ) u , ( y ) , y

with a constant c>0.

Now consider the Hunt process M°= ( X,°, C°, P x°, x X )  properly

associated with (X , m , g ° , e ) . The existence of M ° is assured in [7] .

We call this the absorbing barrier process. Let us see how the be-

haviour o f  M ° reflects the analytic feature (4 . 8 ) o f  our D-space.

First the state space o f M ° should be the entire space X  ( r 1 , 7-2)
because any polar set B  is now empty. Each element o f  g  has a

quasi-continuous (and hence continuous) modification, but we already
started with the continuous version exclusively. Properties 1° —5°
listed in  §2 now become trivial except that every function of the

class ka(L 2 W U+) is continuous on X ."  The last property implies

the absolute continuity of the resolvent. More important property

comes from Theorem 2 :  every function o f P,(L 2 n c lr)  is continuous,
from which immediately follows the absolute continuity of the transi-
tion probability without appealing to Theorem 3.

It has been proved in  [7 ;  Theorem 3. 8] that

p (x )= E °x(e- a"' {' ) ; 6 <C°)

fo r  quasi-every x G X , where cr,,) i s  the hitting time fo r y . Th is

equality now holds everywhere. Thus we see that the hitting proba-
bility for one point is positive starting at any point and that each
point yG X  is regular with respect to itself.

Th e reproducing kernel g. ,  is just a  density function of the

resolvent of the process M°

5) V  denotes the space o f non-negative universally measurable functions on X.
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(4.11) R : f ( x ) = x e ( x ,  y ) f ( y ) m ( d y ) ,  x e  X ,

for f E K ( „„ ) . By definition, R : f  is indeed the unique element of
g °  satisfying (1 . 3 ) for (g°, ea)• N oting the expression (4. 10), we
can conclude from (4 . 7) that the right hand side of (4. 11) has the
same property. Hence we have (4. 11).

Finally we make the following remark: i f  either r,  or r ,  is  a
(pure) entrance boundary [8] , then  (X , m , T , C ) is not strongly
regu la r . For instance suppose th at r i  is  en tran ce . B y  (4. 11) and
[8 ;  Th. 62. 1] , R f  does not necessarily vanish at 7.

1 for f  EC(X ),
namely, R : is not a Ray resolvent on X .  I f every entrance boundary
point is added to the state space X = ( r1 , r 2 ) , then the continuously
extended resolvent R°Œ  becomes a Ray's one. But this amounts to
taking a strongly regular representation o f (X , m,g° , E).

( I I )  T h e  reflecting barrier process

Let X  be the space obtained from X = (r 1 , r2 ) by adjoining the
boundary point r i  i f  r ,  is regular ( i= 1 , 2 ) .  The measure m  is ex-
tended to X  by setting simply  m ( r 1 ) = 0 ,  r ,  being the adjoined
(regular) boundary point.

(X, m , g ', E )  is then a regular D -space. This is clear when no
(pure) entrance boundary point is present because g i n C ( X )  then

—  C ,contains the algebra generated by , q1to r 2H K  ,  which is dense not
o n ly  in  (g", Co) b u t  a l s o  in  C ( X )  o w in g  to  Stone-Weirstrass
theorem . Consider next the case when r ,  is  entrance and r2  is
regular. Each elem ent o f Slao is  th e n  a constant multiple of h ° .
Put çp(x) = 1.el°(x)— k°(ri ), xe (ri, r2] , then g" n C (r,, r 2] be-
cause gR  contains all constant functions. Now gR rIC(r 1, r2], con-
taining the algebra generated by ço, is obviously dense in C(r i , r2].
I f  u e g R  i s  orthogonal to  g in C ( r i ,  r2] , th en  ueS tŒ.„ namely,

u= ck ° for some constant c. But then 0 =eao(c/f2(°, ço)—c 
 d  

0  (r 2)Ç9(r 2)ds
from which we get c=0.
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Let
 M R =

 ( X tR  ,CR  P ? )  be the Hunt process properly associated
with (X , m, ¶ 1 ? ,  L). W e call th is the reflecting barrier process. We

can make the arguments exactly parallel to the preceding case of the
absorbing barrier process. Each point of X  has a positive capacity,

the state space o f MR must be the entire space X and the function

PiRj", f E L 2 n , u -i- , is continuous on X, P 1R being the transition proba-
bility o f M R .  P t R is therefore absolutely continuous with respect to
m . The reproducing kernel o f (gR, 0 4 )  is just a density function of
the resolvent o f MR.

Let a; b e  the hitting time (o f M R )  to  the point r ,  i f  r i is
regular (i= 1, 2). Otherwise we set a; = CR . Put a = a, A (12 . According

to (4. 5) and [7; Theorem 4. 3] , the absorbing barrier process M ° is
equivalent to the process M R  killed upon the time a.
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Added o f P r o o f :  Quite recently M. Takano introduced a new
notion of capacity (On a fine capacity related to a symmetric Markov
process, to appear in  Proc. Japan Acad.). This w ill m ake it possible
to show Theorem 6  in a similar manner as in the proof of Theorem
3.


