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1. Introduction and the statement of the results

Let F 4  be the compact simply connected exceptional Lie group
of ra n k  4 . The mod p  cohomology rings are known [3]

H* ( F 4 ; Z 2 ) ==Z [ x3] / (4)0A  (S ex 3 , x 15 , Se x i ,) ,

H* (I' 4; = Z ,[8 g3 lx 4 ] ( (aT 1x3) 3)
A (x,, x14, gn x ii) ,

H* (F4; Z )  A(X3, x11, x15 , x23 ) f o r P > 5 ,

where x E  H..
For the classifying space B F4 o f F 4 ,  its mod p  cohomology ring

is known except the case P=3:

(B F; Z 2 )  Z 2 [x4 , Se x 4 , S ex i, x 1 6 , Sex46]

H* (BF4; Zp) —  ZP [x4 , x12 , x16 , x24 ]  fo r p>-5.

These results are consequences o f (1 .1 ) by applying Borel's
transgression theorems [2] to the universal F4-bundle over B F4 . For
the case P= 3, however, it seems very difficult to determine H* (B F4;
Z 3 )  directly from (1 .1 ) because the element x11 H 11 (BF 4 ; Z3 )  is
not transgressive and there is a relation [1] of Araki

x4 (89?1x4 ) =0

for the transgression image x 4 E H 4 (B F 4 ; Z 4 )  of x3.
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The purpose of the present paper is to determine the structure
of H*(B .F,; Z 3) by use of the bundle

(1.2)I I  —÷B Spin (9) ± > B F 4

where .// F 4 /S p in  (9 )  is  the Cayley plane.
Let T be a maximal torus of Spin (9) c  F 4 a n d  le t (G ) be the

Weyl group o f G  for G  Spin (9 ), = F 4 .  As is well-known [2 ]  the
natural map p : B  T  >BC induces a homomorphism

(1.3)p *  H *(B G ; Z 3 ) — >H*(B T ; 2. 3 )

such that the image of p* is contained in the subalgebra H*(BT;
Z3 '  consists of the elements invariant under the action of
0(G).

For G =S pin (9 ), p * i s  injective and the image coincides with
the invariant suba lgebra  w h ich  is  a polynomial algebra on the
Pontrjagin classes p i  E  1/ 4 . Thus we may identify as follows.

H *(B S p in (9 ); Z3)=H*(BT; Z 3 ) " P i n( 9 ) ) = Z 3 1- 1) h  h12 2 L .-4 J  •

First we shall determine 14* (BT; Z 3 )
of Z 3 [p i , P2, P3, P I ],  and the result (Lemma 2 . 1 )  is

H* (B T ; Z 3 ) (Da%) _ z 3
 
[P i, P2, P5, P9, ( r 15)

where
P2 = P2 -pT, P5 = P4pi+P3 P2

p9= A— p4p3A+ A psp i -P4 p2
fii2=p34+A .A +P4g

and

Then by use of the cohomology spectral sequence associated with
the bundle (1 . 2 ) we have the following

Theorem  I. There exist elements x, (B F,; Z 3 )  fo r i = 4, 8,

9, 20, 21, 25, 26, 36, 48 such that

P* (X 4 ) —1, 1, p* (x8) =152 , P * (X 2 0 ) =  fi 5 P* ( ) P  (  ).x36 —_ * ,X18 12

and that by means of cup-Product we have an additive isomorphism

(qF4) which is a subalgebra
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Z 3 [X 36, X 48 ]( B F  4; Z 3 )

for
c=z 3 [x 4 , x.] 0  {1 ,  X 2 0 ,  4 }  +A(x0)0z2 [x20 ] 0  {1 , x20 , x24 , x25 }

where two terms of C  has the intersection {1, x20}. Thus the kernel
of to*  is the ideal generated by x9, x21, x 2 5 and x25.

In  order to determine th e  r in g  structure o f H * (B F,; Z3)  we

shall prove the non-triviality of ag)48g31x4 (Lemma 4 . 1 ) . Then the
ring structure is determined by the following

Theorem II. We can choose the generators x ,  in  Theorem I
such that x 9=ax 8, x 24=ax 20, x 25= 2 1 x 2 , and x28=ax 2 5. Then the
relations in H *(B F4; Z8) are generated by the following ones:

Xu X 4  -  X9 X 8  =  X  =  X21 X4 =  X 2 5  X 8  -  X 2 1  X 2 0  -  4  = X25 X20 = 4  -  0,
X 2 1  X 8  -  X 2 5  X 4  -  -  X 2 0  X 9 ,X 2 6  X 4  -  X 2 1  X 9 ,

X 26 X8 - X 25  X 9 , X25 X21 - X26 X20

a n d  .ez0=- X48 X 34 ±  X 3 6  X f33 -  4  X .11 X I  .

Thus the hom om orphism  p*  maps the subalgebra Z 3 [X 4, X 8, X 36, X 48]

{
1

,  x 2 0 ,  XL} generated by x1, x8, x20, x46, x48 isom orphically  onto
the invariant subalgebra H *(B T ; Z 8 )

0 (
0

4 ) .

Finally we shall determine th e  reduced power operations. By
means of Cartan formula and Adem relations and by dimensional
reasons, it is sufficient to determine the values of 2 1 ,  2 3 and 2 °  for
the generators, and the results are stated as follows.

Theorem III.

(i) 2 1 ( x 9 ) =2 1 (x 2 0 )=2 1 (x 25)=2 1 (x29)=0,
g3 1 (x 4 ) = -  xs + x 2

4 , 21(x 8)=x 8x 4,
2 1 (x2i) --- X 2 5 ,2 1 ( x 3 8 ) =  - x 0

and 21(x ,8 )=

(ii) 2 3 (x4 ) = g 3 (x21)=2 3 (x 2 5 ) = -CP S ( x 2 5 )  = 0,
2 3 (x 8 ) = x 20- 4x 4, 23(x0)= x24,
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3 (x20) =  x2o (— X8 - I-  4 ) X4

g 3 3  (X 36 ) =  X 48  - X 36  (X 8  4) x4+ 4 (x s + 4)
and (x 4s) = — x 48(xs + 4) x 4 .

( i i i )  g 9 (x4) = g 9 (x8) (x9) =0,
2 9 (x20) = (x48+ 4 x8) ( — x8+ 4) + x 36(x 2 0 + 4 x + x26 x21 x9 ,
2 9 (x21 ) - X 48  X 3+  X 36  X 21

P9 (X25) - X36 X25 - X26  x9,

g ) 3  (X26) = X36 X26,

2 9 (x3 6 ) = — X48  X 2 0 x4+ x 4 8  ( x  + 4) 4— 46+ x36 x20(x8+ 4) 4
— x3 6 (4 +  4 ) 2 x4 + 4 x 8 (4+  (x s + 4) 3 4)

and g33 (X48) =  X 4 8  X 3 6  +  X45 X20 ( — + xl) — x48(4+ 4) 2  X4 .

H*Recently, N. Shimada has show n that E 2 -term Cotor (F4; Z3)

(Z 3 , Z 3 )  of Eilenberg-Moore spectral sequence converging to H* (BF4;
Z 3 )  i s  additively isomorphic to H* (BF 4 ; Z 3 ). Thus the spectral
sequence collapses.

Theorem I will be proved in section 3  after determining the
invariant subalgebra H* (B T; Z3) Ø ( y 4 )  in section 2 .  Theorems II and
III will be proved in section 5  by auxiliary computations of cohomology
operations in section 4.

2. Mod 3 invarian t forms

L e t T ' be the usual maximal torus o f S O (9 ), then H*(B
= Z [t 1 , t 2  t 3  t 4 ]  for canonical generators t. H ' and the Weyl group
0(S0 (9 )) of S O (9) acts on H *(B  T ') as the permutations of t i and
the changements of the signs o f t,. Take a maximal torus T  of
Spin(9) as the inverse image of T ' under the universal covering
Spin (9)--->S0(9) . Denote by the same symbol t,EH 2 (B T )  the image
of ti under the natural homomorphism H* (B  T ')--->H* (B  T). Then
H* (B T ) =Z  [t 3 , t2, t3, t4] (c4/2) Z  [t4, t3, t3, ci / 2 ]  and the action of
0 (Sp in (9 )) is same as 0 (S 0 (9 )) , where ci  = t i + t 2 + t 3 + t4 .

Let p  be an odd prime, then H * (B T ; Z ,)=Z , [t1 , t2  t3  t4  and



Cohom ology m od 3  of the classify ing space B F 4 1 0 1

(2. 1) H* (B T ; Z 1,)° (SPin (9 )) = Z p  b b  b lL., 1 ,  r 2 ) ,3 ,  r

where p i G H 41 stands for the i-th elementary symmetric function on
e, that is,

Pi x 2  ̀=  (  +  x 2), P0=1.,=0

According to the section 19 of [4] we choose Spin (9) as  a  sub-
group of F g  such that F4 /Spin (9) is the Cayley plane  H. Then  the
Weyl group ø(F4 ) o f  F g  i s  generated by (Spin (9)) and an element
R  which acts as the reflection to the plane ti + t2 + t3 + t4 = 0, that is,

R ( 0 = t 1 —(c 1 /2),i = 1, 2, 3, 4.

Now we discuss in  Z 3 -coefficient. Then

(2. 2) H* [B T ; Z 3 ]
01

'
4
) — Z3 [P1, P2, P3, P4] n Z3 [t„ t2, t3, t4]

R

and R (t,)=t;+c i.

Let c ,  be the i-th elementary symmetric function on to  that is,

E c 1 x 1 = 11(1+ t i x), c0 =1,

then we have easily

k(2.3)R ( c , ) — 4
c and  p rE )co 1=  E  ( - 1 i c i ck.j

+k =i k i+ k =2 i

From these relations it follows directly

(2.4)R ( p i ) — p „ R (P2) —P2 for P2 — P 2  A.,
R ( p 3 )  P3 —  fi2Pi — c 4 p i ,  R(c4) œc4 + P2

and R(P4)— P4+ c4P2.

Put
q3 =P 3 + Cg pi  a n d  q4 — P 4  C4 P2

then it follows from (2. 4)

(2.5)A ,  fi2, q3 and q4 are invariant under R .

First we prove

Lemma 2. 1. The invariant subalgebra H *(B T ; Z 3) 4 ) ( F 4 ) i s
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generated by  the elem ents p1, P 2 /  P5= p4pi+ p3fi2, fi3=-- A—p4p3p
+PD2P1 — P4P2p31 and p i2 = g i+ p 741A +p4p hav ing the only  relation
r i o= fig+ g  -1A pi — f, 12 P 31 —  9 [3  2 • Thus

H* ( B T ; Z 3 ) 0 (F0 — Z 3 [A, p2, P5, Po, Piz] gr15).

Proof. A n  arbitrary element f  o f Z 3  [P 1 /  P 2 /  P 3 /  c4 1  P 4  
= CI, is

written uniquely in  a  form

f =f0+c4f1 f o r  fo , E  Z 3  [A, p2, q3, q4] .

If f  is invariant: R ( f ) =  f  ,  then it follows from (2.4)  a n d  (2 . 5 )

2  (C 4  +  p a f l  o hence f = 0.

Thus we have Z3 [P 1 /  P 2 /  P 3 /  C 4 ] R  = Z 3  [A, P 2/  q3, q4], and by (2 .2)

(2.6)H *  (B T ; .Z 3 ) ° ( 1 . 4 ) — Z 3  [P 1 /  P 2 /  P 3 /  A] fl Z 3  [P 1 /  P 2 /  q 3 /  q 4 ]

. ,The generators of the lemma are invariant since fi,-;  =a b 1 +a 3 2 /b

fi o=  + zp, —q4q3 and [312= e t +  q g .  The relation r 15= 0  is  directly
checked. Thus

Z 3  [A, p2, p5, Po, A2] / ( r 11) c H * (B T ; Z 3 )
( F .

On the other hand, an arbitrary element f  of z3 [A, fi2, q3, q4] is
written uniquely in  a  form

f  = g+ c4h f o r  g, h G Z 3  [P 1 /  P 2 /  P 3 /  P 4 ] /

and also f  and h are written uniquely in  forms

f = h  = E g p i4h,, ( i ,  = 0 , 1 ,  2 )

for some f  i i ,h , J É Z 3  [P 1 /  P 2 /  P 9 /  A2] . Then we have

hos f 10— fi2 0i , 1203= .1), fi3 f 03 — ii2pT f21 f 12

1 4 0 = A f23 h02 fi2 + p2.mf22,

h20 P 2 f 2 1 andh 1 2 = p i  f22 •

If f  belongs to Z 3  [P 1 /  P 2 /  P 3 /  p4] th e n  h= 0, a n d  h o  =  0 .  It follows
that fi.2  — f2 i — f22 — 0 an d  that there exist g1,  g o E  Z 3 [P1 , Po, PO/ P 12 ]

and f20, „ 10 — 11 —  P2Ag2su c h  th a t f b P- h  g  f f
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= M g,. Thus f  = g+ P5g1+ Pg gi, and the lemma is proved by (2. 6).

Consider the following ideals A ' and A " of H *(B T ; Z 3 )

(2. 7)A ' =  (P1,1-32, PD  and A "= (M , P2A, Pg, fi5P1, P5P2, Pg).

The following lemma will be necessary in the next section.

Lemma 2.2. Z2 [ p i ,  p2, p3 , p4 ] is  additiv e ly  isom orphic to the
direct sum  o f  H* (B T; Z3)

(DM ) ,  
s' A ' and sic A" where s ' increases

the d g re e  by t ( = 8  or 16).

P ro o f .  The Poincaré polynomials of the three direct summands
are

P1= (1+ x 2 0  + x") (1 — x 4 ) - 1  (1—x8 ) - 1 (1 — x ") - 1 (1 — x4 2 ) - 1 ,

P2= x 8 (13 1—  (1 + e )  (1 —  x ") - 2  (1 — x") - 1 )
and P3= x" ( P1 — (1+ x 4 + x 8 + x") (1 —  x")' (1 —  x") - 1 ).

Then P1+ P2+ P = x 4 ) - 1 (1 — x 8 ) - 2  (1— x 1 2 ) - 1 (1— x 1 6 ) - 1  i s  the Poin-

caré polynomial of Z3 [P I, .P2 ,  P 3 5  p i ] ,  and the lemma follows.

3. Proof of Theorem I.

The natural map p  :  BT—>I3F4 i s  the composition of the natural
map p  :  BT--->BSpin(9) and the projection p  of the bundle (1. 2).

Under the identification

H* (B T ; Z a ) a"P i n( 9 ) )  = H* (B Spin (9) ; ZI) = Z3 [P1,13'2, P3, P4]

it follows from Lemma 2. 1

(3. 1) Imp* c Z3 [P1, P2, P5, Po, P12] (r15)c Z3[P1, P2, P3, P4]
f o r  p *  :  H* (BF 4; Z3)--4-1*(BSpin(9); Z3).

D enote by (E;!` • *) the mod 3 cohomology spectral sequence
associated with the fibering (1. 2). Let w be a generator of H 8 (11;
Z 3 ). Then the spectral sequence satisfies the following properties:

E:.* = H* (B F 4 ; Z3)0 {1, w, ,

= + E7. 8 + E ,* ' 1 8 (r=2, 3, • • • , 00),
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H (E :.* )=E it , *—EPT.* , H (E .* )= EA.* =E:t•*,
E D*. 1 6 / D "

f o r  Imp* = D " c D " c D * = H * (B  Spin (9) ; Z 3 ).

Let x 9 G 1/ 9 (BF4 ; Z 3 )  be the transgression image of w , then the

differential d 9 in  E : "  is given by

(3.2) d 9 (b 0 1 )  = 0 , d9(b0w) = b• x901
and d 9 (bOw 2 ) =— b •x 9 O w  f o r  bEH *(B F 4 ; Z3).

We shall discuss the following assertions.

(3. 3) (i) There exist x, G Hi(B F4; Z3) fo r  i= 4, 8, 20, 36, 48

such that
P* (x4) = P4 , P* (x.) =1-)2, P* (x.) = 155 , P* (x34) = p9

and p * ( x 4 8 ) = p 1 2

( i i )  X 4 O W , X 8 O W , X L O W , X 2 0  X 4 O W 2 , X 2 0  X 8 O W 2 and
x 30w 2 are permanent cycles.

(3 . 2 ) implies

(3. 4) x 9 x l =  0  and x 9 x 8 =0  Provided the assertion (3. 3), (ii)

fo r  x4Oiv and x s O w  respectively.

Obviously 4 = 0 .  By (3 . 2 ), x40w 2 , x 8 0 w 2 and x90w 2 a re  d r

cycles, and we can define elements x, G H'(B F4; Z 3 )  for i = 21, 25

and 2 6  by

(3. 5) x2101—  d37(x40w 2 ), x2501 — d17(x80w 2 )

and x 2 9 ® 1  = d. (xo0w 2 ).

First we prove the following

Lemma 3. 1. If the assertion (3. 3) holds for total degree<n,
then Theorem I holds fo r  degree<n.

P ro o f. The following discussions are considered for total degree

< n .  Consider subgroups A, A ' and A " of H * (B F 4 ; Z 3 ) which are

given by
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A - Z3[x 4, x8, x36, x413] 0 { 1, x20, A0}
A' = A -  Z,[x36, x4.8] 0 {1, x20}

and A" =  -  Z 3  [x 3 ,  x481 0 {x4, x8} •

B y (3. 3), (i) and (3. 1), we see that Imp* = p* (A) ,  p *  is in-
jective on A, and in the spectral sequence A01 is not bounded and

A01 = Et.° (for *  <n ) .

A 'O w  i s  the product of A01 an d  {x40w, x90w, x00w}. It
follows from (3. 3), (ii) that A 'Ow  i s  permanent cycle. Similarly
AH Ow 2 i s  permanent cycle b y  (3. 3), (ii) and by that 402v 2 (and
x9 x400, x2w 2 )  are permanent cycles if x4Ow (and xa w ) are so.
Obviously A "Ow 2 is not bounded. Thus we have an inclusion

A"Ow 2 c E t." (*+ 16 < n ) .

Assume th at aO w e  A 'O w  is bounded . Then, b y  (3. 2), a =
- b • x9 for some b, and p* (a) =0  by p* (x 9 )  = 0 .  Since p *  is injective
on A 'c A , we have that A'Ow is not bounded and

A 'O w c (* + 8 -<.n).

H* (B Spin (9) ; Z3) = Z  [P1 , P2 , P3 , P4 ] is  additively isomorphic to
the direct sum of E '° ,  E I - 8 '8 and E l- " '" .  The three direct summands
of Lemma 2. 2 is isomorphic to A01, A'Ow and A''Ow 2 respectively.
Then it follows from Lemma 2. 2 the equalities

(3.6)A ® 1 =  E ° ,  A 'O w =  E l . 8 a n d  A "O w = E !'"
f o r total degree<n.

Now we assume that Theorem  I is true fo r degree < n ,  and
compute d9 a n d  E17-= E30=  H (E 0) b y  (3. 2) and  (3. 4). Then we
have

E77-17,16 =  (A" + F )  ' 17 w2

for B" =Z3[x36, x48]0 E {x4, x8} + Z 3 [x26] {x9, x20 x9, x21 x9, x25 x9}]
a n d  Im d9 (in E9'.°) _---- E r"  / (d 9 E'9- "' 1 6 6)A 'Ow) = (.13') - 9 0 w
for B '- Z3 [X26, x36, x48] 0 {1, x20, x21, x25 } •



106 H irosi T oda

B y  the properties of the spectral sequence w e have exact
sequences

0— >(BOn - g. '±>H"(B F4; Z 3)-->EY — .0

and 0—> (B ") - 1 7  -R±Œ7i° — >(A )"— >0,

where g  is given by d17 (bOw 2 )  = g (b )0 1 .  B y (3. 5)

g(B")(1)13' • x9= Z3[x26, x36, x481

0 {x9, x21, X25, X26, X20 X9, X21 X9, X25 X9, X26 X20 }

and H *(B F4; Z 3)  i s  additively isomorphic to A (Dg(B ")(DB ' • x 9 .
This shows the first statem ent Z 3 [x3 , x48] 0 C _----11*(B F4; Z 3)  of
Theorem I. Obviously the generators x 5 , x 2 1 ,  x 2 5  and x26 vanishes
under p* . Thus the ideal generated by these elements is  contained
in the kernel o f p* . The kernel contains g(B ")(1)B ' • x 9 . Since p*

is  injective on A, we have that the kernel o f p *  coincides with the
ideal. Consequently the lemma is proved by induction on n .  We
have also proved

(3.7)K e r  p* = Z 3 [X 20 , X 36 , X 49 ]

0  {X 9 , X 21  X 25 , X 251  X 20  X 9 , X 21  X 9 , X 25  X 9 , X 25  X 20 }  •

Next we shall prove (3. 3) by dividing into three steps.

Lemma 3. 2. (3 .  3 )  holds for total d e g re e <3 5 . By a suitable
choice of the generator w , p3 and p4 represent —  x4Ow and x 9O w
respectively.

P ro o f. The existence of x4 is very  easy . B y  (3. 1)

p* (Hi2 (B F  4 ; z 2 ) )  D i"  c  {fid)i,

T h e n  E
8
 =  D

4,8 / Di2,6 H  12 ( B  s p i n  ( 9 ) ; Z 3 ) /  D 1 2 ° c o n t a in s  non-trivial
class o f p 3 .  Since E V  has on ly one generator x 40w ,
and — x 4O w  i s  a permanent cycle represented by P 3  mod { 5

2P1, ,
by changing the sign of w if i t  is necessary.

Next assume th a t /52 is  n o t a  p*-image. Then as above, fi2
represents 1 0 w  mod D 8 .°, u p  to  sign. S o ,  152p1 represents x4Ow
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mod D".° = f52p1, A I which contradicts to the above result. There-
fore P. ,  is  a p*-image, and the existence of x 8 follows.

Now, as in the proof of the previous lemma, = (A ) "  and
H"(B  Spin (9) ; Z3)/D 16 '° = {P4, P3Pi} . Since cl9(100)=— x 9Ow *0,
we have E2 4 6  =0, H"(B  Spin (9) ; Z3) = D8 .8 and .n 8 =D 8 . 8 /D"—  { p4,
P3Pi}  • On the other hand, .a 8 = fx80w, 4010 and p , p ,  represents
—.40w. It fo llow s that x80 w  i s  a permanent cycle and that P4

represents (.3.; + tx)Ow for some s , t e Z 3 .

Finally, p4p1 and — sp3p2— tp3A represent the same element
(s .x3 x4 + t w mod D2" .  T h u s  p4p1+sp3fi2+tp3A belongs to
Im p * . B y  (3. 1) we have s=1, t= 0, and that p .t represents x80w,
and also the existence of x 2 0 such that p*x2o=p4pi+p3 -P2=fi,

Consequently, (3. 3) is proved for total degree<35.

Lemma 3. 3. (3 . 3 ) holds for total degree n <4 3  and n=48.

P ro o f. Consider the discussions in the proof of Lemma 3. 1 for
the cases n=36, 40, 48. Then we see E''L° cH"(B T; Z3)o(F, EL-8,8

c (A ') - 8 0w—E76 - 8 •8 and c (A ") — "Ow 2 = .E "." . It follows
from Lemma 2. 2 that the equalities hold in the above three inclusions.
This proves (3. 3).

Lemma 3. 4. (3 . 3 ) holds fo r  all degree.

P ro o f. The proof of the above lemma valids for the cases n=44
and n =5 6  provided that d o i s  injective on (A— AT - 8 0 w , th a t is,
c/3 (x360w) *0 and d3(x480w) *O.

Assume th a t d3(x360w) = 0, then  x360w i s  a permanent cycle
and represented by an element f  H4 4 (B Spin (9) ; Z3 ). Since x36 x40w
is represented by both of f •P i  and - 9 p 3 ,  f p i+ -P 3p3G im p*. The
coefficient of /4 in fp 1 +/-39 p3 is 1, but such an element is not con-
tained in Imp* c  fiz, fi,, fi9 , fi1 2 1  / (r1 5 ) . Thus we have d9(x360w)
*O . S im ilarly d9(x480w)

Consequently we have proved all the assertions of (3. 3).
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Proof of T heorem  I. By Lemma 3. 4, (3. 3) holds. Then Lemma
3. 1  implies Theorem I.

Rem ark. We have insisted to prove Theorem I without use of
cohomology operations. The use of cohomology operations simplifies
the proof of the theorem as follows. The existence of x4 implies the
existence of x 8 and x20 by use of q l  and 2 3 T 1 . The existence of
x 38 implies that o f x 4 8 b y  use of The assertions in (3 . 3), (ii)
are equivalent to x 9 x4 x8 x8 x o  0  and x24 x20 x25 x20 0 mod (x9)
except the last assertion for 4 00 w 2 . Then the first relation x 8 x4
implies the others by applying suitable coholomogy operations as is
seen in section 5.

4. Cohomology operations

In the first half of this section we shall prove the following

Lemma 4. 1. For a generator x 4  o f  H4(B F4; Z 3 )  we have, up
to  sign, x 3 = — 82 1 x4, x24—  — 2 3 8 q 1 x 4 , x 2 5 =q 1 x21 and x26=8x25=
—  ag)4(72 1 x 4 .

Pro o f . Let B F4 be a 4-connective fibre space over B F 4  B—P4
is a fibre of a fibering

(4.1): /4 4 -->B F4 -- .K (Z , 4).

Let P 4  be the loop space of B7F4 . Since F 4  is equivalent to the
loop space of BF4 ,  we see that P 4  is a 3-connective fibre space over
F 4 . T h e  coholomogy of F4 was computed in [8 : Th . 2 . 5 ] and the
result is

H* (F4; Z3) =Z 3 [3 , 18] ®A (y11, 8)118, g 3 1 8Y18).

Consider a contractible fibering over B F4 with a fibre F 4 .  B y
dimensional reasons, y i ,  and y i ,  are transgressive. Let y 1 2  and y 1 9 be
transgression images of y il and 3/18 respectively. Then we have

12, - - ,(4. 2) The natural hom om orphism  Z 3 [y , q  v  av19 av19 1
0 A (y 4 3 )— .11*(B 44; Z 3) is  bijective for degree<54.



Cohomology m od  3  of the c la s s i f y in g  s p a c e  B F 4 1 0 9

This can be proved by use of the comparision theorem [10] , but
we need (4 . 2 ) on ly  fo r d eg ree< 2 6  and whence (4 . 2 )  i s  an easy
exercise of spectral sequence.

Now le t  (E;!`.*) b e  the mod 3 cohom ology spectral sequence
associated with the fibering (4 . 1) converging to H* (BF4 ; Z 3 )  and
having

E :.*  H *  (Z , 4 ; Z 3 ) 0H* (B 44; Z3),

where, by [6 ]  for uE H 4 ,

H* (Z, 4; Z 3 ) = Z, [u, P P 1 u, ag'4 4T 1tt, • • .]
A (ô? itt, cLY) 3 .g 1 u, .T 4 8T 1 tt, • • .) .

By checking the degrees, we see that E ' 26 '= 0  un less s =  26 , and
Er.° is generated by agD4-,7,1 u01. On the other hand H 2 6 (B F4 ; Z3)
is generated  by x 2 4 ,  by T heorem  I. This shows that up to sign
x 26 i s  the image (3R)48.T1 x 4  o f  a gD 4

&s-' 7 ' 1 u. It follows that 6.T4 8T 1 x 4

= 8T 1 (2 3 8g) 1  x4 ) # 0 , .T 3 (3.T 1 X4 # 0 and 8.T1 x 4 O . B y  T h e o re m  I,
H'(.B.E3 ; Z 3 )  has only one generator x ; fo r  i = 9 , 21 , 25 , 26 . There-
fore the lemma is proved.

Next we compute the reduced power operations in  H*(B T ;
Z 3 ) 1 ) ( F 4 )  by m eans of the methods in [5 ] . The reduced powers of p,
are computed directly or computing those o f c; a t  f i r s t  and then
applying the Cartan formula to  the second equation o f ( 2 .  3 ) .  The
results are stated as follows.

(4.3) ( i)  2 1 p i= —  Pi —  g , g212p1_

(ii) 2 1 P 2 =  p 2  p 3 , 2 2  P 2 =  —  p + P2 p ,

.T3pz=P4p,+ P3 P2 - P3 g— A A , 24g= g .
(iii) g1p3= P4 -  p3pi, g-P3= —p4p1 —p3p2+p3 p ,.

g-p3= P4 P2 - A —P3 P 2  , .T4p3  =P4P3—  gpi+ P3 g ,
23.1,3= —g+ P4 P3 pi— P4g — g P2 -T 6P 3 =  A •

(iv) g-p4= — p4pi g-)2p4 = — P4 P2 + P4 g ,
g 3P4 P4 P3 P4 P2 p i 7 g 3 4 P 4 g  P4 P3 pi+ P4g,
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gm P4= — API —  P4 P3 P2 , - A P2 ± P4

g-p4= pj3, gD8p4 p34 .

Then the reduced powers of the generators p i ,  fi, fi5, fi9, P i z  can
be computed by use of the Cartan formula. By sequences of many
routine computations we have the following

Proposition 4. 2.

(I) —P2 +PT , g i p s =  N A ,  gnii5=0 ,
gips=  —  g  a n d  fl'ifi 4 2 =0.

(ii) g 3P4=0, 2 3P2= P5 g3ps= P 5 ( P 2  +  PD P1 7
g5p9= P12 (  P U P I +  p) Cps+  pp,

g A P12 = P12  (ps -1-A) p i .
(iii) 2 9p 1 = _D A= 0,

g' 9P5 = P12 ( P2  +  PD  +P9P5+ poNpi + p's2 (— LA+ pspT),
-g3 9  = —  Pis pspi+ fiis(MpT+ P7) —  N+ PoPs(NA  + pn

— Ps(M - 1- - P1) 2Pi +j5 ( +  (ps + p) 2,
fi" pis = -p.fip-p.p5(y2+p2A.- pl)— p12(N+pp 2 p1.

For t = 1, 3,9 and for i = 1, 2, 5, 9, 12, denote by

(4. 3) 2` (p i)  =f  .(P ' Ps, P9  p is), (p i=  Pi)

the formulas of the above proposition. By the naturality of 2 ',  the
difference

g p t  (X ii) - ft,i (X4, X8, X20, X36/ X48)

vanishes under p*. Kerp* =Kerp* can be read off b y  (3 . 7 ) . Then
we have

Corollary. 4. 3. ( i )  T he f orm ulas in  Theorem  I I  hold f o r
aD1 (x 4 ) , (x 9 ), ( x 2 0 )  (x 3 9 ), ( x 4 )  ,  g 3 (x8) ,

 f 3

 (x20) , gp 3 (x36)
g '( x 4 ), gm (x 8) and  g 9 (x48)•

( ii)  For some coefficients a,b ,c ,d E Z 3 the follow ing relations
hold:

21 (x 4 8 ) = a- 46,
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g ) 3 (x4 8 ) = — x 48(x 8+x 0x 4+b•x 28x 25x 9,

g p9 (X 2 0 ) = f9 ,5  (X4 , X9 , X20, X36, X48 ) C • X26 X21 X9

and -T 9 (X 3 6 ) — f9 ,9  (X4 , X8 , X20, X36, X49 ) d • XL X20 •

5. Proof o f Theorems II and III

By Theorem I and (3. 7)

H"(B F4 ; 0
for n = 5, 13, 17, 18, 22, 27, 33, 37, 38, 41, 42, 49, 50,

thus the following trivialities follow.

(5. 1) X9 X4 = X9 X8  = X
=
= X22 X8 = X21 X29

 =
X 1  =  4

 = 0.

(5. 2) 8x4= ax 2 1 =ax2 9 =ax 3 9 =ax4 s = 0.

(5. 3) 9D1(x9) =0, g- ) 3 (x21) = g3 (x25) =2 3 ( x 2 9 )
 = 0.

P ro o f  o f  T h e o re m  I I .  We choose th e  generators x s , x21, x25
and x26 such that they satisfy the equalities of Lemma 4. 1. g ' 1 x4
= — x8 + x34 by Corollary 4 . 3 ,  ( i ) .  Then, by (5. 2),

x9 = — 89Dix4= (X 8 —  x) =ax s a n d  x .= —  gD'agpi x4= 2 3 x s .

9) 3 x 8 = x 2 , — .4x4 by Corollary 4 . 3 ,  ( i )  an d  .T2 x 4 = x 3
4 , .Œ°X 9 = 0 by

dimensional reasons. By Cartan formula, g 3 x 3
4 = (x 9 — 4).4. By (5. 1)

and (5. 2), ag 3.4= 0  and a(4x4) = 0 .  Then, by use of Adem relation
2 3 a g i  =  a g 3 2 1 ,  we have

x21= — 23a.g)ix4= —  ag".T i x4= a(23 (.x8—  x2 )  =ax 2 0 .

We have proved

(5. 4) 8x8— X9, a X 2 0  =  X 2 1 8 X 2 5  —  X 2 9 , g )I (X 2 1 ) —  X 2 5

.T 3 (x 9 ) =X21 a n d  2 9 (x ,)= 0.

By Adem relations g" .1)1 g 3 = — RD' and g)lag) 1 1 '3 =ag ) 5  +.T 5 (7, we
have ..T1 x25=_ÇPTD1 g ) 3 x 9 = — gD5 x 9 = 0  an d  .Dx2 9 — gD1 ag) 1 2 3 ax 9 =8gD5 x 9

=0, i.e.,

(5. 5) gD1(x25) = (x29) =0.
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By 9 P 1 = — g' 2 , (5 .5 )  and (5.3) imply g 2x 9 = gD2 x25 = g) 2 x26= O.
Then, by Cartan formula we have

(5. 5)' 9)3(x9 = x 2 i f + x 9 g '( f ) ,  g " ( x 2 5 f ) = x 2 5 P 3 ( f )

a n d  g 3 (x26 f) = x26 g ) 3 ( f ) •

For example, applying (5 . 5)' to the relations x 9 x4= x 9 x 8 = x2 5 x 8

=0 we have

(5.6)X 2 1  X4-= 0, X 2 1  X 8 X20 X 8  a n d  X25 X20 - 0.

Since ô and g "  are derivative, we have

0 -8 (x 2 5  X8) - X26 X8 - X25 X9

o = 8(x2 5 X20) - X26 X20 X 2 5  x21,

0  = - gp i  (X21 X4) = X25 X4 +  X 2 1  -  X8 + X 24) = X25 X4 - X21 X8

and 0 = a (x25 xi — X21 X8) = X26 X4 ± X21 X9

Therefore

(5. 7) X25 X4 - X 2 0
 x 5 ,

 X 2 0  XI -  X21 X6 X26 X8 - X25 X9

a n d  X25 X21 = X26 X20 •

Finally consider the difference

XL -  (X48 Xg + X36 x -  XL x: x4)

which vanishes by p* since the relation r 1 5 ==0 holds. By (3. 7) the
kernel of p *  for degree 60 is generated by x 2 6 x2 5 x 9 . Let the differ-

ence be e•xu x,,x, for some e G  Z3 . Then  w e have

0 = 8(4) = x21 x29.4 X4 + XL X9 X8 X4 + e • 4  x 9 = e 4  x 9 .

It follows e = 0 and the relation

(5.8)4  = X48 X34 + X36 Xg - XL Xg X4 .

Consequently, (5. 1), (5. 6), (5. 7) and (5 . 8 ) cover all th e  re-
lations of Theorem II, and by use of the relations each polynomial of
the generators can be written in  a  form o f Theorem I. Note the
following relations:
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(5 . 7) '4 8  x 8 =  x 2 8 4 0 = 0 .

The proof o f Lemma 3 . 1  and the relation (5 . 8 )  show the last
half of Theorem II.

Proof  o f  Theorem  III. First we shall prove

(5. 9) b = 0  and d = 0 i n  Corollary  4 . 3 , ( i i) .

By A dem  relation g ) 2 893 1  a g ) 3  — g3a,

agax 4 8  = g 2ag) 1  x48+ T 38 x  = ag ) 2 8 4  0.

On the other hand,

agn x 4 8  — a ( — X 4 8  (X 8  ±  4 ) X 4  ±  b. X26 X25 X9)

= — x4 8 x , x 4 + b • 48 x 0 =b- 48 x8 .

It follows that b= 0. Similarly, using Adem relation g386.T1 ag) 9  — 29 a
and computing ( f  9 ,o (x8, x 8 , x28, x38, x48)) = 0 , we have

0  g 3 8  (x21 x20 ) = g3 8 8(—  x L ) gm ag ) t x 36 = 829 x 36
— .3(1. 9 ) + d .  (xL xio) — d • el6 X21 ,

and d = 0.

Next we shall prove

(5 .1 0 ) -Œ 9  (X 2 1 )  -  X 4 9  X 9  +  X 3 3  x 2 1
 

9)9  (X25 ) - X36 X25  XL X9

a n d  g ) 9  (x26) = x36 x26.

Since 2 1 x20 = 0 , A d e m  relation 2 88T 1 = 8.T° —  g"a implies .Dx21
—.Œ9 a .x20-8 .D x20-6 (f9 ,5 )+ c• (X26 X21 X9) - a(f9,5), and 8 (f9 ,5 )—  X48 X9

± X36 X21 by ( 5 .  1 ) ,  ( 5 .  2 ) ,  ( 5 .  4 ) .  Thus the first formula is proved.
Since gm x2, = 0 ,  A d e m  relation .T 9 g) 1  — g)13)9 = g)3.1'4g33

implies

.TDX25 - .OE 9 2 1 X 2 1  - .g) 1 .g ) 9 X 2 1  -  -T 1 (  X 4 8  X 9  ±  X 3 6  X 2 1 )

=  a • 48 x9— x  +  x  x.o„ 21 -  3 6  -  2 5  =  a- x•226 X9 + X36 X25 •

The coefficient a  will be fixed in later.
Since g ' i x25= 0, A dem  relation g ' 8 8.T 1 -----(32 9 —.T9 8  implies

g ) 9 x 2 6  — g) 9 8X 2 5  8 g ) 9 X25 — ô (X36 X25 a • 48 X 9 ) -  X 3 6  x26,
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and the last formula of (5. 10).
Finally we shall prove

(5. 11) a = 1  and c = 1  in  Corollary 4. 3, (ii).

By Adem relation g ' 1 3 = g ) 1 2 3g 9 - 2 4 .T 8 g ) 1 , (5 . 5), (5 . 5)' (5 . 6)
and by (5.7)

X 23 6 = g)13x„=g)1232°.x2,—  gmg'g'lx26
= 2 1 gA  (X36 x 2 6 )  =  g l  ( gD 3  (X36) x 2 6 )

= g p i  (X 48 x 2 6  +  x 3 6  (x 8  +  x )  X 2 1  X9 ± XL (x 2 5  X 9  x 2 1  x 9  x l )

= 2 1 (x4, x 26) a • xL .

Therefore a=1. A lso we have, by Adem relation g '" =

= g' 1 0 x 2 0  = g' i g 9 x20= gl (f 9,5+ c. x.6 x.i xo)
(— x. + —  x 4. x 34— 4— xg x 4 — x., x,33
+ (x. x  4 (—  x.+ + x. (— x 34)) + c x26 x25 x,

= (c —1) x 2, x„ x,— x4, x34— xa, A— 4 +  4  4  x  .

Then by use of the relation (5 .8 ) w e  have (c-1)x26x25x9 = 0 , and
c= 1.

Consequently all the relations in Theorem III are established by
Corollary 4. 3, (5. 3), (5. 4), (5. 5), (5. 9),  (5.10) and  (5.11).
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