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1. Introduction and the statement of the results

Let F, be the compact simply connected exceptional Lie group
of rank 4. The mod p cohomology rings are known [3]:

H*(Fy; Z,) =2, 1%:] / (23) QR A(SG* %, %15, S@°%15),
(1.1) H*(Fy; Z,)=Z,[6Px5) /] (6P x5)*)
QRA(xs, P'xy, X141, P'%11),
H*(Fy; Z,) = A(%s, X1, %15, X23)  for p=>5,
where x,€ H'.
For the classifying space BF, of F,, its mod p cohomology ring
is known except the case p=3:

H*(BFy; Z,) = Z, %4, Sq* %4, Sq*%4, %16, Sq°%16]

H*(BF,; Z,)=Z,[%4, %15, X15, X24] Sfor p=5.
These results are consequences of (1.1) by applying Borel’s
transgression theorems [2] to the universal Fy-bundle over BF,. For
the case p=23, however, it seems very difficult to determine H* (BF,;

Z,) directly from (1.1) because the element x, € H"(BF,; Z;) is
not transgressive and there is a relation [1] of Araki

X4 (891x4) =0

for the transgression image x,& H*(BFy; Z;) of x;.
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The purpose of the present paper is to determine the structure
of H*(BF,; Z;) by use of the bundle

(1.2)  II— BSpin(9)->BF,
where IT=F,/Spin(9) is the Cayley plane.
Let T be a maximal torus of Spin(9)CF, and let ¢(G) be the

Weyl group of G for G=Spin(9), =F,;. As is well-known [2] the
natural map p : BT—BG induces a homomorphism
(1.3) o* : H¥*(BG; Z,)—H*(BT; Z,)
such that the image of p* is contained in the subalgebra H*(BT;
Za)a’(‘;) which consists of the elements invariant under the action of
0(6).

For G=8pin(9), ¢* is injective and the image coincides with
the invariant subalgebra which is a polynomial algebra on the
Pontrjagin classes p;= H*. Thus we may identify as follows.

H*(BSpin(9); Z,) =H*(BT; Z;)*S*"OD=Z,[ p, ps, ps, p].
First we shall determine H*(BT,; Z)®®) which is a subalgebra
of Z,[ps, Ps, bs, P1), and the result (Lemma 2.1) is

H*(BT,; Z)YO=Z,[p,, D2, Ps, Doy il / (715)
where
p=p.—Pi, Ds=psp1+ Ds b,
Do=Di— Daps Di+ D3 Pop1— DaD2 11,
Dre=Dpi+ piDi+ pap:
and 7‘15=P—g+ﬁgﬁ§p1“‘13121:’?—159‘53.
Then by use of the cohomology spectral sequence associated with
the bundle (1.2) we have the following

Theorem 1. There exist elements x, = H'(BF,; Z;) for i=4,8,
9, 20, 21, 25, 26, 36, 48 such that
o*(x) =ps, 0* (%) =Dz, 0™ (X20) =Ps, p*(%36) = P_s, p* (X4s) = D12

and that by means of cup-product we have an additive isomorphism
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Zy [ X4, X1s) ®CgH* (BF4; Z,)
for
C=2Z,[x4, x5] @ {1, X0, X3} + A(X) R Z;5 [%26] @ {1, X0, X21, X5}
where two terms of C has the intersection {1, %:}. Thus the kernel
of p* is the ideal generated by Xy, X», X»5 and Xs.

In order to determine the ring structure of H*(BF.; Z;) we
shall prove the non-triviality of 0*0%'x, (Lemma 4.1). Then the
ring structure is determined by the following

Theorem II. We can choose the genmervators x: in Theorem I
such that x,=0Xs, Xoy=0%Xs, Xus=P'%y and X,=0x5. Then the
relations in H*(BF,; Z;) ave generated by the following ones:

Ko Xy= Xy Xg= X5 = X1 X1 = Xa5 X5 = X1 K20 = X1 = X5 X0 = X5 =0,
X1 Xg=Xos Xa = — X0 Xy, Xog Xa= — X21 Xy,
KXo Xg = Xo5 Xy, Xos Xa1 = Xog X20
and  Xh= X Xi+ X Xs— X X5 X4,
Thus the homomor phism p* maps the subalgebra Z,[x,, s, X35, X4s)

@ {1, 220, x5} generated by xi, Xs, X2, X, X iSOmorphically onto
the invariant subalgebra H* (BT; Z;)°T.

Finally we shall determine the reduced power operations. By
means of Cartan formula and Adem relations and by dimensional
reasons, it is sufficient to determine the values of %!, % and &° for
the generators, and the results are stated as follows.

Theorem III.
(1) LP'(x) =L (%20) = P (25) = P (%) =0,

P(xy) = — x5+ 21, P(Xs) = Xs X4,
Ql(xu) = X5, @l(xss) = _xzo
and P(%45) = X3,

(i) P(x0) =P (K1) = P*(x25) =P(x5) =0,
P(Xs) = X20— X3 X, P2(x9) = %Xa1,
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PP (X20) = Ko (— 25+ 2D %4,
P3(%30) = Xag— Xag(Xa+ 22) X4+ 2% (x5 + 22)

and P (%45) = — Xas(Xs+ 2D X4

(i) P(x) = P (x5) = P () =0,
P(X20) = (Xag+ X5 %) (— Xs+ X3) + X (Koo + X2 %) + Xag K21 X,
P(Xp1) = — Xag Xo+ Xas X1,
PO (Ks5) = Xag Xos— X6 Xo,
PO(K26) = X6 Xz,
PO(K36) = — Xas Xz Xa+ Xas(Xa+ x8) X3 — K36+ Xao Koo (X + 22) &2
— Xae (X5 + x0) °xa+ 2% x5 (X3 + (X + 232 20)

and PO(K1g) = — Xag X+ Xag Koo (— X5 — X X3+ x1) — Xus (X3 + D)% %4,

Recently, N. Shimada has shown that E,term Cotor#*(Fs Zs)
(Z;, Z,) of Eilenberg-Moore spectral sequence converging to H* (BF,;
Z;) is additively isomorphic to H*(BF,; Z;). Thus the spectral
sequence collapses.

Theorem I will be proved in section 3 after determining the
invariant subalgebra H*(BT; Z)°®) in section 2. Theorems II and
III will be proved in section 5 by auxiliary computations of cohomology

operations in section 4.

2. Mod 3 invariant forms

Let T’ be the usual maximal torus of SO(9), then H*(BT’)
=Z [t t;, ts, ta] for canonical generators #;& H* and the Weyl group
0(SO0(9)) of SO(9) acts on H*(BT’) as the permutations of #; and
the changements of the signs of #;. Take a maximal torus T of
Spin(9) as the inverse image of T’ under the universal covering
Spin(9)—S0(9). Denote by the same symbol ¢, H*(BT) the image
of ¢; under the natural homomorphism H*(BT’)—H*(BT). Then
H*(BT)=2Z[t, 1., t3, t.] (¢1/2) =Z [t4, 2, t5,¢1/2] and the action of
o(Spin(9)) is same as 0#(SO(9)), where ¢,=1,+t,+t5+ 14,

Let p be an odd prime, then H*(BT; Z,)=Z,[t, {,, t;, ts] and
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(2' 1) H*(BT; Zp)@(Spin(Q))zzp[pb pz; ps, p4]

where p,€ H* stands for the i-th elementary symmetric function on
#, that is,

4 4
Zop,'x%:}n(l+t?x2), po:]..
i= =1
According to the section 19 of [4] we choose Spin(9) as a sub-
group of F, such that F,/Spin(9) is the Cayley plane II. Then the

Weyl group 0(F,) of F, is generated by #(Spin(9)) and an element
R which acts as the reflection to the plane ¢+ {,+#;+£,=0, that is,

R(t;):ti—(cl/Z), i=1,2, 3, 4.
Now we discuss in Z;-coefficient. Then

2.2) H*[BT; Z)®Y =Zy[ py, ps, Do, 03] N Zs b, 1o, £, 4]
and R(t,) :t,'_l‘cl.

Let ¢: be the i-th elementary symmetric function on #;, that is,
Sex=T1{1+¢;x), =1,

then we have easily

2.3) R(H=3X (4;j)c,d and p.:jZ (=D™¢;c.

j+k=i Fk=2i

From these relations it follows directly

2.4) R(p)=p, R(p:)=p. for p.=p.—pi,
R(ps)=ps—popr—capr, R(cs)=—cCut P
and R(P4)=P4+p_§+c4ﬁz.
Put

gs=p:+cispr and Q4=P4—C4P_2
then it follows from (2.4)
(2.5) b1, P2, qs and q. arve invariant under R.

First we prove

Lemma 2.1. The invariant subalgebra H*(BT; Z,)°T is
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generated by the elements pi, Ds, Ps=psDi+DsP2, Do=1Di— pabshi
+PEpapr— DD and Pr=pit+ pipi+ pups having the only relation
715:§§+ﬁgp_gpl_ﬁlzﬁi_[;sﬁg. Thus
H* (B T; Za)m(F‘)zza [171, ‘52, .55, 59, p_lz] /(7’15)-
Proof. An arbitrary element f of Zi[py, po, ps, €], pa=ci, is
written uniquely in a form
f:f0+c4f1 fOI' fo,flezﬁ[phﬁbq&q'l]'
If f is invariant: R(f)=f, then it follows from (2.4) and (2.5)
2(cs+P2)f1=0 hence f;=0.
Thus we have Z;[ 1, P2, Ds, € ¥ =Z; [ P4, P2, G5, ¢s], and by (2.2)
(2.6) H*(BT; Z;)* 0 =2, pe, s, D) N Zs [ 1, P2, G5, 44,

The generators of the lemma are invariant since ps=¢ipi+qsp.,
Po=@+ @2 p.p1—quqs P} and pr.=qi+qipi. The relation 71;=0 is directly
checked. Thus

Zy[ D1, P, Bs, Bo Pre) / (r1s) CH*(BT; Z3)".

On the other hand, an arbitrary element f of Z;[p,, ps, ¢s, qs] is

written uniquely in a form
f=g+ch  for g hEZi[ps, po, b3, P4,
and also f and % are written uniquely in forms
f=24§(11fiiv hzngpihfi (,7=0,1,2)
for some fij, h:;;€ Z3 [ P4, D2, Do, P12]. Then we have
how=p1f10— P2 fu, hoi= D1 frut Do foo— Do Pl for+Pipi fre

h10=_p1f20—152f11, h02=p1f12+152p?f22,

h20= —p_zle and Ry = —p1fzz-
If f belongs to Zs|p1, ps, Ds, ps] then h=0, and kh;;=0. It follows
that fi,=fu=/f22=0 and that there exist g, £:EZs[p1, P2, Po, D12
such that fu=pi1g, fu=p:81, fee=0i, fu=—ppg and fu
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=pig.. Thus f=g+psg1+Pig:, and the lemma is proved by (2.6).
Consider the following ideals A’ and A” of H*(BT; Z;)®®":

@.7 A= (D1, ﬁz, 133) and A'= (ﬂ?, Iszplv ﬁg, 551)1, 155152, 152).

The following lemma will be necessary in the next section.

Lemma 2.2. Z,[p, p., Ps, sl is additively isomorphic to the
direct sum of H*(BT; Z;)°™, s*A’ and s“A” where s' increases
the dgree by t(=8 or 16).

Proof. The Poincaré polynomials of the three direct summands
are

P=0Q+2"+2")A—2)"A—2)7"A—2)TA—2®)7,
Po=x*(P—(A+x*)(1—x*)1(1—x%)™)
and Py=x(P,— A+ 4+ 2+ 2) A —2*) ' A —2®)™).
Then P+ P+ P=(1—x")"'A—2)*1—2*)'Q—x")"" is the Poin-
caré polynomial of Z;[pi, p., bs, ps], and the lemma follows.

3. Proof of Theorem I.

The natural map p : BT—BF, is the composition of the natural
map p: BT—BSpin(9) and the projection p of the bundle (1.2).
Under the identification

H*(BT; Z,)**O) = H*(BSpin(9); Zs) =Zs [ s, D2, s, Ds],
it follows from Lemma 2.1
(3.1)  Imp*CZ;[p1, P2, Ps, Do, Pl / (715) TZs [ b1, D2, D, Dsl
for p* . H*(BF,.; Z;)—>H*(BSpin(9); Z,).

Denote by (EF*) the mod 3 cohomology spectral sequence
associated with the fibering (1.2). Let w be a generator of H®(II;
Z,). Then the spectral sequence satisfies the following properties:

E;'*=H*(BF4; Z3)®{19 w; wz}y
EX*=Er*+EX*+Er®  (r=2,3, -, 00),
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s*=Ef+*, HE$*)=Ey*=Ef*, HER*) =Es*=EL*,
E:.O:-_:vD*,O’ E::,S;D*,S/D*,O, E:.lG__»:D*,lG/D*,s
for Imp*=D*°cD*tcD**=H*(BSpin(9); Z;).

Let x,= H°(BF,; Z;) be the transgression image of w, then the
differential d, in E¥* is given by
(3.2)  dy(b®1)=0, ds(bQw) =b-x,&1

and dy(bQuw*) =—b-xQw  for be H*(BF.; Z,).
We shall discuss the following assertions.
(8.3) (i) There exist x,c H.(BF.; Z,) for i=4,8,20, 36,48
such that
P*(x) =01, p*(xe) =P, DP*(X20)=p5, DP*(Xs0) =Ds
and p*(x«;s):l;u-
(i) 2.Qw, xQw, 2HQw, XX RQU’, Xnx:Qw® and
x0Qu? are permanent cycles.

(3.2) implies

(3.4)  %,2:=0 and x,%,=0 provided the assertion (3.3), (ii)
for x.Quw and xQw respectively.

Obviously x:=0. By (3.2), 2.Qw’, x:Qw* and x,Qu* are dy
cycles, and we can define elements x,€ H'(BF:; Z;) for i=21, 25
and 26 by
(3 5) x21®1=d17(x4®w2), x25®1=d17(xs®w2)

and %61 =d (2 Qw").

First we prove the following

Lemma 3.1. If the assertion (3.3) holds for total degree<n,
then Theorem I holds for degree<m.

Proof. The following discussions are considered for total degree
<mn. Consider subgroups A, A’ and A” of H*(BF,; Z;) which are
given by
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A=Z;[%4, Xs, X35, X13) Q {1, X2, X3}
A=A—2Z, [xae, Xas) ® {1, K20}
and A=A —Z;[ %50, %4s) @ {Xs, X5} .

By (3.3), (i) and (3.1), we see that Imp*=p*(A4), p* is in-

jective on A, and in the spectral sequence AQ1 is not bounded and
AR1=FE¥*" (for x <n).

A'Qu is the product of A®1 and {x,.Qw, x:Qw, x%Qw}. It
follows from (3.3), (ii) that A’‘®w is permanent cycle. Similarly
A"Qu? is permanent cycle by (3.3), (ii) and by that xiQu* (and
% 2:Qu?, xXQw?) are permanent cycles if x,@w (and xQw) are so.
Obviously A”®@u? is not bounded. Thus we have an inclusion

A'QurcC EX (x+16 <n).

Assume that aQwe A’ Qw is bounded. Then, by (3.2), a=
—b-x, for some b, and p*(a)=0 by p*(x,)=0. Since p* is injective
on A’C A, we have that A’®w is not bounded and

AQwc EX*® (x+8 <n).

H*(BSpin(9); Z;) =Z;[ ps, p», Ds, ps] is additively isomorphic to
the direct sum of E*°, E*®® and EX ', The three direct summands
of Lemma 2.2 is isomorphic to AR1, A/ Qw and A”X@uw* respectively.
Then it follows from Lemma 2.2 the equalities

(3.6) AR1=E%", AQw=E¥** and A'Qw=E%"
for total degree<m.

Now we assume that Theorem I is true for degree <<z, and
compute dy and Ey,=FE,,=H(E,) by (3.2) and (3.4). Then we
have

E;t7—17.16: (A//+B//>n—]7®w2

for B" =723, 5] Q [ {%4, xs} + Z; [%20] @ {%s, X20 X0, X21 Xo, K25 Xo} ]
and Imd,(in E5°)=E;>%/(d, E;7*"*DA' Qw) = (B" )" *Qw
for B'=2Z3 (%2, X6, X4s] Q {1, X20, X21, Xas}.
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By the properties of the spectral sequence we have exact

sequences
0—(B")"*Z>H"(BF,; Z;)—E}'—0
and 0—>(B")y~"E5 En—s(A4)"—0,

where g is given by d(bQw*) =g(b)X1. By (3.5)

g(B"YDB’ - x9=2Z3 X5, X0, K15
& {x5, X21, K25, Xog, X20 X9, X21 Xo, Xas Lo, K26 Koo}

and H*(BF,; Z;) is additively isomorphic to A@g(B")PB’ - x,.
This shows the first statement Z;[xs, X1l QC=H*(BF,; Z;) of
Theorem I. Obviously the generators x,, X.:1, X and X, Vvanishes
under p*. Thus the ideal generated by these elements is contained
in the kernel of p*. The kernel contains g(B”)@B’-x,. Since p*
is injective on A, we have that the kernel of p* coincides with the
ideal. Consequently the lemma is proved by induction on n. We

have also proved

(3. 7) Ker()* =27 [xz(‘,, X316, x4s]
& {X9, K21, Xas, Xag, K20 Ko, K21 Xo, Xa5 Koy Xag Xao} .

Next we shall prove (3.3) by dividing into three steps.

Lemma 3.2. (3.3) holds for total degree<<35. By a suitable
choice of the gemerator w, p, and p, represent —x,Qw and x,Qw
respectively.

Proof. The existence of x, is very easy. By (3.1)
p*(le(BF4; Zz)) =D12'0C {152171, p?}'

Then E%*=D**/D™°= H?(BSpin(9); Z;)/D™"° contains non-trivial
class of p;. Since E3* has only one generator x,Qw, Ei*=E%4®
and —x,Qw is a permanent cycle represented by p; mod {p.py, pi},
by changing the sign of w if it is necessary.

Next assume that p. is not a p*-image. Then as above, p,
represents 1®@w mod D*°, up to sign. So, p.p: represents x,Quw
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mod D'*°= {p,p,, p}} which contradicts to the above result. There-
fore p. is a p*-image, and the existence of x; follows.

Now, as in the proof of the previous lemma, D*°=(A4)* and
H*(BSpin(9); Z;)/D*°= {p, psps}. Since d,(1Quw*) = —x,Qu+0,
we have E%°=0, H*(BSpin(9); Z;) =D*® and E%*=D**/D"*"= {p,,
psp}. On the other hand, E3*= {x,Qw, xiQw} and p;p, represents
—22Quw. It follows that x:Xw is a permanent cycle and that p.
represents (sx;+tx)Q@w for some s, teZs.

Finally, p.p, and —spsp.,—tp;p} represent the same element
(Sxs X+t 2)Q@w mod D¥°.  Thus papi+spsp+ipspi belongs to
Imp*. By (3.1) we have s=1, t=0, and that p, represents x,Quw,
and also the existence of %, such that p*Xso=pip1+ psp.=pDs.

Consequently, (3.3) is proved for total degree<(35.

Lemma 3.3. (3.3) holds for total degree n<<43 and n=48.

Proof. Consider the discussions in the proof of Lemma 3.1 for
the cases 7=36, 40, 48. Then we see E2"CH'(BT; Z,)°®, Eis
c(A)"*Quw=E}s*® and ES""*cC(A")" "Qu*=Eij;**. It follows
from Lemma 2. 2 that the equalities hold in the above three inclusions.
This proves (3.3).

Lemma 3.4. (8.3) holds for all degree.

Proof. The proof of the above lemma valids for the cases n=44
and #=>56 provided that d, is injective on (A—A")"*Q@w, that is,
dy(x36@Qw) #0 and dy(xQw) #0.

Assume that dy(x::Qw) =0, then 2, Qw is a permanent cycle
and represented by an element f€ H*(BSpin(9); Z;). Since x5 2.Qw
is represented by both of fp, and —pops, fDi+ popsEImp*. The
coefficient of p; in fp,+psps is 1, but such an element is not con-
tained in Imp* C Z; [ py, P2, Ds, Do, P12 / (715). Thus we have d,(x:,&Qw)
#0. Similarly d,(x:QQw) #0.

Consequently we have proved all the assertions of (3. 3).
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Proof of Theorem I. By Lemma 3.4, (3.3) holds. Then Lemma
3.1 implies Theorem I.

Remark. We have insisted to prove Theorem I without use of
cohomology operations. The use of cohomology operations simplifies
the proof of the theorem as follows. The existence of x, implies the
existence of x; and X, by use of ¢! and P*P'. The existence of
X3 implies that of x4, by use of &° The assertions in (3.3), (ii)
are equivalent to Xy X=Xy Xs=20%,=0 and Xs; X20=X25%:0=0 mod (x,)
except the last assertion for x%@w?. Then the first relation x,%,=0
implies the others by applying suitable coholomogy operations as is

seen in section 5.

4. Cohomology operations

In the first half of this section we shall prove the following

Lemma 4.1. For a generator x, of H,(BF,; Zs) we have, up
to sign, Xy=—0P'%s, Xu=—PNOP'xy, Xo05=P% and Xy=0%Xy—
— 0P P x,.

Proof. Let BF, be a 4-connective fibre space over BF,. BF,
is a fibre of a fibering

(4.1) BF,—>BF,—K(Z,4).

Let F, be the loop space of BF,. Since F, is equivalent to the
loop space of BF,, we see that F, is a 3-connective fibre space over
F,. The coholomogy of F, was computed in [8: Th. 2.5] and the
result is

H*(Fi; Z:) = Z:[95) @411, P'y1, 8915, P10Y1s).
Consider a contractible fibering over BF, with a fibre F,. By

dimensional reasons, ¥y; and y;s are transgressive. Let y;, and ¥, be
transgression images of y;; and s respectively. Then we have

(4.2) The natural homomorphism Z;[Yiz, P 1z, 6Y10, P0Y15]
®A(y19)—>H*(B’F4; Z)) is bijective for degree< 54,
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This can be proved by use of the comparision theorem [10], but
we need (4.2) only for degree<<26 and whence (4.2) is an easy
exercise of spectral sequence.

Now let (E}¥*) be the mod 3 cohomology spectral sequence
associated with the fibering (4.1) converging to H*(BF,; Z;) and
having

Ef*=H*(Z,4; Z,)QH*(BF,; Zy),
where, by [6] for ues H*,

H*(Z,4; Z;) =Z;\u, Pu, PPu, sPoPu, -]
RA(6P U, 0P P u, PoPu, --+).

By checking the degrees, we see that E3** =0 unless s=26, and
E? is generated by dP*%0%P'uR1. On the other hand H*(BF,; Z;)
is generated by x,, by Theorem I. This shows that up to sign
Xy is the image 0P%0P'x, of dP*%0%Pu. It follows that 6PoP'x,
=0P (PP x,) #0, P*0P* x,#0 and 6%'x,#0. By Theorem I,
H'(BF,; Z;) has only one generator x; for =9, 21, 25, 26. There-
fore the lemma is proved.

Next we compute the reduced power operations in H*(BT;
Z)°®) by means of the methods in [5]. The reduced powers of p;
are computed directly or computing those of ¢; at first and then
applying the Cartan formula to the second equation of (2.3). The
results are stated as follows.

4.3) @ LPipy=—p.—pi, szlzpf.
(i) LPp.=—p.p1, Ppo=—pit+ p.pi,
Lopr=pap1+ pspo— s pi—Dipr, L'p=1i.
(iii) P'ps=pi—psbs, Ppy=—pspr— ps P+ Ds 1,

LPpy=pspr—ps—Ds D1, L'ps=paps— psp1+ Psbi,
Popy= —pitDPspspr—Dpus—DiDs,  Pps=15.

(v) Ppu=—paps, Ppy=—pupr+ pai,
Pps= —paps— Ds2 D1, Pps= —pi—Psps P+ pui,
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@5124: “Piﬁl‘ﬁd’a?m 96174= —p§p2+p4p§,
Ppy=—pips, Pep.= pi.
Then the reduced powers of the generators pi, Ps, Ps, Do, Prz can
be computed by use of the Cartan formula. By sequences of many
routine computations we have the following

Proposition 4. 2.
() Ppi=—p.+pi, Lh=pp, LPPps=0,
le_gz —ﬁ: and fl’lﬁlz=0.
(i) Pp=0, Ppho=ps—pip1, L°ps=ps(—p.+ DD,
Ppo=p1s+ (—popr+ p3) (2 + D),
@31‘312: _1312(152 + P?)Pl
(iii) P°p, =P, =0,
Pops=pro(— potpD) + PoPs+ Popipr+ pi(— Pi+ P2 ),
Phy= —PraPspr+ P12 (Pii+ D) — s+ Po s (D2 1+ P1)
—Do(Di+ Db+ P3P+ (Pt D D),
Poprz= —Pr2Po— P12 ps(Pi+ o p1— P1) — Pro(Pa+ D) Ps.
For t=1,3,9 and for i=1,2,5,9,12, denote by
(4' 3) g‘)‘(p-x) :ft.i(plv p_2v [35) 139» 512)’ (5121'71)

the formulas of the above proposition. By the naturality of &, the
difference

P (x4:) _‘fz,i(xA, Xs, X20, X3, Xag)

vanishes under p*. Kerp*=Kerp* can be read off by (3.7). Then
we have

Corollary. 4.3. (i) The formulas in Theorem II hold for
P (x), P (%), P'(x20), P'(Xs6), LP*(x0), P*(x5), P*(%20), P*(¥ss),
P(x1), P (x5) and P°(%4s).
(ii) For some coefficients a, b, c,dEZ; the following relations
hold :
P (x4) =a- x5,



Cohomology mod 3 of the classifying space BF, 111

PP(X4g) = — Xag (Xs+ XD Xa+ b+ X2 K25 X,
P (%20) :f9,5<x4, Xs, K20, Xag, Xag) & C* Xag X1 X,
and P (K35) =f0.0(Xa, Xs, X0, Xy, Xag) +d - K26 Xa0.

5. Proof of Theorems II and III
By Theorem I and (3.7)
H"(BF,; Z;)=0
for n=5,13, 17,18, 22, 27, 33, 37, 38, 41, 42, 49, 50,

thus the following trivialities follow.

G.1) Ko Xy= Xy Xy= X3 = Xo5 Xy = X1 Xo0= X5y = X35 =0,

(5.2) 0X4==0X21=0X25 = 0X3; = 0%45=0.

(5.3) P (x9) =0, P°(K21) = P*(%25) = P*(x26) =0.

Proof of Theorem II. We choose the generators Xx,, X1, Xas
and x, such that they satisfy the equalities of Lemma 4.1. %'x,
= — x5+ x} by Corollary 4.3, (i). Then, by (5.2),

x9= —6913:4: (xg_xi) :axs and Xo1 = —@36@1x4=@3x9.

Pxg=x,—x3x, by Corollary 4.3, (i) and Px,=x}, P°x,=0 by
dimensional reasons. By Cartan formula, ¥xj= (x;—x37)xi. By (5.1)
and (5.2), 6%xi=0 and d(x3x,) =0. Then, by use of Adem relation
PP =0P*P!, we have

Xu=—PoPxy= — 0P P x,= 0L (x5 — X3) = 0%
We have proved

(5.4) 0Xs=2Xy, O0Xp=2X21, O0Xs5=Xss, gal(le) =X2s,
Po(xy) =%21 and P°(x,) =0.
By Adem relations P*'P'PP= —P5 and PP P>=oP*+ P, we
have Qixzs - g)l.CPl_(Paxg = — EPng = 0 al’ld g)lxz(; - .(‘Z)lag)lg)saxg - 6@5969
=0, ie.,

(5. 5) P (xz5> =P (xzc) =0.
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By PrPr= —gDz, (5. 5) and (5 3) 1mply ngx9=g)2xzs =g)2x26 =0.
Then, by Cartan formula we have

(5.5)' P xof)=2uf+2.P(f), P(Kasf) =25P°(f)
and @3(xzsf) =x26.@3(f).

For example, applying (5.5)" to the relations XoXy= Xy Xs=%35Xs
=0 we have

(5. 6) X21 x4=0, X21Xg= — X200 X9 and xz5xzo=0.
Since 0 and &' are derivative, we have

0:6(x25x3> szcxs_xzsxoy
0=0(%25X20) = Xg X20— Xo5 X1,
0:91(5‘213&) =x25x4+x21(_x8+x3) = Xos Xa— K21 Xg

and 025(x25 Xy— lexg) :ngx4+lex9.
Therefore
G.7 Xos Xe= —Xa Xy, XpXe= —X21X9g, XecXs=X25Xy

and  Xa5Xo1= X2 Xz0.
Finally consider the difference
X3 — (Xag X3+ K36 X5— X3 X3 Xs)

which vanishes by p* since the relation 7,;=0 holds. By (3.7) the
kernel of p* for degree 60 is generated by x.x»s%,. Let the differ-
ence be e- Xy X:5 %, for some e=Z;. Then we have

0=0(x%0) = Xo1 X0 X5 Xa + X Xo X Ko+ €+ X3 X9 =€ Xis %o
It follows e=0 and the relation
(5.8) Xho = Xag X+ X6 X5 — Ko X3 X

Consequently, (5.1), (5.6), (5.7) and (5.8) cover all the re-
lations of Theorem II, and by use of the relations each polynomial of
the generators can be written in a form of Theorem I. Note the

following relations:
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(5.7 X30 X9 = X6 X2 =0.

The proof of Lemma 3.1 and the relation (5.8) show the last
half of Theorem II.

Proof of Theorem III. First we shall prove
(5.9 b=0 and d=0 in Corollary 4.3, (ii).
By Adem relation P2P'=5P*— P,
5@3x4s = .sz&g)lx“ + @38x43 == ag)zax:je == 0.
On the other hand,
6@31?43 == 6( - x4g (xs + xf) x4 + b' xze x25 xQ)
= _X48x9x4+b'xg(;xg):b'xgexg.
It follows that b=0. Similarly, using Adem relation P3P =0P°— P%
and computing 6(fy,0 (X4, Xs, X0, X36, X15)) =0, we have
0 = -(PB (xgl xzo) = 9)83(_ xgo) = g)ssgplxgs = Bg)gxac
= 6(f9.9) +d- a(xgcxzo) =d- xzsle ,
and d=0.

Next we shall prove

(5.10) P (F21) = — Xug Ko+ Xag Koy, P° (X25) = X35 X5 — X35 Xo
and g)s (xge) = xas xz(;.

Since P'x,,=0, Adem relation PP =06P°— P°% implies P’xy
=P3320 = 0P %20=0(f0,5) + €+ 8 (%25 X21 %) = 8(fo.5), and 8(fo5) = — Xus X
+%5% by (5.1), (5.2), (5.4). Thus the first formula is proved.

Since Px,,=0, Adem relation P°P!— P1P?—= P3PT— PrPLP3
implies

Poryps =P Py =P P %y = P (— Xag Lo+ Xs X21)

= — @ X35 Xo— X0 X1+ Xgg Xos = — @ X6 Xo+ Xgo X5

The coefficient ¢ will be fixed in later.
Since P'x,;=0, Adem relation P3P =P’ — P°s implies

Pxys=P%0x,s =0P X5 =0(KX36 Xos— @~ X3 X9) = Xge X26,
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and the last formula of (5.10).
Finally we shall prove

(5.11) a=1 and c=1 in Corollary 4.3, (ii).

By Adem relation P¥=P'PP'— PPEP (5.5), (5.5) (5.6)
and by (5.7)

x5 =PVxy = P PPy — PP P xyg
=P P (35 %5) = P (P? (X30) X25)
=P (Xgg Xag+ K36 (Xs+ X5) X1 Ko+ X3 (Xa5 Xy — X1 X0 X4))
=P (K45 X05) =~ X35

Therefore a=1. Also we have, by Adem relation P?°=P'P?,

X3 =P x5 =P Pxp =P (fo,s'l‘C‘xzsxzx Xo)
= X6 (— Xs + X5) — Xag X3 — X3 — X3 X3 X4 — Xag X
+ x50 (s s (— X+ 20 + 25 (—xD)) + €+ Xos K25 %o
= (6= 1) X Xo5 Xy — Xag X3— X X§— K30+ X30 X3 X4.

Then by use of the relation (5.8) we have (c—1)2%y%%,=0, and
c=1.

Consequently all the relations in Theorem III are established by
Corollary 4.3, (5.3), (56.4), (56.5), (5.9), (5.10) and (5.11).
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