On *t*-ideals of an integral domain

To Professor Y. Akizuki for celebration of his 70th birthday

By

Toshio NISHIMURA

(Communicated by Professor Nagata, June 5, 1972)

Introduction.

In the following R will be an integral domain, and K will be the field of quotients of R. By an ideal of R, we shall mean a nonzero fractional ideal of R. If an ideal $A \subset R$, then we say that A is an *integral* ideal of R. Let A and B be ideals of R, then we shall define $A: B = \{x | x \in K, Bx \subset A\}$. In the special case where A = R, R: B is often denoted by B^{-1} , and we shall write $(B^{-1})^n$ by B^{-n} , for brevity. $(A^{-1})^{-1}$ is often denoted by A_v , and we shall define $A_t = \bigcup_{B \subset A} B_v$ where B is a finitely generated ideal. Then it is clear that $A \subset A_t \subset A_v$.

Definition. Let A be an ideal of R. If $A = A_i$, then we say that A is a *t-ideal* of R. If $A = A_v$, then we say that A is a *V-ideal* of R. If $A = A_v$ and $AA^{-1} = A$, then we say that A is an *F-ideal* of R.

If $A_t = B_t$, then we say that A is *t*-equal to B and write $A \stackrel{t}{\sim} B$. If $A^{-1} = B^{-1}$, that is, $A_v = B_v$, then we say that A is quasi-equal to B and write $A \sim B$.

In [1], K. E. Aubert has introduced the following problem.

Problem. Is a Krull ring characterized by the fact that any

of its proper t-ideals can be written as a t-product of a prime tideals?

In this paper, we shall obtain the following theorem which shows that this problem has a positive answer.

Theorem. The following three conditions are equivalent to each other:

(1) Any integral ideal A of R which is not t-equal to R satisfies a t-equality of the following type:

 $A \stackrel{t}{\sim} \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n},$

where \mathfrak{p}_i $(i=1, 2, \dots, n)$ are prime t-ideals in R and r_i $(i=1, 2, \dots, n)$ are positive integers, and \mathfrak{p}_i , r_i $(i=1, 2, \dots, n)$ are uniquely determined up to the order.

(2). Any ideal A of R satisfies a t-equality of the following type:

 $A \stackrel{t}{\sim} \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n},$

where \mathfrak{p}_i $(i=1, 2, \dots, n)$ are prime ideals in R and r_i $(i=1, 2, \dots, n)$ are integers, and \mathfrak{p}_i , r_i $(i=1, 2, \dots, n)$ are uniquely determined up to the order and factors which are t-equal to R.

(3) R is a Krull ring.

§1. *t*-ideals

Lemma 1. Let A be an ideal of R. Then $(A_t)_t = A_t$.

Proof. Let $a \in (A_t)_t$. Then there exists a finitely generated ideal B such that $B \subset A_t$ and $B_r \ni a$. Put

 $B = Rb_1 + Rb_2 + \cdots + Rb_m$, $b_i \in A_i$ $(i = 1, 2, \cdots, m)$,

then there exist finitely generated ideals B_i $(i=1, 2, \dots, m)$ such that $B_i \subset A$ and $(B_i)_v \ni b_i$. Hence

$$B \subset (B_1)_v + (B_2)_v + \dots + (B_m)_v,$$

$$B_v \subset \{(B_1)_v + (B_2)_v + \dots + (B_m)_v\}_v = (B_1 + B_2 + \dots + B_m)_v.$$

61

Since $B_1 + B_2 + \cdots + B_m$ is a finitely generated ideal, $a \in A_i$.

Lemma 2. Let A, B be ideals of R, then $A_t B_t \subset (AB)_t$.

Proof. Let $\alpha \in A_t B_t$, and

$$\alpha = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
, $a_i \in A_i$, $b_i \in B_i$ $(i = 1, 2, \dots, n)$.

Then there exist finitely generated ideals X_i , Y_i $(i=1, 2, \dots, n)$ such that $X_i \subset A$, $Y_i \subset B$, $(X_i)_v \ni a_i$, $(Y_i)_v \ni b_i$. Put

$$X = X_1 + X_2 + \dots + X_n$$
, $Y = Y_1 + Y_2 + \dots + Y_n$,

then

$$\alpha \in X_{v}Y_{v} \subset (XY)_{v} \subset (AB)_{t}.$$

Lemma 3. Let A, B, C, D be ideals of R. If $A \stackrel{t}{\sim} B$, $C \stackrel{t}{\sim} D$, then $AC \stackrel{t}{\sim} BD$.

Proof.
$$A_t = B_t$$
, $C_t = D_t$ and $A_t C_t = B_t D_t$. Hence
 $(AC)_t = (A_t C_t)_t = (B_t D_t)_t = (BD)_t$.

Proposition 1. If A is a maximal integral t-ideal of R, then A is a prime ideal.

Proof. We assume that $BC \subset A$, $B \subset A$. Then $A \subseteq A + B$ and $(A+B)_t = R$. Put $D = AC + BC = (A+B)C \subset A$. Then $D_t \supset (A+B)_t C_t = C_t$. Hence $A = A_t \supset D_t \supset C_t$. Hence $A \supset C$.

§2. Ascending chain condition

Lemma 4. Let A, B be ideals of R. If $A \stackrel{t}{\sim} B$, then $A \sim B$.

Proof.
$$A \subset A_t \subset A_v$$
. Hence $A_v = (A_t)_v = (B_t)_v = B_v$.

Lemma 5. If A is a V-ideal of R, then A is a t-ideal of R.

Proof. $A = A_v \supset A_t \supset A$.

Lemma 6. Let R satisfy the ascending chain condition for

integral V-ideals. Let A be an ideal of R, then $A_v = A_i$. If A is a t-ideal of R, then A is a V-ideal of R.

Proof. By Lemma 1 of [3], there exists a finitely generated ideal B such that $B \subset A$, $A_v = B_v$. On the other hand, it is clear that $B_t = B_v$. Hence $B_t = B_v = A_v \supset A_t \supset B_t$. Hence $A_v = A_t$. If A is a *t*-ideal of R, then $A = A_v$.

Proposition 2. The following two conditions are equivalent to each other:

(1) R satisfies the ascending chain condition for integral Videals.

(2) R satisfies the ascending chain condition for integral tideals.

Proof. It follows from Lemma 5 and Lemma 6.

Lemma 7. Let $A_1, A_2, \dots, A_n, \dots$ be t-ideals of R and $A_1 \subset A_2 \subset \dots \subset A_n \subset \dots$. Then $\bigcup A_i = A$ is a t-ideal of R.

Proof. Let B be a finitely generated ideal such that $B \subset A$. Then there exists A_m such that $B \subset A_m$. Hence $B_v = B_t \subset A_m$. Hence $B_v \subset A$.

Proposition 3. We shall introduce the following two conditions.

(1) Every integral t-ideal of R is a finite R-module.

(2) R satisfies the ascending chain condition for integral tideals.

Then $(1) \Rightarrow (2)$, but the inverse is false.

Proof. It is clear that $(1) \Rightarrow (2)$ by Lemma 7. If R satisfy the condition (2), then every *t*-ideal of R is a *V*-ideal of R. In [3], we have showed the example such that R satisfies the ascending chain condition for integral *V*-ideals, but every integral *V*-ideal of R is not

necessarily a finite R-module. Hence the condition (2) does not imply the condition (1).

§3. Theorem

The following lemmas 8, 9 are known, but we shall recall them for the reader's convenience.

Lemma 8. Let R be completely integrally closed in K and \mathfrak{p} be a prime ideal of R. If \mathfrak{p} is not quasi-equal to R, then \mathfrak{p} is a V-ideal of R and the height of \mathfrak{p} is 1.

Proof. It is clear that the height of \mathfrak{p} is 1 by Lemma 7 of [3]. Since $\mathfrak{p} \sim \mathfrak{p}_v$, $\mathfrak{p}_v \mathfrak{p}^{-1}$ and $\mathfrak{p} \mathfrak{p}^{-1}$ are integral ideals, and $\mathfrak{p} \mathfrak{p}^{-1} \sim R$. Since $\mathfrak{p}_v \mathfrak{p}^{-1} \mathfrak{p} = \mathfrak{p} \mathfrak{p}^{-1} \mathfrak{p}_v$ and $\mathfrak{p} \mathfrak{p}^{-1} \subset \mathfrak{p}$. Hence $\mathfrak{p} = \mathfrak{p}_v$.

Lemma 9. Let R be completely integrally closed in K and $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_r, \mathfrak{p}_1', \mathfrak{p}_2', \dots, \mathfrak{p}_s'$ be prime ideals in R which are not quasiequal to R. If $\mathfrak{p}_1 \mathfrak{p}_2 \dots \mathfrak{p}_r \sim \mathfrak{p}_1' \mathfrak{p}_2' \dots \mathfrak{p}_s'$, then $\mathfrak{p}_1 \mathfrak{p}_2 \dots \mathfrak{p}_r \equiv \mathfrak{p}_1' \mathfrak{p}_2' \dots \mathfrak{p}_s'$.¹⁾

Proof. By Lemma 8 of [3], there are integral ideals $A_{i\mu}$, $B_{j\nu}$ such that $\mathfrak{p}_i \sim A_{i1}A_{i2}\cdots A_{ik}$, $\mathfrak{p}'_j \sim B_{j1}B_{j2}\cdots B_{jl}$ $(i=1,2,\cdots,r; j=1,2,\cdots,s)$ and such that $\prod A_{i\mu} \equiv \prod B_{j\nu}$. By Lemma 6 of [3], $\mathfrak{p}_i \sim A_{i\mu}$, $A_{i1}\cdots A_{i\mu-1}A_{i\mu+1}\cdots A_{ik} \sim R$. Let $A_{i\mu} = B_{j\nu}$, then $\mathfrak{p}_i = \mathfrak{p}'_j$ by Lemma 8. Hence r=s and $\mathfrak{p}_i = \mathfrak{p}'_{j_i}$ $(i=1,2,\cdots,r)$ where j_1, j_2, \cdots, j_r is a permutation of $1, 2, \cdots, r$.

Theorem. The following three conditions are equivalent to each other:

(1) Any integral ideal A of R which is not t-equal to R satisfies a t-equality of the following type:

 $A \stackrel{t}{\sim} \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n},$

where \mathfrak{p}_i $(i=1, 2, \dots, n)$ are prime t-ideals in R and r_i $(i=1, 2, \dots, n)$

¹⁾ $C_1 C_2 \cdots C_r \equiv D_1 D_2 \cdots D_s$ means that r=s and $C_i = D_{j_i}$ $(i=1, 2, \dots, r)$ where j_1, j_2, \dots, j_r is a permutation of $1, 2, \dots, r$.

are positive integers, and \mathfrak{p}_i , r_i $(i=1, 2, \dots, n)$ are uniquely determined up to the order.

(2) Any ideal A of R satisfies a t-equality of the following type:

 $A \stackrel{t}{\sim} \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n},$

where \mathfrak{p}_i $(i=1, 2, \dots, n)$ are prime ideals in R and r_i $(i=1, 2, \dots, n)$ are integers, and \mathfrak{p}_i , r_i $(i=1, 2, \dots, n)$ are uniquely determined up to the order and factors which are t-equal to R.

(3) R is a Krull ring.

Remark. The following three conditions are equivalent to each other: (cf. [3])

(3) R is a Krull ring.

(4) Any ideal A of R satisfies a quasi-equality of the following type:

 $A \sim \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n}$,

where \mathfrak{p}_i $(i=1, 2, \dots, n)$ are prime ideals in R and r_i $(i=1, 2, \dots, n)$ are integers, and \mathfrak{p}_i , r_i $(i=1, 2, \dots, n)$ are uniquely determined up to the order and factors which are quasi-equal to R.

(5) R is completely integrally closed in K and satisfies the ascending chain condition for integral V-ideals.

Proof of Theorem. We shall show that $(3) \Rightarrow (2)$ and $(3) \Rightarrow (1)$. By the condition (5) and Lemma 6, $A \sim B$ if and only if $A \stackrel{t}{\sim} B$. Hence $(3) \Rightarrow (2)$ by the condition (4). It is clear that $(3) \Rightarrow (1)$ by Lemma 9 of [3]. Next, we shall show that $(1) \Rightarrow (3)$. We assume that there exists an *F*-ideal $N(\neq R)$ of *R*. Then there exists an element *a* of *R* such that $aN^{-1} \subset R$. Let

$$N \stackrel{t}{\sim} \mathfrak{p}_{1}^{\prime_{1}} \mathfrak{p}_{2}^{\prime_{2}} \cdots \mathfrak{p}_{n}^{\prime_{n}},$$

$$a N^{-1} \stackrel{t}{\sim} \mathfrak{p}_{1}^{\prime_{1}} \mathfrak{p}_{2}^{\prime_{2}} \cdots \mathfrak{p}_{m}^{\prime_{s_{m}}},$$

$$a R \stackrel{t}{\sim} \mathfrak{p}_{1}^{\prime\prime_{u_{1}}} \mathfrak{p}_{2}^{\prime\prime_{u_{2}}} \cdots \mathfrak{p}_{n}^{\prime\prime_{u_{i}}},$$

then

$$aN^{-1}N = aN \stackrel{t}{\sim} \mathfrak{p}_{1}^{r_{1}}\mathfrak{p}_{2}^{r_{2}}\cdots\mathfrak{p}_{n}^{r_{n}}\mathfrak{p}_{1}^{\prime s_{1}}\mathfrak{p}_{2}^{\prime s_{2}}\cdots\mathfrak{p}_{m}^{\prime s_{m}},$$

$$aRN = aN \stackrel{t}{\sim} \mathfrak{p}_{1}^{r_{1}}\mathfrak{p}_{2}^{r_{2}}\cdots\mathfrak{p}_{n}^{\prime n}\mathfrak{p}_{1}^{\prime \prime u_{1}}\mathfrak{p}_{2}^{\prime \prime u_{2}}\cdots\mathfrak{p}_{n}^{\prime \prime u_{1}}.$$

This is a contradiction. Since R has no F-ideal $(\neq R)$, R is completely integrally closed (cf. [2]). Let A be an integral ideal of R which is not t-equal to R. Then $A \stackrel{t}{\sim} \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n}$ where \mathfrak{p}_i $(i=1,2,\cdots,$ n) are prime t-ideals in R and r_i $(i=1,2,\cdots,n)$ are positive integers, and \mathfrak{p}_i, r_i $(i=1,2,\cdots,n)$ are uniquely determined up to the order. Hence $A \sim \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n}$ by Lemma 4. We shall eliminate \mathfrak{p}_i which is quasi-equal to R, then $A \sim \mathfrak{p}_1^{r_{s_1}} \mathfrak{p}_2^{r_{s_2}} \cdots \mathfrak{p}_m^{r_m}$ where \mathfrak{p}_i' $(i=1,2,\cdots,m)$ are prime ideals of height 1 in R by Lemma 8 and s_i $(i=1,2,\cdots,m)$ are positive integers, and \mathfrak{p}_i' , s_i $(i=1,2,\cdots,m)$ are uniquely determined up to the order by Lemma 9. Let B be an ideal of R. Then there exists an element b of R such that $bB \subset R$. Let

$$bB \sim \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n},$$

$$bR \sim \mathfrak{p}_1^{s_1} \mathfrak{p}_2^{s_2} \cdots \mathfrak{p}_m^{s_m}.$$

By Lemma 10 of [3],

$$b^{-1}R \sim \mathfrak{p}_1^{-s_1}\mathfrak{p}_2^{-s_2}\cdots\mathfrak{p}_m^{-s_m}$$
.

Hence

$$B \sim \mathfrak{p}_1^{\prime r_1} \mathfrak{p}_2^{\prime r_2} \cdots \mathfrak{p}_n^{\prime r_n} \mathfrak{p}_1^{-s_1} \mathfrak{p}_2^{-s_2} \cdots \mathfrak{p}_m^{-s_m}.$$

Therefore R satisfies the condition (4) and the condition (3). In the same way, it is clear that $(2) \Rightarrow (3)$.

KYOTO UNIVERSITY OF EDUCATION

References

- [1] K. E. Aubert, Additive ideal system, J. of Algebra, Vol. 18, No. 4 (1971), 511-528.
- [2] Y. Mori, On the theory of rings without zero divisors, Bull. of the Kyoto Gakugei Univ., Ser. B, No. 16 (1960), 1-5.
- [3] T. Nishimura, Unique factorization of ideals in the sense of quasi-equality, J. of Math. of Kyoto Univ., Vol. 3, No. 1 (1963), 115-125.