On a characterization of $PSL_4(p)$

By

Tosiro Tsuzuku

(Communicated by Professor Nagata, April 15, 1972)

Let $PGL_r(p)$ and $PSL_r(p)$ denote the *r*-dimensional projective general linear and special linear groups over the prime field F_p of pelements respectively where $r \ge 2$. Let V(r, p) be the *r*-dimensional vector space over F_p . Then $PGL_r(p)$ can be considered as a permutation group on the set \mathcal{Q} of one-dimensional subspaces of V(r, p). Any subgroup G of $PGL_r(p)$ containing $PSL_r(p)$ is called a group of Lie type of dimension r-1 over F_p (according to Ito [2]). Any group G of Lie type of dimension r-1 over F_p , $r \ge 3$, has the following properties.

- (1) (G, \mathcal{Q}) is a doubly transitive group of degree $p^{r-1}+p^{r-2}+\cdots+p+1=p^r-1/p-1$.
- (2) For any two elements, say 0 and 1, of Ω, Ω is divided into four orbits {0}, {1}, Δ and Γ by the subgroup G_[0,1] of G, the stabilizer of two elements 0 and 1, where Δ and Γ consist of p-1 and p^{r-1}+p^{r-2}+...+p² elements respectively.
 (3) The order of G is divisible by p^{r(r-1)}/₂ exactly.

Now we consider to characterize groups of Lie type by these properties and we conjecture the following: A permutation group (G, \mathcal{Q}) which satisfies three properties (1), (2) and (3) is permutation-isomorphic to a group of Lie type of dimension r-1 over F_{p} .

For r=3 the conjecture is true. This was proved in [3], under some weaker assumption. The purpose of this note is to show that the conjecture is true for r=4, namely, we will prove the following.

Theorem. Let (G, Ω) be a doubly transitive permutation group. Assume that

- (4) Ω consists of p^2+p^2+p+1 elements where p is a prime number,
- (5) for two elements of Ω, say 0 and 1, Ω is divided into four orbits {0}, {1}, Δ and Γ by G_[0,1] where Δ and Γ consist of p-1 and p³+p² elements respectively, and
- (6) the order of G is divisible by p^4 .

Then (G, Ω) is permutation-isomorphic to a group of Lie type of dimension 3 over F_{μ} .

We use the following notation. For a set π , $|\pi| =$ the number of elements in π . For a permutation group (H, π) , for a subgroup Kof H, and for a subset Λ of π .

$$H_{\mathcal{A}} = \{ x \in H | \alpha^{x} = \alpha \text{ for any } \alpha \in \Lambda \},$$

which is called the stabilizer of Λ in (H, π) ,

$$H_{< n >} = \{x \in H \mid A^{x} = A\},$$

$$H_{A} = \frac{H_{< n >}}{H_{A}}$$

$$F(K) = \{\alpha \in \pi \mid \alpha^{x} = \alpha \text{ for any } x \in K\}$$

Proof. First we remark that all the doubly transitive groups of degree $15(=2^3+2^2+2+1)$ have been determined (e.g. [1], p. 304) and we see that our theorem is true for the case p=2. In the following we can assume that $p \ge 3$. Put $\overline{\Delta} = \{1\} \cup \Delta$. For any $\alpha \in \Delta$, since the length of any orbit of $(G_{\{0,1,\alpha\}}, \Gamma)$ is a multiple of p^2 , we have that $\{0\}, \{\alpha\}, \overline{\Delta} - \{\alpha\}$ and Γ are the orbits of $(G_{\{0,\alpha\}}, \Omega)$, and that, for any $x \in G_{\{0\}}$ and for any $\alpha \in \overline{\Delta}^x$, $\{0\}, \{\alpha\}, \overline{\Delta}^x - \{\alpha\}$ and Γ^x are the orbits of $(G_{\{0,\alpha\}}, \Omega)$. Hence if $\overline{\Delta} \cap \overline{\Delta}^x \neq \phi$ for an element $x \in G_{\{0\}}$, then, for any element $\alpha \in \overline{\Delta} \cap \overline{\Delta}^x$, we have that $\overline{\Delta} - \{\alpha\}$ $= \overline{\Delta}^x - \{\alpha\}$, that is $\overline{\Delta} = \overline{\Delta}^x$. Hence $(G_{\{0\}}, \Omega - \{0\})$ is imprimitive and \overline{A} is the unique non-trivial block (of imprimitivity) of $(G_{\{0\}}, \mathcal{Q} - \{0\})$ which contains 1, and therefore any element of $\mathcal{Q} - \{0\}$ is contained in a unique non-trivial block of $(G_{\{0\}}, \mathcal{Q} - \{0\})$. Let α be an element of Γ . Let H_{α} be the subgroup of G generated by the set of all Sylow p-subgroups of $G_{\{0,1,\alpha\}}$ and let P be a subgroup of $G_{\{0,1\}}$ which is conjugate to H_{α} in G. Then, since P fixes at least one element of Γ and $G_{\{0,1\}}$ is transitive on Γ , there is an element x of $G_{\{0,1\}}$ such that $P^x \subseteq G_{\{0,1,\alpha\}}$, and, by the definition of H_{α} , we have $P^x = H_{\alpha}$. Hence, by a theorem of Witt ([4], Theorem 9.4), $N(H_{\alpha})$, the normalizer of H_{α} in G, is doubly transitive on $F(H_{\alpha})$. Since each element of Γ is contained exactly in one non-trivial block of $(G_{\{0\}},$ $\mathcal{Q} - \{0\})$, we have $|F(H_{\alpha}) \cap \Gamma| \equiv 0 \pmod{p}$. Put $|F(H_{\alpha}) \cap \Gamma| = tp$. Since $G_{\{0,1\}}$ is transitive on Γ , we have that, for any α and $\beta \in \Gamma$, $|F(H_{\alpha})| = |F(H_{\beta})|$ and that either $F(H_{\alpha}) = F(H_{\beta})$ or $F(H_{\alpha}) \cap F(H_{\beta})$ $= \{0\} \cup \{1\} \cup A$, and so t | p(p+1),

(7) $[G_{\{0,1\}}: N(H_{\alpha}) \cap G_{\{0,1\}}] = \frac{p(p+1)}{t}$, and

(8)
$$[G: N(H_{\alpha}) \cap G_{\{0,1\}}] \equiv 0$$

mod $(tp+p+1)(tp+p)(= [N(H_{\alpha}): N(H_{\alpha}) \cap G_{\{0,1\}}]).$

Then we have $|N(H_{\alpha})^{F(H_{\alpha})}| \equiv 0 \pmod{p^2}$ from (7), because, for a Sylow *p*-subgroup *Q* of $G_{(0,1)}$, the length of any orbit of (Q, Γ) is a multiple of p^2 . Assume that t < p-1. Then $(N(H_{\alpha})^{F(H_{\alpha})}, F(H_{\alpha}))$ is a doubly transitive group of degree 1 + (t+1)p where t+1 < p, and $|N(H_{\alpha})^{F(H_{\alpha})}| \equiv 0 \pmod{p^2}$. Hence $(N(H_{\alpha})^{F(H_{\alpha})}, F(H_{\alpha}))$ is either alternating or symmetric by Proposition 1 in [3] which contradicts the assumption (5). Assume that t=p-1. Then we have p=3, $|F(H_{\alpha})|=1+p^2$ and $|N(H_{\alpha})^{F(H_{\alpha})}|\equiv 0 \pmod{p^3}$. Hence $(N(H_{\alpha})^{F(H_{\alpha})},$ $F(H_{\alpha}))$ is either alternating or symmetric by Proposition 2 in [3] which contradicts the assumption (5). Assume that t=p+1. Then, from (7) and (8), we have

$$(p^*+p^2+p+1)(p^3+p^2+p) \equiv 0 \mod p^2+2p+1$$

which is a contradiction. Hence t=up and u|p+1. Then, from (7) and (8),

Tosiro Tsuzuku

$$(p^3+p^2+p+1)(p^3+p^2+p)s\equiv 0 \mod up^2+p+1$$

where us = p+1, and then we have

 $(s-1)(u-1)\equiv 0 \mod p^2+s.$

Hence u=1 or s=1. If s=1, then $|G| \neq 0 \pmod{p^4}$ which is a contradiction. Hence u=1. Then, from (7) and (8), we have

$$[G: N(H_{\alpha})] = \frac{[G: N(H_{\alpha}) \cap G_{\{0,1\}}]}{[N(H_{\alpha}): N(H_{\alpha}) \cap G_{\{0,1\}}]} = p^{3} + p^{2} + p + 1.$$

Thus $N(H_{\alpha})$ is a subgroup of G of index $p^3 + p^2 + p + 1$ and $N(H_{\alpha})$ is not faithful on $F(H_{\alpha})$, an orbit of $(N(H_{\alpha}), \mathcal{Q})$. Hence (G, \mathcal{Q}) is a group of Lie type of dimension 3 over F_{ρ} by a result of Ito [2].

DEPARTMENT OF MATHEMATICS, Hokkaido University

References

- [1] Carmichael, R. D. "Introduction to the Theory of Groups of Finite Order", Ginn, Boston; reprinted 1956, Dover, New York.
- [2] Ito, N. On a class of doubly, but not triply transitive permutation groups, Arch. Math. 18 (1967), 564-570.
- [3] Tsuzuku, T. On doubly transitive permutation groups of degree $1+p+p^2$ where p is a prime number, J. Algebra 8 (1968), 143-147.
- [4] Wielandt, H. "Finite Permutation Groups". Academic Press, New York and London, 1964.

52