Generators and relations of $\Gamma_0(N)$

By

Yasuhiro Chuman

(Communicated by Professor Nagata, July 3, 1972)

Let Z denote a ring of rational integers, and Γ denote the elliptic modular group $SL_2(Z)/\pm 1$. Let T (resp. S) denote the image in Γ of the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (resp. $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$), and the matrix and its image in Γ will be identified in the following, thus

$$T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Then as is well known Γ is generated by T and S.

Let $\Gamma_0(N)$ denote the congruence subgroup of level N, i.e.

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma \mid c \equiv 0 \bmod N \right\}.$$

If N is a prime p, it is easy to see that $\mathbf{R} = \{1, ST^i | i = 0, 1, ..., p-1\}$ is a system of representatives of the coset $\Gamma_0(N) \setminus \Gamma$. Furthermore \mathbf{R} satisfies the following condition (F) introduced by Schreier [3] p.177.

(F) Let R be in R and R' be the element of Γ obtained by dropping the last term of R (e.g. if $R = ST^i$, then $R' = ST^{i-1}$), then R' is again in R. Hence one can apply Reidemeister-Schreier method, and write down a system of generators and their fundamental relations of $\Gamma_0(p)$. It was actually carried out by Rademacher in [2].

In this note, we shall do a similar thing for general N.

1. Representatives of $\Gamma_0(N)\backslash \Gamma$. Our first task is to construct a

system of coset representatives of $\Gamma_0(N)\backslash\Gamma$ satisfying the condition (F).

Lemma 1. Let Γ_{∞} denote the subgroup of Γ generated by T. Every double coset $\Gamma_0(N)\gamma\Gamma_{\infty}(\gamma\in\Gamma)$ contains an element of the form $ST^{\alpha}S$ ($\alpha\in \mathbb{Z}$).

Proof. Let $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Since (a, c) = 1, we can find $x, y \in \mathbb{Z}$ such that ax + cy = 1. Let t be the product of prime divisors of N co-prime to x, and put x' = x - tc, y' = y - ta. Then ax' + cy' = 1 and (x', N) = 1, hence there exist z', $w' \in \mathbb{Z}$ such that $g = \begin{bmatrix} x' & y' \\ Nz' & w' \end{bmatrix} \in \Gamma_0(N)$. Now $g\gamma = \begin{bmatrix} 1 & b' \\ c' & d' \end{bmatrix}$ by some b', c', $d' \in \mathbb{Z}$, and $g\gamma T^{-b'} = \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix} = ST^{\alpha}S$ by some $\alpha \in \mathbb{Z}$ (Q. E. D.).

Lemma 2. $ST^{\alpha}S$ and $ST^{\beta}S$ are in the same double coset if and only if the following two conditions (1) and (2) are satisfied

$$(1) \qquad (\alpha, N) = (\beta, N).$$

Putting $(\alpha, N) = t, \alpha = \alpha' t, \beta = \beta' t$

(2)
$$\alpha' \equiv \beta' \mod(t, N/t).$$

In paticular every $ST^{\alpha}S$ with α co-prime to N lies in the same double coset $\Gamma_0(N)TST\Gamma_0(N) = \Gamma_0(N)S\Gamma_{\infty}$.

$$\begin{array}{ll} \textit{Proof.} & \Gamma_0(N) \, ST^{\alpha} S\Gamma_{\infty} \ni ST^{\beta} S \Leftrightarrow \exists \ x \in \mathbb{Z}, \ ST^{\alpha} ST^{x} ST^{-\beta} S \in \Gamma_0(N) \Leftrightarrow \\ \exists \ x \in \mathbb{Z}, \ \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -x & 1 \end{bmatrix} \begin{bmatrix} 1 & -\beta \\ 0 & 1 \end{bmatrix} \in S\Gamma_0(N) S \Leftrightarrow \end{array}$$

(3)
$$\exists x \in \mathbb{Z}, \ \alpha - \beta + \alpha \beta x \equiv 0 \bmod N.$$

The last condition (3) obviously implies $(\alpha, N) = (\beta, N)$. Putting $(\alpha, N) = t$, $\alpha = \alpha't$, $\beta = \beta't$; (3) $\Leftrightarrow \exists x \in \mathbb{Z}$, $\alpha' - \beta' + t\alpha'\beta'x \equiv 0 \mod N/t \Leftrightarrow \alpha' - \beta' \equiv 0 \mod (t, N/t)$ as wanted.

The last statment follows from the equation

$$STS = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = T^{-1}ST^{-1} \in \Gamma_0(N)S\Gamma_{\infty}$$
 (Q. E. D.).

For each proper divisor t of N, let $\{x(t, i)|1 \le i \le \varphi(t, N/t)\}$ be a complete system of representatives of irreducible residue class $(\mathbf{Z}/(t, N/t))$ $\mathbf{Z})^{\times} \mod(t, N/t)$, chosen in such a way that any x(t, i) < N and (x(t, i), N) = 1. Such a system of representatives certainly exists, because the natural map $(\mathbf{Z}/N\mathbf{Z})^{\times} \to (\mathbf{Z}/(t, N/t)\mathbf{Z})^{\times}$ is surjective.

We fix the representatives x(t, i) once for all, and let M be a subset of \mathbb{Z} defined by $\{tx(t, i)|1 \le i \le (t, N/t)\}$ where t is extended over all proper divisors of N. Put $S = \{1, S, ST^xS|x \in M\}$. Then by lemma 1, 2 S is a complete system of representatives of $\Gamma_0(N) \setminus \Gamma/\Gamma_\infty$, and its cardinality is equal to $\sum_{t \in N} \varphi(t, N/t)$.

Proposition 1. Put

$$R = \{I, ST^k, ST^xST^{j(x)} | 0 \le k \le N-1, x \in M, 0 \le j(x) \le n(x)-1\},\$$

where n(x) denotes the smallest positive integer such that $n(x)x^2 \equiv 0 \mod N$. Then **R** is a complete system of representatives of $\Gamma_0(N)\backslash \Gamma$. Furthermore **R** satisfies the Schreier condition (F).

Proof. As we remarked, Γ is a disjoint union of $\Gamma_0(N)g\Gamma_\infty$ with $g \in S$. Let γ run through a complete system of representatives of g^{-1} $\Gamma_0(N)g \cap \Gamma_\infty \setminus \Gamma_\infty$, then $\Gamma_0(N)g\Gamma_\infty = \bigcup_{\gamma} \Gamma_0(N)g\gamma$ (disjoint). If $g = ST^*S$, $T^n \equiv 0 \mod g^{-1}\Gamma_0(N)g \cap \Gamma_\infty$ if and only if $x^2n \equiv 0 \mod N$. Hence as a system of representatives of $g^{-1}\Gamma_0(N)g \cap \Gamma_\infty \setminus \Gamma_\infty$, we can take $\{I, T, ..., T^{n(x)-1}\}$. If g = S, it is easy to see that $\{T^k | 0 \le k \le N - 1\}$ is a system of representatives. Now our last statement is obvious, because we have $ST^k(0 \le k \le N - 1)$ in \mathbb{R} .

2. Generators and relations of $\Gamma_0(N)$. Now, we can apply Reidemeister-Schreier method. For any $X \in \Gamma$, let \overline{X} denote the element R of R such that $X \in \Gamma_0(N)\overline{X}$. Then $\Gamma_0(N)$ is generated by

(G)
$$\{RT\overline{R}\overline{T}^{-1}, RS\overline{R}\overline{S}^{-1}|R \in \mathbf{R}\}$$

with the set of defining relations

(R)
$$\{RS^2R^{-1}=1, R(ST)^3R^{-1}=1|R\in \mathbf{R}\}.$$

In the following, we shall explicitly write them out, and as Rademacher did in prime level case, simplify them until only a few (or none) of relations left.

(1) Generators. For each R in \mathbf{R} , we can easily check that \overline{RT} and \overline{RS} are given by the following:

$$\overline{IT} = I, \quad \overline{ST^kT} = ST^k(k=0, 1, 2, ..., N-2), \quad \overline{ST^{N-1}T} = S,$$

$$\overline{ST^xST^{j(x)}T} = ST^xST^{j(x)+1} \quad (j(x)=0, 1, 2, ..., n(x)-2),$$

$$\overline{ST^xST^{n(x)-1}T} = ST^xS$$

and

$$\begin{split} \overline{IS} &= S, \ \ \overline{SS} = T, \ \ \overline{ST^kS} = ST^{k*} \ \ ((k, \ N) = 1, \ kk* \equiv -1 \ \text{mod} \ N), \\ \overline{ST^kS} &= ST^kS((k, \ N) \neq 1, \ k \in M), \\ \overline{ST^kS} &= ST^{x(k)}ST^j \ ((k, \ N) \neq 1, \ k \notin M, \ x(jk+1) \equiv k \ \text{mod} \ N), \\ \overline{ST^kSS} &= ST^k, \ \overline{ST^kST^jS} = ST^{k(j)} ((jx-1, \ N) = 1, \ k(jx-1) \equiv -x \ \text{mod} \ N), \\ \overline{ST^kST^jS} &= ST^{k'}ST^{j'} \ ((jx-1, \ N) \neq 1, \ (jx-1)(j'x'-1) \equiv -xx' \ \text{mod} \ N). \end{split}$$

Hence we can explicitly write (G) out as the following:

 $\{I, T, U, V(k), V(x, j) | 1 \le k \le N-1, 1 \le j \le n(x)-1, x \in M\};$

$$U = ST^{N}S,$$

$$V(k) = ST^{k}ST^{-k}S \qquad ((k, N) = 1)$$

$$V(k) = ST^{k}ST^{-j(k)}ST^{-x(k)}S \qquad ((k, N) \neq 1, k \notin M)$$

$$= ST^{k}ST^{n(k)}ST^{-k}S \qquad ((k, N) \neq 1, k \in M),$$

$$V(x, j) = ST^{x}ST^{j}ST^{-k(x, j)}S \qquad ((jx - 1, N) = 1, k(jx - 1) \equiv -x \mod N, k \notin M)$$

$$= ST^{x}ST^{j}ST^{-j'}ST^{-x'}S \qquad ((jx - 1)(j'x' - 1) \equiv -xx' \mod N).$$

Proposition 2. Put

$$G = \{T, U, V(k), V(x, j) | 1 \le k \le N - 1, 1 \le j \le n(x) - 1, x \in M\}.$$

 $\Gamma_0(N)$ is generated by the set G.

(2) Relations. For R=I and R=S, it is easy to see that new relations don't turn up from the first relation of (R).

For
$$R = ST^k (1 \le k \le N - 1)$$
,

$$RS^{2}R^{-1} = ST^{k}S^{2}T^{-k}S$$

$$= V(k)V(k_{*}) \qquad ((k, N) = 1)$$

$$= V(k)V(x(k), j(k)) \qquad ((k, N) \neq 1, k \notin M)$$

$$= V(x, j)V(k(x, j)) \qquad ((k, N) \neq 1, k = x \in M, (kj - 1, N) = 1)$$

$$= V(x, j)V(x', j') \qquad ((k, N) \neq 1, k = x \in M, (kj - 1, N) \neq 1).$$

For $R = ST^xST^j (0 \le j \le n(x) - 1)$,

$$RS^{2}R^{-1} = ST^{x}ST^{j}S^{2}T^{-j}ST^{-x}S$$

$$= V(x, j)V(k(x, j)) \qquad ((x j - 1, N) = 1)$$

$$= V(x, j)V(x', j') \qquad ((x j - 1, N) \neq 1).$$

Hence we obtain the following relations:

(R.1)
$$V(k)V(k_*)=1$$
 ((k, N)=1),

(R.2)
$$V(k)V(x(k), j(k)) = 1$$
 $((k, N) \neq 1, k \notin M),$

(R.3)
$$V(x, j)V(x', j') = 1$$
 $((x j - 1, N) \neq 1).$

On the second relation of (R), we obtain first relations V(1)UT=1 and TV(1)U=1 for R=I and R=S(R=ST) respectively, i.e.

(R.4)
$$V(1)UT = 1$$
.

For
$$R = ST^k$$
 $(2 \le k \le N - 1)$, if $(k, N) = 1$ with $k_1 = k_* + 1$,

$$R(ST)^{3}R^{-1} = ST^{k}STSTST^{1-k}S$$

$$= V(k)V(k_{1})V(k_{2}) \qquad ((k, N) = 1, k_{2} = k_{1*} + 1)$$

$$\begin{split} &= V(k)V(k_1, \, 1) & (k_1 \in M, \, k-1 \notin M) \\ &= V(k)V(k-1) & (k \in M, \, k-1 \in M) \\ &= V(k)V(k_1)V(x(k_1), \, j(x)) \; ((k_1, \, N) \neq 1, \, k_1 \notin M, \, k-1 \notin M) \\ &= V(k)V(k_1)V(k-1) & ((k_1, \, N) \neq 1, \, k_1 \notin M, \, k-1 \in M); \end{split}$$

if $(k, N) \neq 1$ and $k(=x) \in M$,

$$R(ST)^{3}R^{-1} = ST^{x}STSTST^{1-x}S$$

$$= V(x, 1)V(k(x)+1) \qquad ((x-1, N)=1, x \neq k(x))$$

$$= V(x)V(x+1) \qquad ((x-1, N)=1, x \neq k(x))$$

$$= V(x, 1)V(x-1) \qquad ((x-1, N) \neq 1, x' \neq k-1)$$

$$= V(x, 1)V(x', j'+1) \qquad ((x-1, N) \neq 1, x' \neq k-1);$$

if $(k, N) \neq 1$ and $k \notin M$,

$$R(ST)^{3}R^{-1} = V(k)V(x(k), j(k)+1)V(k(x, j+1)+1)$$

$$((x(j+1)-1, N)=1, k(x, j+1) \notin M)$$

$$= V(k)V(x(k))V(x(k)+1)$$

$$((x(j+1)-1, N)=1, k(x, j+1) \in M)$$

$$= V(k)V(x(k), j(k)+1)V(x', (j+1)')$$

$$((x(j+1)-1, N) \neq 1, k-1 \notin M)$$

$$= V(k)V(x(k), j(k)+1)V(k-1)$$

$$((x(j+1)-1, N) \neq 1, k-1 \in M).$$

For $R = ST^x ST^j (0 \le j \le n(x) - 1)$,

$$R(ST)^{3}R^{-1} = ST^{x+1}STSTST^{-x}S$$

$$= V(x+1)V(x)$$

$$= V(x+1)V((x+1)_{*}+1)V(x)$$

$$= ((x+1, N)=1, n(x)=1)$$

$$= V(x+1)V((x+1)_{*}+1)V(x)$$

$$((x+1, N)=1, n(x)\neq 1)$$

$$=V(x+1,1)V(x) \qquad (x+1 \in M)$$

$$=V(k)V(x(k),j(k)+1)V(x) \qquad (k=x+1,(k,N) \neq 1, k \notin M),$$

$$R(ST)^{3}R^{-1} = ST^{x}STSTSTST^{1-x}S \qquad (j=1)$$

$$=V(x,1)V(k(x)+1) \qquad ((x-1,N)=1)$$

$$=V(x,1)V(x',j'+1) \qquad ((x-1,N) \neq 1, x \neq x'+1)$$

$$=V(x,1)V(x-1) \qquad ((x-1,N)=1, x = x'+1),$$

$$R(ST)^{3}R^{-1} = ST^{x}ST^{j}STSTST^{1-j}ST^{-x}S \quad (2 \leq j \leq n(x)-1)$$

$$=V(x,j)V(k(x,j)+1,1) \qquad ((xj-1,N)=1, k(x,j)+1)$$

$$\in M)$$

$$=V(x,j)V(k)V(x+1,j-1) \quad ((xj-1,N)=1, k = k(x,j)+1,$$

$$(k,N)=1)$$

$$=V(x,j)V(k)V(x(k),j(k)+1) \quad ((xj-1,N)=1, k = k(x,j)+1,$$

$$(k,N) \neq 1)$$

$$=V(x,j)V(x',j'+1)V(x,j-1)^{-1} \quad ((xj-1,N) \neq 1, n(x') \neq j'+1)$$

$$=V(x,j)V(x')V(x+1) \qquad ((xj-1,N)=1, n(x')=j'+1).$$

Proposition 3. The following nine rebations (R.5-13) together with the dbove four relations (R.1-4) make up a system of fundamental relations of $\Gamma_0(N)$ for the system of generators G.

(R.5)
$$V(k)V(k_1)V(k_2)=1$$
 ((k, N)=1, (k₁, N)=1,
$$k_1 = k_* + 1, k_2 = k_{1*} + 1),$$
 (R.6) $V(k)V(k-1)=1$ ((k, N)=1, k-1 \in M, k_* + 1 \in M),

(R.7)
$$V(k)V(k_*+1, 1)=1$$
 ((k, N)=1, $k-1 \notin M$, $k_*+1 \in M$),

(R.8)
$$V(k)V(k_*+1)V(x(k_*+1), j(k_*+1)) = 1$$
 $((k, N) = 1, (k_*+1, N)$
 $\neq 1, k_*+1 \notin M, k-1 \notin M),$

(R.9)
$$V(k)V(k_*+1)V(k-1)=1$$
 ((k, N)=1, (k_*+1, N) \neq 1, $k_*+1 \notin M$, $k-1 \in M$),

(R.10)
$$V(x, 1)V(x-1)=1$$
 $((x-1, N) \neq 1, x-1 \in M),$

(R.11)
$$V(x, 1)V(x', j'+1)=1$$
 $((x-1, N) \neq 1, x-1 \notin M),$

(R.12)
$$V(k)V(x(k), j(k))V(x(k)', (j(k)+1)') = 1$$

 $((k, N) \neq 1, k \notin M, k-1 \notin M).$

(R.13)
$$V(k)V(x(k), j(k))V(k-1) = 1$$
 $((k, N) \neq 1, k \notin M, k-1 \in M)$.

3. Eliminations. In this section, we shall eliminate unnecessary generators and relations.

Firstly, note that the number of the generators in G is given by the following:

$$|G| = |R| - |M|$$
.

Because the elements of G are T, U, V(x) $(1 \le k \le N-1)$ and V(x, j) $(1 \le j \le n(x)-1)$, and the number of V(x, j) is $\sum_{x \in M} (n(x)-1) = |R| - N - 1 - |M|$.

Secondly, note that $k^2 \equiv -1 \mod N$ has solutions if and only if the following condition is satisfied:

(3.1) $N = 2^{v(2)}N'$, $0 \le v(2) \le 1$, (N', 2) = 1 and $p = 1 \mod 4$ for any prime divisor p of N'.

Hence if N does not satisfy (3.1), we can eliminate $1/2|\mathbf{R}| - |M| - 1$ generators from \mathbf{G} by relations (R.1-3). Because the number of distinct generators appearing in (R.1-3) is $\sum_{x \in M} (n(x)-1)+N-1-|M|=|\mathbf{R}|$ -2|M|-2N-2. If N satisfies (3.1), there are two k's satisfying $k^2 \equiv -1 \mod N$ and for these two k's, (R.1) has the form $V(k)^2 = 1$. Hence in this case, the number of generators eliminated by (R.1-3)

is 1/2|R|-|M|-2.

Furthermore, note that $k(k-1) \equiv -1 \mod N$ has solutions if and only if the following condition is satisfied:

(3.2) $N = 3^{\nu(3)}N'$, $0 \le \nu(3) \le 1$, (N', 3) = 1 and $p \equiv 1 \mod 3$ for any prime divisor p of N'.

Hence if N does not satisfy (3.2), we can eliminate $1/3 |\mathbf{R}|$ (=1/3 (the number of the second relations in (R))) generators from \mathbf{G} by relations (R.4-13). If N satisfies (3.2), (R.5) is $V(k)^3 = 1$ for two k's satisfying $k(k-1) \equiv -1 \mod N'$, hence in this case, the number eliminated by (R.4-13) is $1/3(|\mathbf{R}|-2)$.

Now, we obtain the following proposition.

Proposition 4. Let N be N>3 and $N=2^{v(2)}3^{v(3)}N'$ with (N', 6) = 1. We shall distinguish the following four cases: (1) v(2)=v(3)=0, and $p\equiv 1 \mod 12$ for any prime divisor p of N'; (2) $0 \le v(2) \le 1$, v(3)=0, $p\equiv 1 \mod 4$ for any prime divisor p of N' and $q\not\equiv 1 \mod 3$ for some prime divisor q of N'; (3)v(2)=0, $0 \le v(3) \le 1$, $p\equiv 1 \mod 3$ for any divisor p of N' and $q\not\equiv 1 \mod 4$ for some prime divisor q of N'; (4) the case other than (1), (2) and (3).

Put

$$m(N) = \begin{cases} 1/6(16 + |\mathbf{R}|) & (case (1)) \\ 1/6(12 + |\mathbf{R}|) & (case (2)) \\ 1/6(10 + |\mathbf{R}|) & (case (3)) \\ 1/6(6 + |\mathbf{R}|) & (case (4)), \end{cases}$$

then $\Gamma_0(N)$ is generated by a subset G_0 of cardinality m(N) of G. In case (1) and (2), there are two defining relations of the form

$$V(k_1)^2 = 1$$
 and $V(k_2)^2 = 1$

with $k_i \equiv -1 \mod N$ (i=1, 2). In case (1) and (3), there are two defining relations of the form

$$V(k_1)^3 = 1$$
 and $V(k_2)^3 = 1$

with $(2k_i-1)^2\equiv -3 \mod N$ (i=1,2). There are no other relations among the generators G_0 . In paticular G_0 is a minimal system of generators of $\Gamma_0(N)$.

University of Osaka Prefecture

References

- [1] H. Frasch, Die Erzeugenden der Hauptkongruenzgruppen für primzahlstufen, Math. Ann. (108) 1932, 229-252.
- [2] H. Rademacher, Uber die Erzeugenden von Kongruenzuntergruppen der Modulgruppe, Ham. Abh. (7) 1929, 134-148.
- [3] O. Schreier, Die Untergruppen der freien Gruppen, Ham. Abh. (5) 1927, 161– 183.