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As the title indicates our object of study is an abelian variety
B (in the present paper, we are interested only in the one-dimensional
case), which was investigated by Shimura [5], [6]. Using such an
abelian variety B, he has shown some important relation between the
arithemtic of real quadratic fields and the cusp forms of ‘““Neben’-type
in Hecke’s sense. Here we repeat the result briefly. B is defined over
a real quadratic field k=Q(./q), whose transform B* by the non-
trivial automorphism & of k is isogenous to B. Such a B can be
obtained from the eigen-function f(z)= 2 a,e?™"z for all Hecke opera-
tors acting on the space S,(I'o(q), x) of cusp forms of ‘“Neben’-type
of weight 2. The eigen-values of Hecke operators for S,(I'o(q), X)
are closely ocnnected with the reciprocity law in certain abelian ex-
tenions of k, moreover, such extensions can be generated by the co-
ordinates of some specific section point (c-section point in [6, Th. 2.2,
p. 141]) of B. It was observed that two rational integers ¢ and trg(e,)
have non-trivial common factors where ¢, is the fundamental unit of
k [6,§3] and the Fourier coefficients a, of f(z) has a certain con-
gruence property with respect to c. As a continuation of this theory,
the same investigation was made for the space of cusp forms of
“Haupt”-type, by Doi and the present author [2].

* This work was partially supported by the Sakkokai Foundation.
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Now Doi [1] has found some arithmetical congruence (with respect
to a prime factor / of the numerator of the generalized Bernoulli
number B, ,) for the Fourier coefficients a, of f(z) of S.(I'y(q), x)
for arbitrary weight x>2 (see text). Thus, as a next task of the
investigations which we explained above, we are naturally led to consider
the field K, generated over k by the coordinates of /-section point of
B. In fact, in the present note, we shall treat as a typical examples
the case where ¢=29, 37 and investigate the field K,.

Theorem. The following assertions (1), (2) hold (at least) for
q=29, 37, and (3) holds for q=29.
(1) Let I be an odd prime factor of B,,,, and K, be the

field generated over k=Q(./q) by the I-section point of
the elliptic curve B. Then there is an isomorphism o—
R(o) of the Galois group Gal(K,/k) onto the group

{G) Z)EGLz(Z/IZ)I beZ|IZ, dG(Z/[Z)x}'

(2) We have K,=k({,'\e,) where &, is the fundamental unit
of k, and { is a primitive I-th root of unity.
(3) K, is unramified over k().

For the precise definition and notation will be explained in the
test.

Finally, we consider this investigation as a suggestive example
for the general treatment of such extensions and one can expect
similar results for K, in the higher dimensional case.

1. Shimura’s elliptic curves.

We recall here Shimura’s theory for the abelian variety associated
to cusp forms. For a prime g, let I')(q) be a congruence subgroup
of SL,(Z),

ro(q)={(‘c‘ s>eSL2(Z)| ¢=0 (mod q)},
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and S,(Ty(q), x) denote the vector space of holomorphic cusp forms
f(z) of weight 2 on the complex upper half plane, which satisfy

az+ b\ _ .
72BN = yar ez + dysia)

for all <‘; Z)el‘o(q). Throughout this paper we assume that g=1

mod 4 and the character y of (Z/qZ)* is of order 2. We denote
by k the real quadratic field corresponding to the kernel of x, namely
k=Q(\/q). Let f(z)=§a,,e2’"'”, with a,=1, be an element of
S,(To(q), x), that is a ::Blmmon eigen-function of Hecke operator T,
for all m. Let K be the field generated by the numbers a, over Q
for all n. Then we know K is totally imaginary, and the eigen-value
of T, satisfies

ay =x(n)ay,

if n is prime to g, where p denotes the complex conjugation.

By virtue of [S, Th.7.14] we obtain an abelian variety 4 and
an isomorphism 0 of K into Endyg(A). A4 and 0(a) for all a eK are
rational over (). Further A has an automorphism pu rational over
k, such that

pr=1,  pb(a)=0(a*)p  (a €K),
KE=—p,
where ¢ denotes the generator of Gal(k/Q). We put
B=(1+wA.
Then B is an abelian subvariety of A4 rational over k, and
A=B+ B¢, Be=(1—-p)A.

Hereafter we restrict ourselves to the case dimB=1.

For a prime number / and a natural number n, put

B[I"]={t € B|I"t=0},
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B[/*]= i’_jl B[I"].

It is well known that B[/"] (resp. B[/*]) is isomorphic to Z/I"Z®
Z|I"Z (resp. Q,/Z,®Q,/Z)) where Q, denotes the /-adic number field
and Z, the ring of /-adic integers. Let K. (resp. K;») be the field
generated over k by the coordinates of the points in B[/"] (resp. B[/*]).
It can be easily seen that K,. (resp. K,») is a finite (resp. an infinite)
Galois extension of k. Taking a basis of B[/"] (resp. B[I®]) we
obtain a representation R, (resp. R,)

R,: Gal(K./k) — GL, (Z|I"Z)
R, : Gal(K|x/k) — GL,(Z)).

We may assume that

(1.1) R, (6")=R(0) (mod /"),

if o' is the restriction of an element ¢ of Gal(K,»/k) to K,.

Let p be a prime ideal not dividing g, then B has good reduction
modulo p We denote by B the elliptic curve obtained from B by
reduction modulo p. Let ¢, denote the Frobenius endomorphism
of B of degree Np, and R, the /-adic representation of End(B). Then
we have (see [5, (7.6.15)])

(1.2) det(1,—uR(p,))=1-au+pu? if (p=pp,
det(1,—u?R(p,))=(1—ayu—pu?)
x (1 —abu—pu?) if Np=p?,

provided that / is prime to Np. Let P be a prime divisor of K,
which divides p and o a Forbenius element of Gal(K,»/k) for .
Then we obtain

(1.3) R (0)=R(0,)

by choosing suitable basis of B[/®] and B[I*], since we see easily
1°’mod P=¢,(t mod B). Hence comparing (1.3) with (1.2), we know
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the characteristic polynomial of R,(¢") coincides with that of R(¢,)
modulo /". Further we can prove that K, contains a primitive /"-th
root of unity {,, and

(1.4) {1 ={detRa(®

for every t eGal(K,./k).

2. A congruence for a, (due to Doi).

We now define the generalized Bernoulli number B Let

K, X*
x be the character of order 2 with a prime conductor g and let

Expanding this into power series we have
0 tx
F0= 2 Bexser

The number B, defined as above is called the generalized Bernoulli
number. It has been proved in [1],

Q.1 det(1+x(p)pt-' = T,,)=0  (mod1)

where / is an odd prime factor of the numerator of (2«x)™':B, ,,
and T,, is the Hecke operator acting on the space S,(I'o(q), x) of
weight x. Since we have assumed that the abelian variety B over
k is of one-dimensional, the Fourier coefficient a, of the corresponding
cusp form f(z)= Z a,e?minz is contained in Q or an imaginary quad-
ratic field accordmg as y(p)=1 or —1. Hence, in our case, the con-
gruence (2.1) becomes (setting k=2)

l+p—a,=0() if x(p)=1
(2.2)
(I-p)?—az=0() if xp)=-1

where / is an odd prime factor of the numerator of 47 !B, ,.
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3. Some Lemmas.

We give here some lemmas which is necessary to prove our
Theorem.

Lemma 1. For an odd prime I, let G be a subgroup of GL,(Z[IZ)
satisfying the following conditions: (1) G has elements of order
I and 1-1. (2) Any element of G has an eigen-value 1. Then G
is isomorphic to the group {(6 Z)eGLz(Z/lZ,)lbeZ/lZ, de(Z/lZ)"}
of order I(I—1).

Proof. Put G'=GnPSL,(Z/IZ), then G/G' is a subgroup of
GL,(Z|IZ)|PSL,(Z|!Z), hence [G:G'] is prime to [. Therefore G
contains an element of order / by the assumption (1). By virtue
of the assumption (2), any element g’ of G’ is conjugate to <(l) ll’),
hence g''=1. Therefore G’ is an [-group and is also an [-Sylow sub-
group of PSL,(Z/IZ) by considering the order of PSL,(Z[IZ). Hence

G’ is conjugate to the group {(6 l;)‘beZ/lZ}. Since G normalizes

the group G’, G is isomorphic to the group {(é 2)'beZ/lZ, del)}
where ) is a subgroup of (Z//Z)*. Now G contains an element
of order [—1, therefore h=(Z/IZ)*. This completes the proof of
our lemma I.

We quote here a lemma given in ([4, p. 213]).

Lemma 2. (Shimura). Let g be an element of GL,(Z]IZ),
whose characteristic polynomial is congruent to X*—a,X+p modulo
I, where p is a prime and a, is an integer. If al—d4p=Id with
an integer d which is not divisible by d, then g is conjugate to a
matrix of the form (8 L)

Let K be a finite Galois extension over an algebraic number field

k, whose Galois group Gal(K/k) is isomorphic to the group {<(I) 3)'

beZ/IZ,de(Z/lZ)"}, where [ is an odd prime. Further assume that

2ni
K contains a primitive I-th root of unity {(=e T . Under these
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situations we obtain the following assertion.

Lemma 3. If ("={dt"={? for ry=<(l) Z)eGal(K/k), Then there

exists an element « of K* such that K=k((, «) with o' ek*.

Proof. It is easy to see that the Galois group Gal(K/k) is generat-
ed by o=<([) D, and r=<(l) 2) where d is a primitive root modulo
I. Since {°=( and (*={% K is a Kummer extension over k({) of
degree I. Hence there exists an element f of K* such that K=
k(¢, B) with B! e k({). Now (B°) =(p')*=p', therefore we may assume
p satisfies fe={(f (Consider a suitable power of B instead of B, if

necessary). We see
-1
{xek> | xlek(0)} = U k(D)*p,

so there exists an element y of k({)* and an integer v (0Sv<I-1)
such that fr=yf". Since ta?=qg7r, we obtain B =" =por=
B =C%p>, hence (4*=(4 thus v=1. Namely, we obtain pr=y8
therefore we have Ny, u(y)=1. Thus there exists an element & of
k({) such that y=4§/6*. Define «=86 then we see o'=« and o' €
k({)* therefore o' ek. Hence we have K=k({, o) with a!ek. This
completes our proof of lemma 2.

4. A Proof of the Theorem.

For primes ¢=29,37, we have dimS,(I'y(q), x)=2, namely the
abelian variety B over k=Q(./q) is of one dimensional.
Further we observe that B, ,=12,20 for ¢=29 and 37, respectively.

First we shall discuss the case ¢=29. We consider the field K,
generated over k=Q(/29) by the coordinates of points on B of order
I=3. There is an isomorphism 6— R/(¢) of the Galois group Gal(K,/k)
onto a subgroup of GL,(Z/3Z). Let p be a prime different from
3,29 and p be a prime divisor of p in K;. Let o, be a Frobenius
automorphism for p, then by (1.2) and (1.3) we have
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x2—a,x+p (mod 3) if x(p)=1
det(x-1,— R/(0,)) =
x2—(a}+2p)x+p? (mod 3) if y(p)=-—1.

By Virtue of (2.2), R(cs,) has an eigen value | for any p. We assert
that R,(Gal(K,/k)) contains elements of order 3 and 2. Take p=7,
from the table (I) we get a,=2. Hence R/(Gal(K,;/k)) contains an
element g whose characteristic polynomial is

X2-2X+T7=(X—-1)2 (mod 3),

and since a3—4-7=-24, we can verify by lemma 2 that g is conjugate

to a matrix of the form <(1) i) Hence R,(Gal(K,;/k)) contains an

element of order 3. Applying the same to p=5 we find an element
of order 2 in R/(Gal(K,/k).
Hence Gal(K,/k) satisfies the assumptions in lemma 1. Thus wez have

Gal(K3/k)z{<([) Z)eGlz(Z/3Z)|beZ/3Z, de(Z/3Z)‘}

Next we shall determine the field K, explicitly. ‘
As we know K, contains a primitive third root of unity C=e2+'
and {°={d¢t7 (see (1.4)), the extension K, over k satisfies the assump-
tions in lemma 3. Hence there exists an element a of Kj; such that
Ki;=k(¢, o) with «®> ek. Now we must prove that a3 can be taken
5+./29
2

as the fundamental unit &= of k. By the property of

the field generated by I-section point, we know that any prime divisor
p of k() is unramified in K, if p does not divide 3-,/29. So we
can put a3 of k so as a®=3,/29%¢ where 0<a, b, c<2 (Note that
x(3)=—1). More precisely, we may put o3=3, 32-,/29 or 3% ,/29%¢
with 0<a, b<2. Hence there are 13 possibilities of the choice of «3.
We shall show that a3 =¢ by examining the decompotion law of several
prime divisors of k({) in Kj.



Points of finite order on Shimura's elliptic curves 251

(1) the case q=29*

4 a, az—4p r Ind, 3 Ind, 29 Ind, ¢
5 -3
7 2 —-24 3 1 6 1,2
13 -1 —51 6 8 8 7, 11
67 8 —204 2 39
547 38 —744 17 39 342

Let o, be the Frobenius automorphism for p of K; where p
is dividing one of 7,13 and 547. Then by lemma 2, we verify R(o,)
is of order 3, hence any prime divisor of k({) which divides one of
7,13 and 547 does not decompose in K;. On the other hand, as the
table shows, we have for p=547

(3“-\/2—9")?51 (mod p)

where p is any prime factor of 547 in k({). This shows that the

Frobenius automorphism o, for p of the extension k((, “y3"~\/f§")

over k({) is trivial since

S S
Ve ymre, = Y30y (mod )

5‘3/3“\/ﬁ" (mod p).

Hence a prime factor p of 547 in k({) decomposes completely in

k({, ‘?/3“\/§§b>. Thus we can not have a3=3 3-,/29. Next we take
p=7 then

(32y29%6)" 3 =1 (p)  if p divides 6429,

(3:y29%6)" T =1 (p)  if p divides 6— /39,

* The meaning of this table is as follows: r denotes a primitive root modulo p,

Ind, n the index of n with respect to r. c=5+2’/b, where 52=29 mod p.
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for any b. Thus by the same reasoning as for p=>547, we can not
have o3=3-/29%, 32-,/29% for any b (0<b<2). Further, take p=13
we see

(\/ﬁz'a)pT—‘El (p) if p divides()_z‘/zg,
(\/_23‘8)%]51 (») if p divides()—+2$/29,

thus we can not have o= /2%, /292c. Summing up above facts we
must have a3=¢. This completes the proof of (2) for the case g=29.
Lastly, we must show that K, is unramified over k({). Since we
proved Kj;=k({, 3\/—3'), a prime divisor p of k({) is unramified in K,
unless p divides 3. Now assume p=(1-{), which divides 3, is ramified
in K;, then the prime ideal (3) of k is also totally ramified in k(3\/7;—).
Let w be the additive (3)-adic valuation of the (3)-adic field of k(3\/?).
normalized as w(3)=1. Define the element x of k(3,/¢) as 3/& =
x+¢&3, then x satisfies

x3 4+ 3e3x2 +6% —eg=—3ebx.

Because p=(3) is totally ramified in k(3\/¢),

w(x)= —;—W(Nh(h/e‘)/k(x))

w(e®—e).

3

Now since &*+ 1 =¢g?-tr(g?) =ez-tr(27—+§—‘&>=27sz, et —1=¢*+1-2#0
(mod 3), we have w(g®—g)=3. Thus w(x)=1. Hence w(x3+3e3x2+¢°
—g)=3, while w(—3e°x)=2. This is a contradiction. Thus the prime
divisor p=(1—{) of k({) is unramified in K3 =k({, 3\/5 This completes
the proof of our Theorem for the case g=29.

[Remark] It was proved by Casselman (On abelian varieties with
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many endomorphisms and a conjecture of Shimura’s, Inventiones
math. 12 (1971), 225-236) that Shimura's elliptic curve for the case
g=29 has good reduction at every primes of k=Q(./29). So the
prime (,/29) is unramified in K;. If we use this facts, there are only
4 possiblitities of «3, namely «3=3, 3¢ 3%2¢ and & which makes the
proof of our Theorem a little simpler.

In [3, §3.10] Serre has given an elliptic curve B’ over k=Q(/29)
defined by the equation

B': y?4+xy+ely=x3

5+

where e= 5/29. B’ has also good reduction at every primes

of k. It is conjectured that B’ is isomorphic to the Shimura’s elliptic
curve B for the case g=29 (see [6,§10]). It was also remarked
that the Galois group of the field K% generated by the 3-section points
of B’ over k is isomorphic to the group

{((') 3)\1762/3& de(Z/3Z)x} ,

verifying the rational point (0,0) on B’ is of order 3. We note here
that the field K4 coincides with K, which can be verified by examin-
ing the trace tr(p;) of the Frobenius automorphism of the elliptic
curve B obtained by the rdeuction modulo p, putting Np=7, 13, 67,
(For these primes we have tr(g;)=a,).

Secondly, we treat the case q=37. In this case we have B,, =20.
So we consider the field K generated over k=Q(./37) by S5-section
point of the elliptic curve B associated to the space S,(I'o(37), x).
There is an isomorphism ¢—R, (o) of the Galois group Gal(Ks/k)
onto a subgroup of GL,(Z/5Z). Let p be a prime divisor of 11
in Ks. Then by the same reasoning as the case ¢=29, the charac-
teristic polynomial of the image R,(o,) of the Frobenius automorphism
for p is

X2—a X+11=X243X+11=(X-1)2 (mod 5),
and since af;—4-11=-35 we see that the order Ry(o,) is of order
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S. Applying the same to p=3 we find an element of order 4 in
R/(Gal(Ks/k)). Thus we have

Gal(K g /k)= {((') z>eGL2(Z/SZ ) |beZ|5Z, de(Z/SZ)"} ,

by virtue of lemma I. Thus there exists an element o of K such
that Ks=k({, o) with o5 ek=Q(y37) and {=¢ 5. By the same
argument as the case ¢=29, «® of k can be taken as o’=5%/37b¢
where 0<a, b, c<4 (Note that y(5)=—1). More precisely we can put
=5, 5°,/37, 5°/37% with 0<a, b<4, where &=6+ /37 is the
fundamental unit of k. Hence there are 31 possibilities of the choice
of a%. We shall show o’ =e¢.

(IT) the case q=37

P a, al—4p r Ind, 5 Ind, 37 Ind, ¢
3 -1
11 -3 -35 2 4 2 3,2
41 -3 — 155 6 22 32 13,7
181 -3 —715 10 48 38 149, 21
491 12 — 1820 10 478 340 131, 114
601 —18 —2080 506 50 580

Let o, be the Frobenius automorphism for p of Ks where p is
dividing one of 11,41, 181,491 and 601, then as the table (II)
shows the order of R(s,) is of order 5. Hence any prime divisor of
k() which divides one of 11, 41, 181, 491, and 601 does not
decompose in Ks. On the other hand, we have for p=601

— -1
(52375 =1 modp,

where p is any prime of k({) dividing p=601. This shows we can not
have a’=5, 57,/37 (0<a<4). Next p=491, then

— -1 —
(52J37%) 5 =1 (p)  if p divides 48—7/37,
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(53\/3_7"3)"_5151 (») if p divides 48+7,/37,
for any b. Thus we can not have a’=52/37, 53./37° (0<b<4).
Further applying the same to p=11,41 and 181, it turns out that
we can not have a5=5“\/§’7ba for any a, b except a=b=0. Summing
up all these facts we obtain a’=e. Thus we have Ks=k((, 5\/¢).
This completes the proof for the case q=37.

[Remark] We add a remark for the case g=37. Consider the
extension k(5,/¢) over k=Q(/37). Then k(°\/¢) is generated by x=

5/ e —¢%, which satisfies
x5 4565 x4410e1%-x3 4+ 10e'5x2 + 5¢2%x +¢25 —g=0.

We can verify that ¢25—¢ is divisible by the prime ideal (5) of k
but not divisible by (5)2. Hence the above equation is the so-called
Eisenstein equation. Thus the prime ideal (5) of k is totally ramified
in k(s\/s—). This means that the field K, is ramified over k({).
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