On the fields generated by certain points of finite order on Shimura's elliptic curves*

By

Masatoshi Yамаисні

(Received, July 12, 1973)

As the title indicates our object of study is an abelian variety B (in the present paper, we are interested only in the one-dimensional case), which was investigated by Shimura [5], [6]. Using such an abelian variety B, he has shown some important relation between the arithemtic of real quadratic fields and the cusp forms of "Neben"-type in Hecke's sense. Here we repeat the result briefly. B is defined over a real quadratic field $k = Q(\sqrt{q})$, whose transform B^{ε} by the nontrivial automorphism ε of k is isogenous to B. Such a B can be obtained from the eigen-function $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$ for all Hecke operators acting on the space $S_2(\Gamma_0(q), \chi)$ of cusp forms of "Neben"-type of weight 2. The eigen-values of Hecke operators for $S_2(\Gamma_0(q), \chi)$ are closely ocnnected with the reciprocity law in certain abelian extenions of k, moreover, such extensions can be generated by the coordinates of some specific section point (c-section point in [6, Th. 2.2. p. 141]) of B. It was observed that two rational integers c and $\operatorname{tr}_{k/O}(\varepsilon_a)$ have non-trivial common factors where ε_q is the fundamental unit of k [6, §3] and the Fourier coefficients a_p of f(z) has a certain congruence property with respect to c. As a continuation of this theory, same investigation was made for the space of cusp forms of "Haupt"-type, by Doi and the present author [2].

^{*} This work was partially supported by the Sakkokai Foundation.

Now Doi [1] has found some arithmetical congruence (with respect to a prime factor l of the numerator of the generalized Bernoulli number $B_{\kappa,\chi}$) for the Fourier coefficients a_p of f(z) of $S_{\kappa}(\Gamma_0(q),\chi)$ for arbitrary weight $\kappa \ge 2$ (see text). Thus, as a next task of the investigations which we explained above, we are naturally led to consider the field K_l generated over k by the coordinates of l-section point of l. In fact, in the present note, we shall treat as a typical examples the case where q=29, 37 and investigate the field K_l .

Theorem. The following assertions (1), (2) hold (at least) for q=29, 37, and (3) holds for q=29.

(1) Let l be an odd prime factor of B_2 , and K_l be the field generated over $k = \mathbb{Q}(\sqrt{q})$ by the l-section point of the elliptic curve B. Then there is an isomorphism $\sigma \to R_l(\sigma)$ of the Galois group $Gal(K_l/k)$ onto the group

$$\left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \in GL_2(\boldsymbol{Z}/l\boldsymbol{Z}) \, | \quad b \in \boldsymbol{Z}/l\boldsymbol{Z}, \ d \in (\boldsymbol{Z}/l\boldsymbol{Z})^{\times} \right\} \, .$$

- (2) We have $K_1 = k(\zeta, \sqrt[1]{\varepsilon_q})$ where ε_q is the fundamental unit of k, and ζ is a primitive l-th root of unity.
- (3) K_1 is unramified over $k(\zeta)$.

For the precise definition and notation will be explained in the test.

Finally, we consider this investigation as a suggestive example for the general treatment of such extensions and one can expect similar results for K_l in the higher dimensional case.

1. Shimura's elliptic curves.

We recall here Shimura's theory for the abelian variety associated to cusp forms. For a prime q, let $\Gamma_0(q)$ be a congruence subgroup of $SL_2(\mathbf{Z})$,

$$\Gamma_0(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) \mid c \equiv 0 \pmod{q} \right\},$$

and $S_2(\Gamma_0(q), \chi)$ denote the vector space of holomorphic cusp forms f(z) of weight 2 on the complex upper half plane, which satisfy

$$f\left(\frac{az+b}{cz+d}\right) = \chi(d)(cz+d)^2 f(z)$$

for all $\binom{a}{c} \binom{b}{d} \in \Gamma_0(q)$. Throughout this paper we assume that $q \equiv 1 \mod 4$ and the character χ of $(\mathbf{Z}/q\mathbf{Z})^{\times}$ is of order 2. We denote by k the real quadratic field corresponding to the kernel of χ , namely $k = \mathbf{Q}(\sqrt{q})$. Let $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$, with $a_1 = 1$, be an element of $S_2(\Gamma_0(q), \chi)$, that is a common eigen-function of Hecke operator T_m for all m. Let K be the field generated by the numbers a_n over \mathbf{Q} for all n. Then we know K is totally imaginary, and the eigen-value of T_n satisfies

$$a_n^{\rho} = \chi(n)a_n$$

if n is prime to q, where ρ denotes the complex conjugation.

By virtue of [5, Th. 7.14] we obtain an abelian variety A and an isomorphism θ of K into $\operatorname{End}_Q(A)$. A and $\theta(a)$ for all $a \in K$ are rational over Q. Further A has an automorphism μ rational over k, such that

$$\mu^2 = 1,$$
 $\mu\theta(a) = \theta(a^p)\mu$ $(a \in K),$ $\mu^e = -\mu,$

where ε denotes the generator of Gal(k/Q). We put

$$B = (1 + \mu)A$$
.

Then B is an abelian subvariety of A rational over k, and

$$A = B + B^{\varepsilon}$$
, $B^{\varepsilon} = (1 - \mu)A$.

Hereafter we restrict ourselves to the case $\dim B = 1$. For a prime number l and a natural number n, put

$$B\lceil l^n\rceil = \{t \in B | l^n t = 0\},\,$$

$$B[l^{\infty}] = \bigcup_{n=1}^{\infty} B[l^n].$$

It is well known that $B[l^n]$ (resp. $B[l^\infty]$) is isomorphic to $\mathbf{Z}/l^n\mathbf{Z} \oplus \mathbf{Z}/l^n\mathbf{Z}$ (resp. $\mathbf{Q}_l/\mathbf{Z}_l \oplus \mathbf{Q}_l/\mathbf{Z}_l$) where \mathbf{Q}_l denotes the l-adic number field and \mathbf{Z}_l the ring of l-adic integers. Let K_{l^n} (resp. K_{l^∞}) be the field generated over k by the coordinates of the points in $B[l^n]$ (resp. $B[l^\infty]$). It can be easily seen that K_{l^n} (resp. K_{l^∞}) is a finite (resp. an infinite) Galois extension of k. Taking a basis of $B[l^n]$ (resp. $B[l^\infty]$) we obtain a representation R_n (resp. R_∞)

$$R_n: \operatorname{Gal}(K_{l^n}/k) \longrightarrow GL_2(\mathbf{Z}/l^n\mathbf{Z})$$

 $R_n: \operatorname{Gal}(K_{l^m}/k) \longrightarrow GL_2(\mathbf{Z}_l)$.

We may assume that

$$(1.1) R_n(\sigma') \equiv R_{\infty}(\sigma) \pmod{l^n},$$

if σ' is the restriction of an element σ of $Gal(K_{l\infty}/k)$ to K_l .

Let \mathfrak{p} be a prime ideal not dividing q, then B has good reduction modulo \mathfrak{p} . We denote by \widetilde{B} the elliptic curve obtained from B by reduction modulo \mathfrak{p} . Let $\varphi_{\mathfrak{p}}$ denote the Frobenius endomorphism of \widetilde{B} of degree $N\mathfrak{p}$, and \mathfrak{R}_l the l-adic representation of End(\widetilde{B}). Then we have (see [5, (7. 6. 15)])

(1.2)
$$\det (1_2 - u \mathfrak{R}_I(\varphi_{\mathfrak{p}})) = 1 - a_p u + p u^2 \quad \text{if} \quad (p) = \mathfrak{p} \cdot \mathfrak{p}',$$

$$\det (1_2 - u^2 \mathfrak{R}_I(\varphi_{\mathfrak{p}})) = (1 - a_p u - p u^2)$$

$$\times (1 - a_p^p u - p u^2) \quad \text{if} \quad N\mathfrak{p} = p^2,$$

provided that l is prime to $N\mathfrak{p}$. Let \mathfrak{P} be a prime divisor of K_l which divides \mathfrak{p} and σ a Forbenius element of $Gal(K_{l\infty}/k)$ for \mathfrak{P} . Then we obtain

$$(1.3) R_{\infty}(\sigma) = \Re_{l}(\varphi_{n})$$

by choosing suitable basis of $B[I^{\infty}]$ and $\tilde{B}[I^{\infty}]$, since we see easily $t^{\sigma} \mod \mathfrak{P} = \varphi_{\mathfrak{p}}(t \mod \mathfrak{P})$. Hence comparing (1.3) with (1.2), we know

the characteristic polynomial of $R_n(\sigma')$ coincides with that of $\mathfrak{R}_l(\varphi_p)$ modulo l^n . Further we can prove that K_l contains a primitive l^n -th root of unity ζ_n , and

(1.4)
$$\zeta_n^{\tau} = \zeta_n^{\det R_n(\tau)}$$

for every $\tau \in Gal(K_{l^n}/k)$.

2. A congruence for a_n (due to Doi).

We now define the generalized Bernoulli number $B_{\kappa,\chi}$. Let χ be the character of order 2 with a prime conductor q and let

$$F_{\chi}(t) = \sum_{a=1}^{q} \frac{\chi(a)t \cdot e^{at}}{e^{qt} - 1}.$$

Expanding this into power series we have

$$F_{\chi}(t) = \sum_{\kappa=1}^{\infty} B_{\kappa,\chi} \cdot \frac{t^{\kappa}}{\kappa!} .$$

The number $B_{\kappa,\chi}$ defined as above is called the generalized Bernoulli number. It has been proved in [1],

(2.1)
$$\det(1 + \chi(p)p^{k-1} - T_{p,\kappa}) \equiv 0 \pmod{l}$$

where l is an odd prime factor of the numerator of $(2\kappa)^{-1} \cdot B_{\kappa,\chi}$, and $T_{p,\kappa}$ is the Hecke operator acting on the space $S_{\kappa}(\Gamma_0(q), \chi)$ of weight κ . Since we have assumed that the abelian variety B over k is of one-dimensional, the Fourier coefficient a_p of the corresponding cusp form $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$ is contained in Q or an imaginary quadratic field according as $\chi(p) = 1$ or -1. Hence, in our case, the congruence (2.1) becomes (setting k = 2)

(2.2)
$$1 + p - a_p \equiv 0 \ (l) \qquad \text{if} \quad \chi(p) = 1$$
$$(1 - p)^2 - a_p^2 \equiv 0 \ (l) \qquad \text{if} \quad \chi(p) = -1 \ ,$$

where l is an odd prime factor of the numerator of $4^{-1} \cdot B_{2,\kappa}$.

3. Some Lemmas.

We give here some lemmas which is necessary to prove our Theorem.

Lemma 1. For an odd prime l, let G be a subgroup of $GL_2(Z/lZ)$ satisfying the following conditions: (1) G has elements of order l and l-1. (2) Any element of G has an eigen-value 1. Then G is isomorphic to the group $\left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \in GL_2(Z/lZ) \mid b \in Z/lZ, \ d \in (Z/lZ)^{\times} \right\}$ of order l(l-1).

Proof. Put $G' = G \cap PSL_2(\mathbf{Z}/l\mathbf{Z})$, then G/G' is a subgroup of $GL_2(\mathbf{Z}/l\mathbf{Z})/PSL_2(\mathbf{Z}/l\mathbf{Z})$, hence [G:G'] is prime to l. Therefore G contains an element of order l by the assumption (1). By virtue of the assumption (2), any element g' of G' is conjugate to $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, hence g'' = 1. Therefore G' is an l-group and is also an l-Sylow subgroup of $PSL_2(\mathbf{Z}/l\mathbf{Z})$ by considering the order of $PSL_2(\mathbf{Z}/l\mathbf{Z})$. Hence G' is conjugate to the group $\left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbf{Z}/l\mathbf{Z} \right\}$. Since G normalizes the group G', G is isomorphic to the group $\left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \middle| b \in \mathbf{Z}/l\mathbf{Z}, d \in \mathfrak{h} \right\}$ where \mathfrak{h} is a subgroup of $(\mathbf{Z}/l\mathbf{Z})^\times$. Now G contains an element of order l-1, therefore $\mathfrak{h} = (\mathbf{Z}/l\mathbf{Z})^\times$. This completes the proof of our lemma 1.

We quote here a lemma given in ([4, p. 213]).

Lemma 2. (Shimura). Let g be an element of $GL_2(\mathbf{Z}/l\mathbf{Z})$, whose characteristic polynomial is congruent to $X^2 - a_p X + p$ modulo l, where p is a prime and a_p is an integer. If $a_p^2 - 4p = ld$ with an integer d which is not divisible by d, then g is conjugate to a matrix of the form $\begin{pmatrix} b & 1 \\ 0 & b \end{pmatrix}$.

Let K be a finite Galois extension over an algebraic number field k, whose Galois group $\operatorname{Gal}(K/k)$ is isomorphic to the group $\left\{\begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \middle| b \in \mathbb{Z}/l\mathbb{Z}, d \in (\mathbb{Z}/l\mathbb{Z})^{\times}\right\}$, where l is an odd prime. Further assume that K contains a primitive l-th root of unity $\zeta = e^{\frac{2\pi i}{l}}$. Under these

situations we obtain the following assertion.

Lemma 3. If $\zeta^{\eta} = \zeta^{\det \eta} = \zeta^d$ for $\eta = \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \in \operatorname{Gal}(K/k)$, Then there exists an element α of K^{\times} such that $K = k(\zeta, \alpha)$ with $\alpha^l \in k^{\times}$.

Proof. It is easy to see that the Galois group $\operatorname{Gal}(K/k)$ is generated by $\sigma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and $\tau = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$ where d is a primitive root modulo l. Since $\zeta^{\sigma} = \zeta$ and $\zeta^{\tau} = \zeta^{d}$, K is a Kummer extension over $k(\zeta)$ of degree l. Hence there exists an element β of K^{\times} such that $K = k(\zeta, \beta)$ with $\beta^{l} \in k(\zeta)$. Now $(\beta^{\sigma})^{l} = (\beta^{l})^{\sigma} = \beta^{l}$, therefore we may assume β satisfies $\beta^{\sigma} = \zeta\beta$ (Consider a suitable power of β instead of β , if necessary). We see

$$\left\{x \in K^{\times} \mid x^{l} \in k(\zeta)\right\} = \bigcup_{v=0}^{l-1} k(\zeta)^{\times} \beta^{v},$$

so there exists an element γ of $k(\zeta)^{\times}$ and an integer v $(0 \le v \le l-1)$ such that $\beta^{\tau} = \gamma \beta^{v}$. Since $\tau \sigma^{d} = \sigma \tau$, we obtain $\gamma \zeta^{dv} \beta^{v} = \beta^{\tau \sigma^{d}} = \beta^{\sigma \tau} = (\zeta \beta)^{\tau} = \zeta^{d} \gamma \beta^{v}$, hence $\zeta^{dv} = \zeta^{d}$, thus v = 1. Namely, we obtain $\beta^{\tau} = \gamma \beta$ therefore we have $N_{k(\zeta)/k}(\gamma) = 1$. Thus there exists an element δ of $k(\zeta)$ such that $\gamma = \delta/\delta^{\tau}$. Define $\alpha = \beta \delta$ then we see $\alpha^{\tau} = \alpha$ and $\alpha^{l} \in k(\zeta)^{\times}$ therefore $\alpha^{l} \in k$. Hence we have $K = k(\zeta, \alpha)$ with $\alpha^{l} \in k$. This completes our proof of lemma 2.

4. A Proof of the Theorem.

For primes q=29, 37, we have $\dim S_2(\Gamma_0(q), \chi)=2$, namely the abelian variety B over $k=Q(\sqrt{q})$ is of one dimensional.

Further we observe that $B_{2,\chi}=12$, 20 for q=29 and 37, respectively. First we shall discuss the case q=29. We consider the field K_3 generated over $k=Q(\sqrt{29})$ by the coordinates of points on B of order l=3. There is an isomorphism $\sigma \to R_l(\sigma)$ of the Galois group $\operatorname{Gal}(K_3/k)$ onto a subgroup of $GL_2(\mathbb{Z}/3\mathbb{Z})$. Let p be a prime different from 3, 29 and p be a prime divisor of p in K_3 . Let σ_p be a Frobenius automorphism for p, then by (1.2) and (1.3) we have

$$\det(x \cdot 1_2 - R_1(\sigma_p)) \equiv \begin{cases} x^2 - a_p x + p \pmod{3} & \text{if } \chi(p) = 1 \\ x^2 - (a_p^2 + 2p)x + p^2 \pmod{3} & \text{if } \chi(p) = -1 \end{cases}.$$

By Virtue of (2.2), $R_l(\sigma_p)$ has an eigen value 1 for any p. We assert that $R_l(\operatorname{Gal}(K_3/k))$ contains elements of order 3 and 2. Take p=7, from the table (I) we get $a_7=2$. Hence $R_l(\operatorname{Gal}(K_3/k))$ contains an element q whose characteristic polynomial is

$$X^2 - 2X + 7 \equiv (X - 1)^2 \pmod{3}$$

and since $a_7^2 - 4.7 = -24$, we can verify by lemma 2 that g is conjugate to a matrix of the form $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Hence $R_l(\operatorname{Gal}(K_3/k))$ contains an element of order 3. Applying the same to p = 5 we find an element of order 2 in $R_l(\operatorname{Gal}(K_3/k))$.

Hence $Gal(K_3/k)$ satisfies the assumptions in lemma 1. Thus wez have

$$\operatorname{Gal}(K_3/k) \simeq \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \in \operatorname{Gl}_2(\mathbf{Z}/3\mathbf{Z}) \mid b \in \mathbf{Z}/3\mathbf{Z}, \ d \in (\mathbf{Z}/3\mathbf{Z})^{\times} \right\}$$

Next we shall determine the field K_3 explicitly.

As we know K_3 contains a primitive third root of unity $\zeta = e^{\frac{2\pi i}{3}}$ and $\zeta^{\sigma} = \zeta^{\det \sigma}$ (see (1.4)), the extension K_3 over k satisfies the assumptions in lemma 3. Hence there exists an element α of K_3 such that $K_3 = k(\zeta, \alpha)$ with $\alpha^3 \in k$. Now we must prove that α^3 can be taken as the fundamental unit $\varepsilon = \frac{5 + \sqrt{29}}{2}$ of k. By the property of the field generated by l-section point, we know that any prime divisor p of $k(\zeta)$ is unramified in K_3 , if p does not divide $3 \cdot \sqrt{29}$. So we can put α^3 of k so as $\alpha^3 = 3^a \cdot \sqrt{29}^b \cdot \varepsilon^c$ where $0 \le a$, b, $c \le 2$ (Note that $\chi(3) = -1$). More precisely, we may put $\alpha^3 = 3$, $3^a \cdot \sqrt{29}$ or $3^a \cdot \sqrt{29}^b \cdot \varepsilon$ with $0 \le a$, $b \le 2$. Hence there are 13 possibilities of the choice of α^3 . We shall show that $\alpha^3 = \varepsilon$ by examining the decompotion law of several prime divisors of $k(\zeta)$ in K_3 .

(I) the case q = 29*

Let $\sigma_{\mathfrak{p}}$ be the Frobenius automorphism for \mathfrak{p} of K_3 where \mathfrak{p} is dividing one of 7, 13 and 547. Then by lemma 2, we verify $R_i(\sigma_{\mathfrak{p}})$ is of order 3, hence any prime divisor of $k(\zeta)$ which divides one of 7, 13 and 547 does not decompose in K_3 . On the other hand, as the table shows, we have for p=547

$$(3^a \cdot \sqrt{29^b})^{\frac{p-1}{3}} \equiv 1 \pmod{\mathfrak{p}}$$

where p is any prime factor of 547 in $k(\zeta)$. This shows that the Frobenius automorphism $\sigma_{\mathfrak{p}}$ for p of the extension $k\left(\zeta, \sqrt[3]{3^a \cdot \sqrt{29}^b}\right)$ over $k(\zeta)$ is trivial since

$$\sqrt[3]{3^a \cdot \sqrt{29^b}} \, \sigma_{\mathfrak{p}} \equiv \sqrt[3]{3^a \sqrt{29^b}}^p \pmod{\mathfrak{p}}$$

$$\equiv \sqrt[3]{3^a \sqrt{29^b}} \pmod{\mathfrak{p}}.$$

Hence a prime factor $\mathfrak p$ of 547 in $k(\zeta)$ decomposes completely in $k(\zeta, \sqrt[3]{3^a \sqrt{29}^b})$. Thus we can not have $\alpha^3 = 3$ $3^a \cdot \sqrt{29}$. Next we take p = 7 then

$$(3^2\sqrt{29}^b \cdot \varepsilon)^{\frac{p-1}{3}} \equiv 1 \ (\mathfrak{p}) \quad \text{if } \mathfrak{p} \text{ divides } 6 + \sqrt{29},$$

$$(3 \cdot \sqrt{29}^b \cdot \varepsilon)^{\frac{p-1}{3}} \equiv 1 \ (\mathfrak{p}) \quad \text{if } \mathfrak{p} \text{ divides } 6 - \sqrt{29},$$

^{*} The meaning of this table is as follows: r denotes a primitive root modulo p, Ind, n the index of n with respect to r. $\varepsilon = \frac{5 + \sqrt{b}}{2}$, where $b^2 \equiv 29 \mod p$.

for any b. Thus by the same reasoning as for p=547, we can not have $\alpha^3 = 3 \cdot \sqrt{29}{}^b \varepsilon$, $3^2 \cdot \sqrt{29}{}^b \varepsilon$ for any b $(0 \le b \le 2)$. Further, take p=13 we see

$$(\sqrt{29}^{2} \cdot \varepsilon)^{\frac{p-1}{3}} \equiv 1 \quad (\mathfrak{p}) \qquad \text{if } \mathfrak{p} \text{ divides } \frac{9-\sqrt{29}}{2},$$

$$(\sqrt{29} \cdot \varepsilon)^{\frac{p-1}{3}} \equiv 1$$
 (p) if p divides $\frac{9 + \sqrt{29}}{2}$,

thus we can not have $\alpha^3 = \sqrt{29}\varepsilon$, $\sqrt{29}^2\varepsilon$. Summing up above facts we must have $\alpha^3 = \varepsilon$. This completes the proof of (2) for the case q = 29. Lastly, we must show that K_3 is unramified over $k(\zeta)$. Since we proved $K_3 = k(\zeta, \sqrt[3]{\varepsilon})$, a prime divisor $\mathfrak p$ of $k(\zeta)$ is unramified in K_3 unless $\mathfrak p$ divides 3. Now assume $\mathfrak p = (1-\zeta)$, which divides 3, is ramified in K_3 , then the prime ideal (3) of k is also totally ramified in $k(\sqrt[3]{\varepsilon})$. Let w be the additive (3)-adic valuation of the (3)-adic field of $k(\sqrt[3]{\varepsilon})$. normalized as w(3)=1. Define the element x of $k(\sqrt[3]{\varepsilon})$ as $\sqrt[3]{\varepsilon}=x+\varepsilon^3$, then x satisfies

$$x^3 + 3\varepsilon^3 x^2 + \varepsilon^9 - \varepsilon = -3\varepsilon^6 x$$

Because p = (3) is totally ramified in $k(\sqrt[3]{\epsilon})$,

$$w(x) = -\frac{1}{3} - w(N_{k(\sqrt[3]{\epsilon})/k}(x))$$
$$= -\frac{1}{3} - w(\epsilon^9 - \epsilon).$$

Now since $\varepsilon^4+1=\varepsilon^2\cdot\mathrm{tr}(\varepsilon^2)=\varepsilon^2\cdot\mathrm{tr}\Big(\frac{27+5\sqrt{29}}{2}\Big)=27\varepsilon^2,\ \varepsilon^4-1=\varepsilon^4+1-2\not\equiv 0$ (mod 3), we have $w(\varepsilon^9-\varepsilon)=3$. Thus w(x)=1. Hence $w(x^3+3\varepsilon^3x^2+\varepsilon^9-\varepsilon)\geq 3$, while $w(-3\varepsilon^6x)=2$. This is a contradiction. Thus the prime divisor $\mathfrak{p}=(1-\zeta)$ of $k(\zeta)$ is unramified in $K_3=k(\zeta,\sqrt[3]{\varepsilon})$. This completes the proof of our Theorem for the case q=29.

[Remark] It was proved by Casselman (On abelian varieties with

many endomorphisms and a conjecture of Shimura's, Inventiones math. 12 (1971), 225-236) that Shimura's elliptic curve for the case q=29 has good reduction at every primes of $k=Q(\sqrt{29})$. So the prime $(\sqrt{29})$ is unramified in K_3 . If we use this facts, there are only 4 possiblitities of α^3 , namely $\alpha^3=3$, 3ε $3^2\varepsilon$ and ε , which makes the proof of our Theorem a little simpler.

In [3, § 3.10] Serre has given an elliptic curve B' over $k = Q(\sqrt{29})$ defined by the equation

$$B'$$
: $y^2 + xy + \varepsilon^2 y = x^3$

where $\varepsilon = \frac{5 + \sqrt{29}}{2}$. B' has also good reduction at every primes of k. It is conjectured that B' is isomorphic to the Shimura's elliptic curve B for the case q = 29 (see [6, § 10]). It was also remarked that the Galois group of the field K'_3 generated by the 3-section points of B' over k is isomorphic to the group

$$\left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \middle| b \in \mathbf{Z}/3\mathbf{Z}, \ d \in (\mathbf{Z}/3\mathbf{Z})^{\times} \right\},\,$$

verifying the rational point (0, 0) on B' is of order 3. We note here that the field K'_3 coincides with K_3 , which can be verified by examining the trace $\operatorname{tr}(\varphi'_{\mathfrak{p}})$ of the Frobenius automorphism of the elliptic curve \tilde{B} obtained by the reduction modulo \mathfrak{p} , putting $N\mathfrak{p}=7, 13, 67$, (For these primes we have $\operatorname{tr}(\varphi'_{\mathfrak{p}})=a_{\mathfrak{p}}$).

Secondly, we treat the case q=37. In this case we have $B_{2,\chi}=20$. So we consider the field K generated over $k=Q(\sqrt{37})$ by 5-section point of the elliptic curve B associated to the space $S_2(\Gamma_0(37), \chi)$. There is an isomorphism $\sigma \to R_l(\sigma)$ of the Galois group $\operatorname{Gal}(K_5/k)$ onto a subgroup of $GL_2(\mathbf{Z}/5\mathbf{Z})$. Let $\mathfrak p$ be a prime divisor of 11 in K_5 . Then by the same reasoning as the case q=29, the characteristic polynomial of the image $R_l(\sigma_{\mathfrak p})$ of the Frobenius automorphism for $\mathfrak p$ is

$$X^2 - a_{11}X + 11 = X^2 + 3X + 11 \equiv (X - 1)^2$$
 (mod 5),
and since $a_{11}^2 - 4 \cdot 11 = -35$, we see that the order $R_I(\sigma_v)$ is of order

5. Applying the same to p=3 we find an element of order 4 in $R_i(\operatorname{Gal}(K_5/k))$. Thus we have

$$\operatorname{Gal}(K_5/k) \cong \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \in \operatorname{GL}_2(\mathbf{Z}/5\mathbf{Z}) \mid b \in \mathbf{Z}/5\mathbf{Z}, \ d \in (\mathbf{Z}/5\mathbf{Z})^{\times} \right\},\,$$

by virtue of lemma 1. Thus there exists an element α of K_5 such that $K_5=k(\zeta,\alpha)$ with $\alpha^5\in k=\mathbf{Q}(\sqrt{37})$ and $\zeta=e^{\frac{2\pi i}{5}}$. By the same argument as the case q=29, α^5 of k can be taken as $\alpha^5=5^a\sqrt{37}^b\varepsilon^c$ where $0\leq a,\,b,\,c\leq 4$ (Note that $\chi(5)=-1$). More precisely we can put $\alpha^5=5,\,5^a\sqrt{37},\,5^a\sqrt{37}^b\varepsilon$ with $0\leq a,\,b\leq 4$, where $\varepsilon=6+\sqrt{37}$ is the fundamental unit of k. Hence there are 31 possibilities of the choice of α^5 . We shall show $\alpha^5=\varepsilon$.

(II) the case q = 37

p	a_p	a_p^2-4p	r	Ind, 5	Ind, 37	Ind, ε
3	-1					
11	-3	-35	2	4	2	3, 2
41	-3	-155	6	22	32	13, 7
181	-3	-715	10	48	38	149, 21
491	12	-1820	10	478	340	131, 114
601	-18	-2080	506	50	580	

Let $\sigma_{\mathfrak{p}}$ be the Frobenius automorphism for \mathfrak{p} of K_5 where \mathfrak{p} is dividing one of 11, 41, 181, 491 and 601, then as the table (II) shows the order of $R_l(\sigma_{\mathfrak{p}})$ is of order 5. Hence any prime divisor of $k(\zeta)$ which divides one of 11, 41, 181, 491, and 601 does not decompose in K_5 . On the other hand, we have for p=601

$$(5^a \sqrt{37}^b)^{\frac{p-1}{5}} \equiv 1 \mod \mathfrak{p},$$

where p is any prime of $k(\zeta)$ dividing p=601. This shows we can not have $\alpha^5=5$, $5^a \cdot \sqrt{37}$ $(0 \le a \le 4)$. Next p=491, then

$$(5^2\sqrt{37}b_{\varepsilon})^{\frac{p-1}{5}} \equiv 1 \quad (\mathfrak{p}) \quad \text{if } \mathfrak{p} \text{ divides } 48-7\sqrt{37},$$

$$(5^3\sqrt{37}^b\varepsilon)^{\frac{p-1}{5}} \equiv 1 \ (\mathfrak{p})$$
 if \mathfrak{p} divides $48+7\sqrt{37}$,

for any b. Thus we can not have $\alpha^5 = 5^2 \sqrt{37}^b$, $5^3 \sqrt{37}^b$ ($0 \le b \le 4$). Further applying the same to p = 11, 41 and 181, it turns out that we can not have $\alpha^5 = 5^a \sqrt{37}^b \varepsilon$ for any a, b except a = b = 0. Summing up all these facts we obtain $\alpha^5 = \varepsilon$. Thus we have $K_5 = k(\zeta, \sqrt[5]{\varepsilon})$. This completes the proof for the case q = 37.

[Remark] We add a remark for the case q=37. Consider the extension $k(5\sqrt{\varepsilon})$ over $k=Q(\sqrt{37})$. Then $k(5\sqrt{\varepsilon})$ is generated by $x=5\sqrt{\varepsilon}-\varepsilon^5$, which satisfies

$$x^{5} + 5\varepsilon^{5} \cdot x^{4} + 10\varepsilon^{10} \cdot x^{3} + 10\varepsilon^{15}x^{2} + 5\varepsilon^{20}x + \varepsilon^{25} - \varepsilon = 0.$$

We can verify that $\varepsilon^{2.5} - \varepsilon$ is divisible by the prime ideal (5) of k but not divisible by $(5)^2$. Hence the above equation is the so-called Eisenstein equation. Thus the prime ideal (5) of k is totally ramified in $k(\sqrt[5]{\varepsilon})$. This means that the field K_5 is ramified over $k(\zeta)$.

KYOTO UNIVERSITY

References

- [1] K. Doi, On a decompotion theorem for Dirichlet series associated with automorphic forms, to appear.
- [2] K. Doi and M. Yamauchi, On th Hecke operators for $\Gamma_0(N)$ and class fields over quadratic number fields, to appear in J. Math. Soc. Japan.
- [3] J. P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Math., 15 (1972), 259-331.
- [4] G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math., 221 (1966), 209-220.
- [5] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, No. 11 Iwanami Shoten and Princetion University Press, 1971.
- [6] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann of Math., 95 (1972), 130-190.