On morphisms from projective space P^n to the Grassmann variety Gr(n, d)

By

Hiroshi TANGO

(Communicated by Prof. Nagata, April 24, 1975)

§ 1. Introduction and notation.

In [6] we proved that there exist no morphisms, expect constant ones, from the m-dimensional projective space \mathbf{P}^m to the Grassmann variety Gr(n, d) if m > n.

In the present article, we study such a case that m=n and n-1>d>0, and we obtain the following:

Theorem. There exist no morphisms, except constant ones, from \mathbf{P}^n to Gr(n, d) if one of the following conditions holds:

- i) n is even and n-1>d>0.
- ii) d is even, n-1>d>0 and $(n, d) \neq (5, 2)$.

In § 3, we give an example of a non-constant morphism from P^3 to Gr(3,1). Furtheremore, in the case when the defining field is of characteristic 2, we give an example of a non-constant morphism from P^5 to Gr(5,2). Using this example, we give an example of indecomposable vector bundle of rank 2 on P^5 .

We use the same notation as in [6], i. e.; P^n is the n dimensional projective space defined over an algebraically closed field k of an arbitrary characteristic p: H is a hyperplane of P^n ; Gr(n, d) is the Grassmann variety which parametrizes d dimensional linear subspaces of P^n ; E(n, d) is the universal subbundle of rank d+1 on Gr(n, d) and Q(n, d) is the universal quotient bundle of rank n-d on Gr(n, d);

^{*)} The work was supported by Sakkokai Foundation.

 $\omega_{a_0, a_1, \dots, a_d}(=\Omega_{n-d-a_0, n-d+1-a_1, \dots, n-a_d})$ is the Schubert cycle of codimension $\sum_{i=0}^{d} a_i$ of Gr(n, d) defined for an arbitary (d+1)-tuple of integers (a_0, a_1, \dots, a_d) such that $n-d \ge a_0 \ge a_1 \ge \dots \ge a_d \ge 0$ (cf. [6]); these Schubert cycles satisfy the following Pieri's formula

(1)
$$\omega_{a_0,a_1,\dots,a_d}\omega_{h,0,\dots,0} = \sum \omega_{b_0,b_1,\dots,b_d}$$

where the summation runs over all the (d+1)-tuples of integers (b_0, b_1, \dots, b_d) which satisfy the relation,

$$n-d \ge b_0 \ge a_0 \ge b_1 \ge a_1 \ge b_2 \ge \cdots \ge a_{d-1} \ge b_d \ge a_d \ge 0$$

and

$$\sum_{i=0}^{d} b_{i} = \sum_{i=0}^{d} a_{i} + h;$$

 $\operatorname{Dr}(n,d,0) = \{(x,P) \in \operatorname{Gr}(n,d) \times \mathbf{P}^n | L_x \ni P\}$ is the flag variety, where L_x is the d-dimensional linear subspace of \mathbf{P}^n which is represented by x; $c_t(E)$ is the i-th Chern class of a vector bundle E and $c(E) = 1 + c_1(E) + c_2(E) + \cdots$ is the total Chern class of E; \check{E} is the dual vector bundle of E.

§ 2. Proof of the theorem.

Let f be a morphism from P^n to Gr(n, d). Let c_i and d_j be the integers such that

(2)
$$\begin{cases} c_{i}(f^{*}\check{E}(n,d)) = c_{i}H^{i} & 1 \leq i \leq d+1 \\ c_{j}(f^{*}Q(n,d)) = d_{j}H^{j} & 1 \leq j \leq n+d \end{cases}$$

Then, we have

(3)
$$(1 - c_1 t + c_2 t^2 + \dots + (-1)^{d+1} c_{d+1} t^{d+1}) (1 + d_1 t + d_2 t^2 + \dots + d_{n-d} t^{n-d})$$

$$= 1 + (-1)^{d+1} c_{d+1} d_{n-d} t^{n+1},$$

where t is an indeterminate, cf. [6].

When $c_{d+1}d_{n-d}=0$, we see easily that $c_1=0$. This implies that $f(\mathbf{P}^n)$ is one point, cf. the proof of [6, Corollary 4.2]. Thus we may assume that $c_{d+1}d_{n-d}\neq 0$. The theorem is proved if we show that this assumption leads to a contradiction. Since nd is even, we have that $c_1, c_2, \cdots, c_{d+1}, d_1, d_2, \cdots, d_{n-d}$ are positive integers and $a = {n+1 \over 2} \sqrt{c_{d+1}d_{n-d}}$ is a po-

sitive integer, by virtue of [6, Lemma 3.3]. Set

$$G(t) = 1 - C_1 t + C_2 t^2 + \dots + (-1)^{d+1} C_{d+1} t^{d+1}$$

and

$$H(t) = 1 + D_1 t + D_2 t^2 + \dots + D_{n-d} t^{n-d}$$

where

$$C_i = c_i/a^i$$
 and $D_j = d_j/a^j$ $(1 \le i \le d+1, 1 \le j \le n-d)$.

Then, we have

(4)
$$G(t) H(t) = 1 + (-1)^{d+1} t^{n+1},$$

and hence C_i , D_i are positive integers.

Case (i). Suppose that n is even and n-1>d>0. Since Gr(n,d) and Gr(n,n-d-1) are isomorphic to each other and since d+1 or n-d is odd, we may assume, furtheremore, that d+1 is odd. By virtue of the equality (4), we have

$$G(-1)H(-1)=2$$
.

Hence, we have

$$1+d+1 \le 1+C_1+C_2+\cdots+C_{d+1}=G(-1) \le 2.$$

This contradicts the assumption that d>0.

In order to prove the theorem in case (ii), we need the following lemma.

Lemma 1. Let n be odd, d even, and n-1>d>0. Suppose that there exists a non-constant morphism f from \mathbf{P}^n to Gr(n,d). Let C_i and D_j be as above, then n+1=2(d+1)=2(n-d), $C_1=C_2=\cdots=C_d=D_1=D_2=\cdots=D_{n-d-1}=2$ and $C_{d+1}=D_{n-d}=1$.

Proof. Set 2s = n + 1. We may assume that $n - d \ge s$. 1 - t divides G(t) since G(1)H(1) = 0 and $H(1) \ne 0$. Hence, we have

$$\frac{G(t)}{1-t}\cdot H(t) = 1 + t + t^2 + \dots + t^n.$$

Therefore, H(1) divides n+1(=2s). This and the fact that $H(1)=1+D_1+D_2+\cdots D_{n-d}\ge 1+n-d\ge 1+s$, show that H(1)=2s. Now we show that $D_1\ge 2$. Assume that $D_1=1$. Then, by (4), we have

$$C_2 = D_1^2 - D_2 = 1 - D_2 \le 0.$$

This contradicts the assumption that $C_2>0$. Next we claim that D_1 , D_2 , ..., $D_{n-d-1}\geq 2$. In order to see it let us suppose to the contary, that there exists a positive interger $i\leq n-d-1$ such that $D_t=1$. The assertion is proved if we show that this assumption leads a contradiction Set $j=\min\{i|D_t=1\}$. Since $D_1\geq 2$, $D_{j-1}\geq 2$. It is easy to see that $H(t)=t^{n-d}H(t^{-1})$ cf. [6, § 3]. Hence, we have

$$1 = D_{n-d}, D_1 = D_{n-d-1}, D_2 = D_{n-d-2}, \cdots$$

Therefore, we have $2j \leq n-d$. Since $\omega_{j,j,0,\dots,0}$ is numerically non-negative, so is $f^*\omega_{j,j,0,\dots,0}$ (cf. [6, Corollary 1,2]). On the other hand

$$f^*\omega_{j,j,0,\dots,0} = f^*(\omega_{j,0,\dots,0}^2 - \omega_{j+1,0,\dots,0}\omega_{j-1,0,\dots,0}) \quad (\text{cf. (1) and (2)})$$

$$= f^*(c_j(Q(n,d)))^2 - f^*(c_{j+1}(Q(n,d))) f^*(c_{j-1}(Q(n,d)))$$

$$= (d_j^2 - d_{j+1}d_{j-1}) H^{2j}$$

$$= (D_j^2 - D_{j+1}D_{j-1}) a^{2j}H^{2j}.$$

Since $D_j^2 - D_{j+1}D_{j-1} \leq 1 - 2 < 0$, this contradicts the fact that $f^*\omega_{j,j,0,\cdots,0}$ is numerically non-negative. Hence, we have

$$n+1 = H(1) = 1 + D_1 + D_2 + \cdots + D_{n-d} \le 1 + 2(n-d-1) + 1$$
$$= 2(n-d) \le 2s.$$

This shows that n-d=s and $D_1=D_2=\cdots=D_{n-d-1}=2$. It is easy to see that $C_1=C_2=\cdots=C_d=2$ by virtue of (4). q.e.d.

Let us continue the proof of the theorem.

Case (ii). Let n be odd, d even, n-1>d>0 and $(n, d) \neq (5, 2)$. Assuming that there exists a non-constant morphism from P^n to Gr(n, d), we show that this assumption leads to a contradiction. Let a and D_i be as above. Since $(n, d) \neq (5, 2)$, we have $d \geq 4$ and $D_1 = D_2 = D_3 = 2$. Therefore, we have

$$f^*\omega_{2,2,0,\dots,0} = f^*(\omega_{2,0,\dots,0}^2 - \omega_{3,0,\dots,0}\omega_{1,0,\dots,0})$$
$$= (D_2^2 - D_1D_1)a^4H^4 = 0.$$

This shows that

$$0 = f^*(\omega_{2,2,0,\dots,0}\omega_{n-d-2,0,\dots,0})$$

$$= f^*\omega_{n-d,2,0,\dots,0} + f^*\omega_{n-d-1,2,1,0,\dots,0}$$

$$+ f^*\omega_{n-d-2,2,2,0,\dots,0} \quad (cf. (1)).$$

Since $f^*\omega_{n-d-1,2,1,0,\dots,0}$ and $f^*\omega_{n-d-2,2,2,0\dots,0}$ are numerically non-negative, we have that $f^*\omega_{n-d,2,0,\dots,0}=0$. On the other hand we have,

$$f^*\omega_{n-d,2,0,\ldots,0} = f^*(\omega_{n-d,0,\ldots,0}\omega_{2,0,\ldots,0})$$

$$= f^*(c_{n-d}(Q(n,d)))f^*(c_2(Q(n,d))) \quad (cf. (6))$$

$$= D_{n-d}D_2a^{n-d+2}H^{n-d+2} \neq 0.$$

This is a contradiction.

q.e.d.

§ 3. Examples.

Example 1. Let S_4 be the quadric hypersurface of P^5 defined by the homogeneous equation

$$X_0X_1 + X_2X_3 + X_4X_5 = 0$$
.

Then, it is well-known that Gr(3,1) is isomorphic to S_4 (cf. [2] Chapter XIV). Let f be a morphism from P^3 to S_4 defined by

$$f(x_0, x_1, x_2, x_3) = (x_0^2, -x_1^2, x_2^2, x_3^2, x_0x_1 + x_2x_3, x_0x_1 - x_2x_3).$$

It is easy to see that f is not a constant morphism.

Example 2. Let S_6 be the quadric hypersurface of P' defined by the homogeneous equation

$$X_0X_1 + X_2X_3 + X_4X_5 + X_5X_7 = 0$$
.

For a generic point $P = (x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ of S_6 , let h(P) be the point of Gr(5, 2) which represents the 2-dimensional linear subspace of P^5 spanned by the three points

(5)
$$(x_0^2, 0, 0, x_2^2, x_2x_4 + x_0x_7, x_2x_6 - x_0x_5)$$

$$(0, x_0^2, 0, x_2x_4 - x_0x_7, x_4^2, x_4x_6 + x_0x_3)$$

$$(0, 0, x_0^2, x_2x_6 + x_0x_5, x_4x_6 - x_0x_5, x_5^2).$$

Lemma 2. h is a morphism from S_6 to Gr(5,2).

Proof. The plücker coordinate of h(P) is $(x_0^6, x_0^4(x_2x_6+x_0x_5), x_0^4(x_4x_6-x_0x_3), x_0^4x_6^2, x_0^4(x_0x_7-x_2x_4), -x_0^4x_4^2, -x_0^4(x_4x_6+x_0x_3), x_0^4(x_1x_4+x_3x_7), x_0^4(x_1x_6-x_3x_5), x_0^4x_3^2, x_0^4x_2^2, x_0^4(x_2x_4+x_0x_7), x_0^4(x_2x_6-x_0x_5), x_0^4(x_5x_7-x_1x_2), -x_0^4x_5^2, x_0^4(x_1x_6+x_3x_5), x_0^4x_7^2, -x_0^4(x_1x_2+x_5x_7), x_0^4(x_3x_7-x_1x_2), x_0^4x_1^2).$

Hence, it is easy to see that h is a morphism. q.e.d.

Let S_5 be the hyperplane section of S_6 by $x_0 - x_1 = 0$ and g be the morphism from S_5 to P^5 defined by

(6)
$$g(Q) = (y_3, y_5, y_7, -y_2, -y_4, -y_6)$$
where $Q = (y_0, y_0, y_2, y_3, y_4, y_5, y_6, y_7)$ is a generic point of S_5 . Since
$$y_3(y_0^2, 0, 0, y_2^2, y_2y_4 + y_0y_7, y_2y_6 - y_0y_5) + y_5(0, y_0^2, 0, y_2y_4 - y_0y_7, y_4^2,$$

$$y_4y_6 + y_0y_3) + y_7(0, 0, y_2y_6 + y_0y_5, y_4y_6 - y_0y_3, y_6^2)$$

$$= y_0^2(y_3, y_5, y_7, -y_2, -y_4, -y_6).$$

the point g(Q) lies on the plane represented by h(Q). Hence, we have

Lemma 3. (h, g) is a morphism from S_5 to the flag variety Dr(5, 2, 0).

From now on we assume that the defining field is of charactristic 2. Let f be the morphism from P^5 to S_5 defined by

$$f(x_0, x_1, x_2, x_3, x_4, x_5)$$

$$= (x_0x_1 + x_2x_3 + x_4x_5, x_0x_1 + x_2x_3 + x_4x_5, x_0^2, x_1^2, x_2^2, x_3^2, x_4^2, x_5^2)$$

It is easy to see that $h \cdot f$ is not a constant morphism.

Set $h'=h\cdot f$ and $g'=g\cdot f$. Then, Lemma 3 shows that the vector bundle $h'^*(\check{E}(5,2))$ contains $g'^*(\mathcal{O}_{P^5}(-1))$ as a sublinebundle. We show that the quotient bundle $h'^*(\check{E}(5,2))/g'^*(\mathcal{O}_{P^5}(-1))$ is an in-

decomposable bundle of rank 2. Let c_1 , c_2 and c_3 be integrs such that

$$c_i(h'^*(\check{E}(5,2))) = c_iH^i \quad i=1,2,3.$$

Then, we have $c_1 = 2a$, $c_2 = 2a^2$, $c_3 = a^3$ with a positive integer a, by virtue of Lemma 1. Hence, the total Chern class of $h'^*(\check{E}(5,2))$ is

$$1 - 2aH + 2a^2H^2 - a^3H^3 = (1 - aH)(1 - aH + a^2H^2).$$

This shows that the total Chern class of

$$h'^*(\widecheck{E}(5,2))/g'^*(\mathcal{O}_{P^5}(-1))$$
 is

$$1-aH+a^2H^2$$

and the hundle is indecomposable.

KYOTO UNIVERSITY of EDUCATION

Bibliography

- [1] Hartshorne, R. Varieties of small codimension in projective space. To appear.
- [2] Hodge, W, V, D, and Pedoe, D. Methods of algebraic geometry 2, Cambridge Univ. Press 1952.
- [3] Horrocks, G, and Mumford, D. A rank 2 bundle on P⁴ with 15,000 symmetries. Topology 12. (1973) 63-81.
- [4] Maruyama, M. On a family of algebraic vector bundles. in Number Theory, Algebraic Geometry, and Commutative algebra, Tokyo (1973) 95-146.
- [5] Sato, E. On uniform vector bundles. To appear.
- [6] Tango, H. On (n-1)-dimensional projective spaces contained in the Grassmann variety Gr (n, 1). J. Math. Kyoto Univ. Vol. 14-3 (1974) 415-460.
- [7] Tango, H. An example of indecomposable vector bundle of rand n-1 on Pⁿ. To appear.