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§ 1. Introduction and notation.

In [6] we proved that there exist no morphisms, expect constant
ones, from the sm-dimensional projective space P™ to the Grassmann
variety Gr(n, d) if m>n.

In the present article, we study such a case that m=n and
n—1>d>0, and we obtain the following:

Theorem. There exist no morphisms, except constant ones,
Sfrom P" to Gr(n,d) if one of the following conditions holds:

1) n is even and n—1>d>0.

it) d is even, n—1>d>0 and (n,d)=(5,2).

In § 3, we give an example of a non-constant morphism from P*
to Gr(3,1). Furtheremore, in the case when the defining field is of
characteristic 2, we give an example of a non-constant morphism from
P° to Gr(5,2). Using this example, we give an example of indecompo-
sable vector bundle of rank 2 on P°.

We use the same notation as in [6], i.e.; P"is the » dimensional
projective space defined over an algebraically closed field 2 of an arbi-
trary characteristic p: H is a hyperplane of P"; Gr(n, d) is the Grass-
mann variety which parametriies d dimensional linear subspaces of P";
E(n,d) is the universal subbundle of rank d+1 on Gr(n,d) and
Q(n, d) is the universal quotient bundle of rank n—d on Gr(n,d);

*  The work was supported by Sakkokai Foundation.
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Dag ay o ag (= Pn-d—apn-d+i-a,-n—ae) 1S the Schubert cycle of codimension
Zg‘?_oqi of _,Gr_(n_, ). _d}@ﬁn_ed, for an arbitary (d+1)-tuple of integers
(ao, ay, *++, @ag) such that n—d>a,>>a,=>--=>a,=>0 (cf. [6]); these

Schubert. cycles: satisfy the following Pieri’s formula -
(1) Way ay, e ag®r,o,..,0 = Z Wy by, by

where the summation runs over all the (d+1)-tuples of integers (b,

by, -++, by) which satisfy the relation, = ..
n —deo_ZaoszZalzbzz . -zad_.ZbdZadZU

and

d d
Z b¢=Z(lt+ h—; .
i=o i=o

Dr(n, d,0) = {(x, P) € Gr(n,d) X P"|L,> P} is the flag variety, where
L, is the d-dimensional linear subspace of P" which is represented by
x; ¢;(E) is the i-th Chern class of a vector bundle E and ¢(E) =1+
c,(E)4c,(E) 4+ is the total Chern class of E; E is the dual vector
bundle of E. ' ' : ' ' -

§ 2. Proof of tlie theorem.

Let f be a morphism from P" to. Gr(n. d). Let _ciA‘and d; be the
integers such that
a(f*E@m,d)=cH' 15i<d+1

(2) , .
c;(f*Qn,d)) =d,H’ 1<j<n+d

Then, we have
@) A-attet’+ -+ (=D"eqt™) A+ dit+det’+ - +dpat™™)

o "'.'.‘:1'+4(—l)dr"lcd}ldn—.d.t,”’]a. -
where ¢ is 'an‘indetefmi'nate. of. [6].
When Ca1d,-a=0, we see easily that ¢,=0. This implies that f(P")
is one point, cf. the proof of [6, Corollary 4.2]. Thus we may assume
thz‘lyt cd;l'c?,,_‘d#o. The theorem is proved if we show that this a_ssuﬁlp-

tion leads to a contradiction. Since nd is even, we have that ¢, c¢,, -,

Casrs dy, day++, d,_q are positive integers and a="“«/c,,+,d _q¢ IS a po-
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sitive integer, by virtue of [6, Lemma 3.3]. Set

G(t) =1=Ct+Ctt+ -+ + (—1)*MCyy
and
H(t) =1+Dt+ D,t*+ -+ D,_,t"™¢,
where
Ci=c;/a* and D,=d,/d (1<i<d+1, 1<j<n—d).
Then, we have

(4) G() H() =14 (—1)%"s,

and hence C;, D; are positive integers.

Case (i). Suppose that n is even and #—1>d>0. Since Gr(n, d)
and Gr(n,n—d—1) are isomorphic to each other and since d+1
or n—d is odd, we may assume, furtheremore, that d+1 is odd. By

virtue of the equality (4), we have

G(—-1)H(—-1)=2.
Hence. we have

14d+1<L1+4C+Co+ +Cpiy =G(—1) K2,

This contradicts the assumption that d>0.
In order to prove the theorem in case (ii), we need the following

Jemma.

Lemma 1. Let n be odd, d even, and n—1>d>0. Suppose
that there exists a non-constant morphism f from P" to Gr(n,d).
Let C; and D; be as above, then n+1=2(d+1) =2(n—d). C,=C,=
wo=Cy=Dy=D,=--=D, 4 =2 and Cd;,#D,,_d=1. A v

. "Prvoof_. Set 2s=n+1. We may assume thaf ;z¥d=_>~s. 1—_t' divides
G(t) since G(1)H(1) =0 and H(1)0. Hence, we have
%»H(i) =1+t+84 -+ 2
Therefore, H(1) divides #+1(=2s). This and the fact that H(1) =
1+D,+D,+ D, y=1+n—d=1+s, show that H(1) =2s. Now we
show that D,=2. Assume that D,=1. Then, by(4). we have



204 . Hiroshi Tango-
C,=D}!—D,=1- D,<0.

This contradicts the assumption that C,>>0. Next we claim that D,, D,,
vy, Dyoyg1==2. In order to see it let us suppose to the contary, that
there exists a positive interger i<<n—d—1 such that D;=1. The asser-
tion is proved if we show that this assumption leads a contradiction
Set j=min{i{|D;=1}. Since D,=2, D;_,=2. Itis easy to see that H ()
="""H(t™") cf. [6, § 3]. Hence, we have 1

1 =Dn—d’ Dl :Dn—li—h DZZDn—d—z,*"'

Therefore, we have 2j<n—d. Since vy ,,.., 13 numerically non-nega-
tive, so is f*w; 4.0 (cf. [6, Corollary 1.2]). On the other hand

E05, 5,000 = (050,00 — Oy 11,0,0m00 5 _1,0,.,0)  (cf. (1) and (2))
=F*(c;(Q,d)) Y = F* (s (Qu, d))) F*(cs-1(Q(n,d)))

(cf. [6]]
= (df —‘d1+sd1-1)H“

= (Df —D;.Dy_y) a”’H*.

Since D— D, D;_,<<1—2<0, this contradiets the fact that f*w, ;. ...0
g )y 1)y , , ets 1.4,0, 0+,

is numerically non-negative. Hence, we have
n+1=HQ)=1+D,+D,+ D, <14+2(n—d—1) +1
=2(n—d)<2s.

This shows that n—d=s and D,=D,=--=D,_,_,=2. It is easy to see
that C,=C,=--=C,=2 by virtue of (4). q.e.d.

Let us continue the proof of the theorem.

Case (ii). Let n be odd, d even, n—1>d>0 and (n, d)=+#
(5,2). Assuming that there exists a non-constant morphism from P7
to Gr(un, d), we show that this assumption leads to a contradiction. Let
a and D; be as above. Since (n, d)==(5.2), we have d==4 and D, =D,

=D,=2. Therefore, we have

f*a)z,z,o,...,n =f* ((Dg,o,...,o - 0)3,0,‘..,00)1,0,...,0)

= (D) —DyD,)a'H"*=0.
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This shows that
0=F*(w2,2,0,..0®n-a=2,0,.-0)
=f*0n-a,2,0 0 FF ¥ On_a-1,2,1,0,0
+f*On-a-2.2,20.0 (cf. (1)).

Since f*w,_4-1.21.0.0 and f*0,_4_s520..0 are numerically non-negative,

we have that f*0,_420..0=0. On the other hand we have,
S*0n-q.2.0.0=F* (On_a.0,0M2,0,...0)
=f*(c-a(Q(n, d)))f* (c:(Q(n, d)))  (cf. (6))
=D,_4Dya"*+*H" 40

This is a contradiction. q.e.d.

§ 3. Examples.

Example 1. Let S, be the quadric hypersurface of P°® defined by
the homogeneous equation

XoX] + XzXa + X4X5 =0.

Then, it is well-known that Gr(3, 1) is isomorphic to S; (cf. [2] Chap-
ter XIV). Let f be a morphism from P* to S, defined by

S(xo, 21, T, 23) = (2, — X%, T, X%, o2y + Xy, Loy — X Ts) -

It is easy to see that f is not a constant morphism.

Example 2. Let S; be the quadric hypersurface of P’ defined by
the homogeneous equation

XX+ Xo X, + XX+ XX, =0.

For a generic point P = (&, x,, L, s, L4, Ts, Te, T;) of S, let h(P) be
the point of Gr(5, 2) which represents the 2-dimensional linear subspace
of P® spanned by the three points

2 2
(5) (x', 0, 0, x,%, 2o, + 07, 2024 _xoxs)
2 2
(0, x, 0, 2o, — ToZty, X%, 2,24 + XoXs)

2 2
(0, 0, 2%, T3 + Tos, T4s— Loy, To') .
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Lemma 2. 1 is a morphism from S; to Gr(5, 2).

Proof. The pliicker coordinate of A (P) is
(20’ 20" (LoTs + XoT5) s 20" (L4s— o) . 20" X6, Xo* (X027 — X))
— 2Tl — o (T T0y) . T (X T Tr) X (20— 202,
x'zs, Zo'Zy", Xo' (Lay+X0T1), X' (XaTg— L05) , o' (XsTy — 124)
—x'x, xO‘(xlx0+x8~r5)a 2z, — (:C,x2+.1?51'7), 1’04(1'31'7
—x,7,), 1‘041‘,2).
Hence, it is easy to see that & is a morphism. g.e.d.

Let S; be the hyperplane section of S; by xy—x;=0 and ¢ be the
morphism from S; to P* defined by

(6) g(Q) = (¥s, ¥, V1, —¥2, — i, — o)
wher?: Q= (¥, Yo. V2, ¥s, Vu» Vs, Yo, Y1) 1s a generic point of S;. Since
V3 (35°. 0, 0, ¥2°, 3535 + Yo¥r, ¥2¥s — ¥o¥s) +¥5 (0, %o, 0, %295 — yoyr. ¥4,
YiYs+ Yo¥'s) +37(0, 0, ¥2¥6 -+ Vo¥s, ¥s¥s — No¥s, Vo)
=¥ (¥s, V5, V1, — Voo — Vo — Vo).

the point ¢ (Q) lies on the plane represented by 1 (QQ). Hence, we have

Lemma 3. (h,g) is a morphism from S; to the flag wvariety
Dr(5,2,0).

From now on we assume that the defining field is of charactristic 2.

Let f be the morphism from P* to" S, defined by
f(xo, Xy, XTgy Ty, Ty, Xs)
'_ , a 2 . 2 2 2 2 2
= (XX + Loy + L4T5. To) + ToTs + 4T3, Tk, TP, T, ' ), 25°)

It is easy to see that /i-f is not a constant morphism.

Set h'=h-f and ¢'=¢g-f. Then, Lemma 3 shows that the vector
bundle IL'*(E(S, 2)) contains ¢’*(Ops(—1)) as a sublinebundle. We
show that the quotient bundle 11'*(5(5, 2))/9"*(Ops(—1)) is an in-
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decomposable bundle of rank 2. Let ¢,, ¢, and ¢, be integrs such that
ci(h*(E(5,2))) =cH' i=1,2,3.

Then, we have ¢,=2a, c¢,=2a* c;=a® with a positive integer a, by
virtue of Lemma 1. Hence, the total Chern class of A’*(E(5, 2)) is

1-2aH+ 28 —a*H*=(1—aH)(1—aH+a*H?).
This shows that the total Chern class of
WX (ES2) /9" Ops(~1)) is
l1—aH+a'H*

and the hundle is indecomposable.
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