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The purpose of the present paper is to establish the conformal
theory of Finsler metrics based on the theory of Finsler spaces by
M. Matsumoto [17]. In the first three sections we shall derive some
transformation formulas and invariants systematically without any arti-
ficial techniques. In the following section (§ 4) we shall treat the
spaces with some special Finsler metrics and find the conditions that
a space be conformal to one of such spaces. The last section (§ 5) is
devoted to studying the special conformal transformation named C-con-
formal, which yields a generalization of the concurrent field treated by
S. Tachibana [27] and M. Matsumoto and K. Eguchi [24].

In consequence of these considerations, a geometrical meaning of
the condition T =0 treated by M. Matsumoto [21,23] and H. Kawa-
guchi [13] shall be clarified in terms of the tensor P,y (Theorem
4.3). In the theory of E. Cartan [8], there are three kinds of curva-
ture tensors Ruiyx, Prije and Sy the second of which seems to offer
results most interesting as the Finsler geometry, and a few results have
been obtained (G. Landsberg [16], L. Berwald [3,4,5], M. H." Akbar-
Zadeh [1], M. Matsumoto [18,19,20,22], H. Kawaguchi [13], M.
Hashiguchi [11], M. Hashiguchi, S. H6j6 and M. Matsumoto [12] etc.).
Our results may contribute a little to the study of Ppy.

The first to treat the conformal theory of Finsler metrics general-
ly was, to the best of the author’s knowledge, M. S. Knebelman
[14]. He defined two metric functions L and L as conformal if the
length of an arbitrary vector in the one is proportional to the length in

A

the other, that is, if §;=¢g;;. The length of a vector £ means here
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(9y (x, 2)E€)"?, where ¢y is the Finsler metric tensor. And, from
the fact that ¢g,;, as well as g;, must be a Finsler metric tensor, he
showed that ¢ falls into at most a point function. We shall call this
result Knebelman’s theorem. In the conformal theory of the Finsler
metrics, it seems that few good results are obtained. This situation
may inherently be due to Knebelman’s theorem. For example, the concept
that a space be conformal to a Riemannian space is meaningless, because
such a space is nothing but Riemannian. In order that we obtain really
Finsler-like results, it might be better that we obey other definitions.
In the present paper we shall try to give a somewhat different defini-
tion, even if it coincides with Knebelman’s one.

Throughout the ﬁresent paper we shall use the terminologies and
notations described in Matsumoto’s monograph [17]. As to Finsler
connections, for convenience we shall give an outline of the theory in
§ 2. The Finsler connections used as examples are mainly the ones
Cr', RI" and BI’ given by E. Cartan [8]. H. Rund [25] and L. Berwald
[2]. but we shall also refer to another special connection HI .

The author wishes to express here his sincere gratitude to Prof.

Dr. M. Matsumoto for the invaluable suggestions and encouragement.

§ 1. Preliminaries.

1.1. Throughout the present paper, &' denotes a point of a base
manifold M and ¥ a supporting element %', and the subscript in pa-
renthesis (i) means 0/0y'. Given a Finsler metric function L, the
Finsler metric G is defined by ¢ : = (L*/2) iy, and we put y;: =gy,
I':=yL. l;: =Ly=0gul"=y;/L and hy;: =gy— 1.

Definition. Let two Finsler metrics G and G be defined by Fins-
ler metric functions L and L over a differentiable manifold M of dimen-
sion 7. The Finsler metrics or the Finsler spaces equipped with them
are called conformal if the angles between any vector v and a support-

ing element y are equal, that is, if

1.1 - 9:; (x, y) y'v? _ iy (x, ) y'v?
L(z,y) (g5 (z, 000" L(x,y) Gy (x, ¥)v'0)”

holds for any v'.
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As a formal generalization of conformality in Riemannian geometry,
it might be natural that we call G and G conformal if

(1.2) 0y (2, y) u'v’
(Ges (z, ¥)u'u?) " (9i5 (z, ¥) v'0?)”

_ 9is (x, y) u'v’
G5 (x, y) u'u’)”? Gy (x, ) vip))?

holds for any #' and v'. Suggested by the definition of spaces of
scalar curvature (L. Berwald [6]), however, we have adapted the
weaker and Finsler-like condition (1.1).

Let (1.1) hold for any v'. Then we have

(1.3)  L*avshua +vivihg + g+ yyho + ko + vivihig)
= L* (335l + ¥Vl + 33+ 55Fchoe + 3i96ha + 3edihag) .
If we contract (1.3) by »'. we obtain owing tc.>‘ hay' =0
(1.4) Vil g+ iR+ Vilty =Sl + Fihoe + Vil
The contraction of (1.4) by v* gives
(1.5) hy/L*=hy,/L* .
Then, putting z;:=%;— (L/L)%;, (1.4) is rewritten in the form
(1.6) 2ihgye + 25hy + 2Ry =0

Contracting (1.6) by ¢’* and paying attention to z;4/ =2, we obtain
z;=0. Thus we have

L7 yi/L*=y/L*.
From (1.5), (1.7) we have immediately
(1.8) Gy =0gy ,
where ¢=(L/L)% and arrive at Knebelman’s definition. The con-

verse holds clearly and we have

Theorem 1.1. Two Finsler metrics are conformal if and only

if the corresponding metric tensors are proportional to each other.
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By Knebelman’s theorem, the factor of proportionality depends
at most on the point x' of the base manifold M. For convenience we

shall write

(1.9) gij:ezagf/ s

where @ =a/(x), and call the transformation of G to G the conformal

transformation .

1. 2. Given two conformal Finsler metrics G and G, we have from

(1.9

(1.10) L=e"L,

(1.11) Ii=el', I,=el, y=ey.,
(1.12) g=e"y,

(1.13) | g¥=eg",

where ¢: =det(gy) and (¢¥): = (gsy) .
As to the torsion tensor of E. Cartan, it holds

(1.14) Cipn=eCys,

(1.15) Ci=Cis,

(1.16) | C.'=e°C"

where Cyi: =4¢ym. Cixi=0"C,y and CV: =¢”Ci, = —4gii,.

1.3. We have already some conformal invariants:

Proposition 1.1. The vector I;/L(=y;/L*), the tensors gy/L’,
hy/L?, Ciy and the tensor densities g~ qy. (397" L)« are con-
Sformally invariant.

In the two-dimensional case, it holds
(1.17) mi=e *m', w;=ec%my,

where m' is the unit vector orthogonal to the supporting element and

m;: =¢im’. So we have
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Proposition 1.2. In the two-dimensional Finsler spaces, the

vectors Lm', my/L, the main scalar I:=LCym'm’m* and the

Landsberg angle 0 defined by df= (m,/L)dy’ are conformally in-

variant.

Some of the conformal invariants listed above may be used as the

definition of conformality. For example we have

Proposition 1.3. Two Finsler metrics G and G are conformal

if and only if 1;,/L=1,/L.

Proof. Let us assume that [;,/L=I,/L, i.e.,

(1.18) Vi=Py; .

Since it holds ¢;,;y" =0 for the Finsler metric, the differentiation by
! gives

(1.19) Jy=bpyi+ 39y .

If we contract this by », it follows ¢y, =0 from (1.18). Thus (1.19)
becomes (7U=¢g,y.

1.4. To find the further conformal invariants, we shall here pay
attention to L?’=e*L? ie.. log L*=2a+log L. The tensor By : =

(log L*) 45y is clearly a conformal invariant, and it is expressed‘by
(1. 20) By=(2/L* (gy—2L1,).

As it is easily verified, (By) has the inverse (BY), where
(1-21) BY = (L*/2) (¢¥ —2I'V), |

which is also conformally invariant.

1.5. Next, we shall find the transformation formulas of the con-

nection parameters. As to the Christoffel symbols given by
(1.22) 7ok =4g" (8g;,/0x* +09,/02 — gy /0x"),
we have

(1.23) Tij = ff/k - (gfkai _6;“—": - 61:{051) ,
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where a;: =0a/0x', a': =¢"«, and 0, is the Kronecker delta. Put-
ting

(1.24) G =1rpy*,
we have from (1.23) and (1.21)
(1.25) G'=G'- B,

where B': =B'q,.

Let us assume that the added subscript means the differentiation
by the supporting element except for i, e.g., G': =Gl,,, G.:=G,,
Gt:=GYw. By the successive differentiations of (1.25), it follows

(1. 26) Cj‘ =Gy~ B/,
(1.27) Giv=Gl — By,
(1.28) (_;3u=G§kz — Bl

By direct calculations we have
(1.29) B, : =B, =v,g"" — 0,'v" — 0,7y — L*C;"",
(1. 30) By, : = BY,,

=g — 0,0, — 0,0 —2C,""y, — 2C,""y; — L*Cl,,
(1.31) B)': =B, =B a,=y,a'— i/ a,—y'a, — L*C}',
(1. 32) Bi,:= Biu, = B,

=g’ — 0, — 0y — 2C y, — 2C 'y, — L*Ciyy,
where a,:=a,v", G :=C¥"a,.

1. 6. If we see (1.25) the differential equation of the unknown
function «, it is solved with respect to a; and «@; is expressed by
(1.33) a,=B,;(G—G).

On the other hand, from (1.31) we have
(1.34) Bly;=—L'a,,

so it follows, from the formula (1.26) representing the transformation

of the non-linear connection parameter by E. Cartan, that
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(1. 35) ;= (/L) (G —G}").

Hence in order that two metrics be conformal it is necessary that the
vectors appearing as the right-hand members of (1.33) and (1. 35) are

gradient vectors over the base manifold M.
1.7. Let I'}{ be the connection parameter by E. Cartan, i.e.,

(1. 36) I'ti=715%—CinG —CinGm +0"C1inG.™.

The transformation formula of I'}{ has the following form:

(1.37) r=r{-Uj,

and we have

(1.38) Ui =gnc' =0 —0lay—ClnB.™" — Cin B, + 9" Cpen B,™
=gua' — 0/ e — 0’y — Gy — Cily; + Cooy' + o Cl
+ LN (CCre + G "Cri — C,'CT),

where Cj :=Cj«,. If we put

(1.39) Uf :=gug" —0,'0," — 0,70:* = C4uB™ — Cin B + 9" Crin Ba™"
=05g" — 0,0 — 0y 0" — Gy — C"y; + Cliy™ + Cly?
+ L} (G ClLy + G Cr — CLICT),

it holds U}, =U}ia,.

1.8. For later use, we shall define the tensors Vi, AY and H};

as follows:
(1.40) Vi:=Uj—Bj
=L2C1irlk+Cjiryk+thryj+cf;kyr+cgkyi'

where the long solidus | means the w-covariant differentiation with

respect to the connection CI" by E. Cartan,
(1.41) ei=Uhk+C:,.B™
=gjkgir . 6]‘61/ _ 6,1’61:{ . IicmBjmr +giankmBnmr

:gﬂgir _6ji6kr _ajr(f)\kt _Ckiryj +O_;kyt+L2g”S§kz,
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where
(1.42)  Sju:=C}Ch—CnClL,,
and
(1.43) HA:=BY%.+Ci.B.™
=00 — 0,0, — 0,7 0" — C; "y, — 2C "y, — Ci\y”
—L*(Ciay + CinC™).
The contractions of the above formulas with «a, give us
(1.44) Vije:=Via-=Uj —B
=LY C e+ G Cr) + Gy + Gty + Gy’ + auCi,
(1.45) Aj:=AV%a,=Uj+Ci.B"
=g’ — 0/, — 'y — Cin B;" + 9" C 1 B,
=gpa’ — 0 o, — ey — Cily; + Cuy' + L' S,
(1.46) Hj.:=H}ia,= B} +C{.B"
=g’ — 0/, — 0y — 2C 1y, — ayCi — Cly,
— L*(Ci +CinC™).

Here, we have also many conformal invariants as follows:

Proposition 1.4. The tensors By, B, B/, By, Ui, V

and H}, are conformally invariant. And. t/:ese are symmetric in 1,

r and j. k except latter two.

§ 2. Differences of Finsler connections.

2. 1. Given a differentiable manifold M of dimension 7, we denote
by L(M) (M, 7, GL(n. R)) the bundle of linear frames and by T (M)
(M, 7, V,GL(n, R)) the tangent bundle, where the standard fibre V'is
a vector space of dimension » with a fixed base {e,}. The induced
bundle t'L(M) ={(y,2) €T (M) XL(M)|t(y)=n(2)} is called the
Finsler bundle of M and denoted by F(M)(T (M), =, GL(2, R)).
The Lie algebra of the structural group GL(n, R) of L(M) and F(M)

is denoted by L(z, R) and the canonical base by {L,}.
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The Finsler connection FI' on M is by the third definition of
M. Matsumoto a triad (I'y, N, I™”) of a V-connection I'y in L(M), a

non-linear connection N in T (M) and a vertical connection /™ in

F(M).

2.2, In F(M) the fundamental vector field Z(A) (A€ L(n,
R)) is defined. If a Finsler connection FI' is given, the A- and the
v-basic vector fields B*(v), B'(v) (v&€V) are defined in F(M), and
these three fields span the tangent space of F (M) at each point. In
terms of a canonical coordinate system (x',3%, 2,') of F(M), they are

expressed by

(2.1) Z(A) = Afz, (0/02)),

(2.2) B (v) =v"2,' (8/0x' — N/8 /0y — 2/ F,0/0z,"),
(2.3) B’ (v) =v"2,' (8/0y' — 2/ C%:0/0%,"),

where A=A,"L,’€ L(n, R) and v=1v"¢, €V, and F},, N}, C}, are call-
ed the connection parameters of FI'. As a trivial vertical connection
in F(M), there is the wertical flat connection, with respect to which
(2.3) becomes

(2.4) Y (v) =v°2,'0/0y" .

2.3. Let K be a Finsler tensor field. The A- and the - co-
variant derivatives of K are defined by 4*K(v) : =B"(v)K and 4'K
(v):=B’(v) K respectively. In particular, the wv-covariant derivative
with respect to the vertical flat connection is called the O-covariant
derivative and denoted by 4°K.

In terms of a canonical coordinate system (xf, ', 2,'), the components
of K and L°K are denoted by K, and K|, respectively, if K is
assumed, for instance, to be of type (1,1), ie., K=z2"%%2/K/e,Re’,

and they are expressed as follows:
(2.5) Ky =0K;'/0x* + K,"Fp — K, F T,
(2.6) K/t|k:Ktj(k)+ij rfu:_'Kth;';c,

where 0/0z":=0/0x"— N,"0/0y™. The components of 4£°K are K}u,.
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2.4, If we consider the Lie products [ , ] of the basic vector

fields, we have the following structure equations:
@7 [B*(1),B'(2)]1=B"(T(1,2))+B"(R'(1,2)) +Z(R*(1,2)),
(2.8) [B*(1),B"(2)]=B"(C1,2))+B"(P'(, 2)) +Z(P*(1, 2)),
2.9 [BML,B@)]= B'(S'(1,2)) +Z(5(1,2)),
where we put 7: =v; (i=1,2) for brevity, and from which we have
five kinds of torsion tensors T, C, R', P', S' and three kinds of curva-
ture tensors R? P?, S

They are called the (&)h-, the (t)hv-, the (v)h-, the (v)hv- and
the (v)wv-torsion tensors and the h-, the hv- and the v-curvature

tensors, and their components are denoted by T}, Cl., Riy, P, S},

R, Pl and Sij, respectively. If &, {:--} denotes, for instance,
(2.10) Spldnt =Ap— Ay,

they are expressed as follows:

(2.11) T} =S, {F}i},

(2.12) Ci.=the same as the connection parameter Cj,,
(2.13) =0, {0N,/0z"},

(2.14)  Pj=N/w—Fij

(2.15) S5e=8,:{Cji},

(2.16) R} =6, {0F;,/0" + FiyFni} + Cin R,

2.17) Piji=Fnrju —Ciry+ CinPJi,

(2.18) Shie=S1ACij0 + CiyCai} -

2.5. When a Finsler metric is given, various Finsler connections
are defined from the metric. The well-known examples are the ones
CI', RI' and BI' defined by E. Cartan, H. Rund and L. Berwald.
There are some methods by which one Finsler connection is converted
to some others. The author [9] proposed two such methods. If we
apply them to CI', we have RI' and BI respectively. The former is
equal to the one called the C-process by M. Matsumoto. Besides,
M. Matsumoto gave the important one called the P'-process. The C-
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and the P'-processes are characterized by expelling the torsion tensors
C and P! respectively.

Interestingly, the two processes commute with each other. If we
apply to CI' the P'-process after applying the C-process, we have BI’
following RI’. On the other hand, if the C-process is applied after
the P'-process, we have also BI" via a new connection, which we shall
denote by HI', even if its applications belong to the future.

" As a Finsler connection defined by a given Finsler metric, we shall
use one of the above four in the following. To denote the A-covariant
differentiation, we shall use the short solidus | in the cases of CI', RI,
and the semi-colon in the cases of HI', BI' in which P! vanishes.
As to the w-covariant differentiation, the long solidus | is used in the
cases of CI', HI', but since in the cases of RI", BI" in which C vanish-
es it reduces to the O-covariant differentiation, the parenthesis ( ) may

be used. And for the above four connections we have

Proposition 2.1. The connection parameters and the com-
ponents of the torsion and the curvature tensors are as follows:

irer"Tic Rl P sl R P s

general ;F}g N# | Ch | Tih | Ci | Rix | Pi | Six | Rip | Py | Sin
cr TR | Gf | Ch 0 Ci | Ry | Pf 0 Rip | Pl | Sin
RC 'rglGfl 0| 0| 0 |Re|Ph | O |RE|TH| O
Hr ! G | G | Ci 0 Ci | Rk 0 0 Hin | Qi | Sine
B G| GfL O 010 [ Rkl 0| 0 |[Kb | Gin| 0

(2.13%) Rtjk = @jlc {6Gjl/axk} s

(2.14%) Pj=Clpo

(2.16C) iie= Rife + Cin R,

(2. 16R) Ri¥i=S 0% /02" + TP TELY,

(2.16H) H} ;o= Kij+ CinRYs,

(2. 16B) K} =S {0Gh; /02" + G7;Gri},

(2.17C) Piy=T%c—Chipy+ CinPh,

(2.17R) I'fe=T%w,
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(2.17H) Qi 1x=Ghy —Cisj,
(2.17B) Ghye=Ghjw»
(2. 18*) Slijk—_—@jk {C;cnkcfnj}’

where 0/0x*=0/0x"—G,"0/0y™.

Pf,, is also expressed as follows:
(2- 19) Ptfjk:gir@hr{Prjk(m+Crkarﬁ:}.
where P, : =¢-P}.
2.6. Given two Finsler connections FI" and FI', the basic vector

fields B*(v), B°(v) with respect to FI' are expressed by the basic
vector fields with respect to F/" and the fundamental vector field as

follows:
(2.20) B"(v) =B"(v) + B (D" (v)) + Z(A*(v)),
(2.21) B (v) = B’ (v) +Z(A°(v)),

where D, A" and A" are called the difference temnsors, and are ex-

pressed, in terms of a canonical coordinate system (%, v, z,), by

(2. 22) (DM,;'=N}'—N/,
(2.23) (AMie= (Fjx—Fj) + Cin (N,"—N ™),
(2. 24) (A% = Ch, —C}y.

2.7. We shall here consider the conformal transformations. From
(1.15), (1.26), (1.27), (1.37), (1.45) and (1.46), we have

Theorem 2.1. Let two Finsler connections FI' and FI' be
defined from the Finsler metrics G and G conformally corresponded.

If we denote by B} and A%, the components of the difference
tensors D" and A" respectively, they become as follows:

(2.25) B/ =B/,
(2. 26) (Case of CI') A=Al (=U}+Ci.B.™)),
(C(lse Of Rr) A;k: jik,
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(Case of HI') ALY =H;j, (=B +Ci.B.™),
(Case Of Br) A;k:'ng.

And the difference tensor A’ vanishes.

2.8. There is an important tensor D called the deflection tensor,
which expresses a relation between the V-connection I'y and the non-
linear connection N. In terms of a canonical coordinate system (z, 3,

2,'), the components are
(2.27) Di=y"F{,—N/.

In the typically used Finsler connections, it is imposed that the
D vanishes as a natural assumption. For example, it is so in the cases
of CI'y, RI'y HI' and BI’. From the standpoint that a non-linear con-
nection N may be freely chosen in parallel displacements, the author
[10] has treated the Finsler connections with a non-vanishing deflection
tensor in order to characterize the affine connection ([15]).

Given a conformal transformation & of a metric G to a metric G,
we can choose the respective Finsler connections FI" and FI' defined
from the metrics G and G such that the difference tensor D" disappears.
We have only to take the non-linear connection N of FI' such that

(2. 28) Nji :Gjt + Bji.

In this case the deflection tensor D,' of FI" becomes — B,.. However,
such a modification is not treated in the following.

If Bf=0 for a conformal transformation @, a modified non-linear
connection is nothing but the usual one. Owing to (1.34), such a
transformation « satisfies @;=0. The conformal transformation « is

called homothetic if a;=0. The converse holds clearly and we have

Proposition 2. 2. A conformal transformation « is homothetic
if and only if a satisfies B} =0.

B,=0 is also equivalent to N=N. And, all difference tensors
vanish for a homothetic transformation, so FI' coincides with FTI.

Thus we have
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Theorem 2.2. A conformal transformation « of two Finsler
metrics is homothetic if and only if two non-linear connections
resulting from the metrics coincide. In this case two Finsler con-

nections coincide too.

§ 3. Transformation formulas of the torsion and the curvature
tensors.

3.1. Let FI' and FI' be any two Finsler connections. If we
substitute (2.20), (2.21) into the structure equations (2.7), (2.8),
(2.9) with respect to FI", we obtain by direct calculations the following
transformation formulas communicated by M. Matsumoto some years

ago.
Proposition 3. 1. The torsion and the curvature tensors of FI'

are expressed by the ones of FI' as follows:

(3.1) T(,2)=T(1,2)—-C,{A*{1,2) -C(, D*(2))},

3.2) C1,2)=C®1,2)—A"(1,2),

(3.3) R'(1,2)=R'(1,2) —D*(T(Q,2)) +S"(D"(1). D"(2))
~3p{4D"(1,2) +4°D*(1, D*(2)) + D*(C(1, D*(2)))
—P'(1, D"(2))},

(3.4) P'(1,2)=P'(1,2) +S(D*(1), 2)
+A*(2,1) —D*(C(1,2)) —4£'D*(1, 2),

3.5 S5'(1,2)=5'1,2) -8,.{A"(1,2)},

(3.6) R*(1,2)=R(1,2) +S*(D*(1), D"(2))
—ANT(1,2)) —A"(R'(1,2)) + A(D(T(1,2)))
—A"(S'(D"(D), D*(2))) —B.{4"A"(1, 2)
+ LA, D(2)) — AM(AM(1), 2) + AM(C(1, D"(2)))
+A"(P'(1, D"(2))) — A" (D"(C(, D"(2))))
—A"(4'D*(1,2)) — A*(£'D"(1, D*(2))) — P*(1, D*(2))},

(3.7) P(1,2) =P*(1,2) +S(D"(1),2) —4"A*(1,2) — A*(C(1.2))
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—A"(P'(1.2)) = A" (S"(D"(1).2)) + A" (D"(C(1,2)))
—AM(AY(2),1) + A" (A*(1),2) + 4 A%(2,1)
+AY(L4'D'(1,2))+4A°(2, D"(1)).

(3.8) 8%(1,2)=8%(1.2) — A*(S'(1,2))
—CL{4'A"(1,2)—A"(A*(Q1), 2)}.
Since the used connections are general ones, we have to notice

that usual symmetries do not necessarily hold. For example, S'=0 if

and only if

(3.9 C1,2)=C(,1).
3.2. From Proposition 3.1 we have as a particular case

Proposition 3.2. If FI' and FI" satisfy the conditions T=T
=0, $'=8'=0, A*=0, the formulas in Proposition 3.1 are reduced
to the following forms:

3.2 C@1,2)=Cq1,2),
(3.3") R'(1,2)=R'(1,2)
—&,{4'D"(1,2) +4'D"(1, D*(2)) + D"(C(1, D"(2)))
—P'(1, D"(2))},
(3.4") P'(1,2)=P'(1,2) + A*(2,1) —D*(C(1,2)) —4"D"*(1, 2),
(3.6") R*(1,2)=R*(1,2) +S*(D"(1), D*(2))
—C{d"A*(1,2) + £ A1, D" (2)) — A*(A*(1), 2)
+ANC@1. D"(2))) —P*(1, D"(2)},
(3.7) P*(1,2)=P*(1,2) +S*(D"* (1), 2)
— L AM1,2) — AMC(1, 2)),
(3.8 8(1,2)=8(1, 2).
and it holds
(3.1) A"(1,2)—A*2,1)=C(, D*(2)) —C(2, D*(1)).
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3.3. For later use, we shall replace 4° in the formulas in Proposi-
tion 3.2 by 4°. 4" and 4° are related such that

(3.10) £°D(1,2) =4°D(1,2) +C(D(1),2) —D(C(1,2))

for any tensor D of type (1,1), and

(3.11) £AQ1,2)=4A(1,2)+C(A(1),2) —A(C(2),1)
—A(C(1,2))

for any tensor A of type (1,2). If we recall (3.9), we have easily

Theorem 3.1. If two Finsler connections FI' and FI" satisfy
the conditions T=T =0, S'=8'=0, A*=0, the torsion and the curva-
ture tensors of FI' are expressed by the ones of FI' as follows:

3.2) C(1,2)=CQ,2),
(3.3") R'(1,2)=R'(1,2)
~8,{4'D"(1,2) +£°D*(1, D*(2)) — P'(1, D"(2))},
(3.4”) P'(1,2)=P'(1,2) + A*(2,1) —C(D"(1),2) —£D"(1,2),
(8.6") R*(1,2)=R*(1,2) +S*(D"(1), D"(2))
—Gp{dr A1, 2) + L A1, DM(2)) + AM(A(2),1)
-C(A*(2), D"(1)) — A (C(D"(2)),1) — P*(1. D"(2))},
(3.7") P*(1,2) =P*(1,2) +S8*(D"(1), 2)
— L AMN1,2) —C(A*(1),2) + A*(C(2), 1),
(3.8 5:(1,2)=5(1,2),
and it holds
(3.1) A*1,2)—A*2,1) =C(1, D"(2)) —C(2, D*(1)).

In terms of a canonical coordinate system (x%,y', 2,%), these are

expressed by
(3.2%) Cj,=Ci,

(3- 3*) R}k = Rjrk _‘5” {B_iuk + (B'}(n) —Pjin) Bkn} s



(3. 4%
(3.6%)

(3.7%)
(3.8%)
and

(8.1%)
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Pj.=Pji+ (4i;—Ci.B;") — B,
Ri;.=Ri}ji+ Sin.B,"B,"
~Sd{diji+ Ay B+ (4L — CinBy™) Ajy
— AL, CrB," —Pf;.B."},
Pl =Pii+ SimiB™ — Ah oo — Chr ATy + A CF,
She =Sk,
Aby— A, =CiB," —Ci.B;".

3.4. We shall here investigate how the torsion and the curva-

ture tensors change by a conformal transformation of Finsler metrics.
In the cases of CI'y RI'y HI' and BI' the assumptions in Theorem
3.1 are satisfied. Hence, the following transformation formulas are

obtained.

Theorem 3.2. By a conformal transformation of two Finsler

metrics, the torsion and the curvature tensors are changed as fol-

lows:

(i) Case of CI'

(3.2C)
(3.3C)
(3.4C)
(3.6C)

(3.7C)
(3.80)

where

Ql

A
FL3 _Ctjky

Riy =R}, — &, {B} + (Bi»— Pi») B},

™

i Dt .
ljk—ij-I'Vij,

=

i =Ri+28k,.B;,"B"

~ S {Ahsie+ AbymBi" + U U — Pi B},
P =Pi+2SinB," — Ab oy —CLLUD 4+ UiChry,
S',f,k =Sk

A;,,j = U}ij'i'C;,,mBjm.

(ii) Case of RI'

(3.3R)

Rye=Rix— S, {Bj .+ (Biw— PL) B,"},
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(3.4R) Pj=Pj.+ Vi,
(3.6R)  R¥ju=R¥jx—S AU+ UipnB + UL U — 8B,
(8.7R) T¥.=Tk—Uj:,
where Ui :=Uf; .
(iii) Case of HI’
(3.2H) Ci,=Ci,
(3.3H) Ri,=Ri,—S,{Bi: +Bf,,fB,¢"},
(3.6H) Hi,,=Hj;+2Sin.B,"B."
— S {AHijx + HyyoBi" + BB — Qi jn B}

(3.7H)  Qiji=0Qhje+28imB;™ — Hijo — ChiBiy + BiuChe,
(3.8H)  Si;=Sim
where H},=B},;+C;.B,".
(iv) Case of BI'
(3.3B) Rj,=Ri.—&,:{Bj.+ Bj.B."},
(3.6B)  Ki;u=Kiu—.{Bijsx+ BhsuBi" + BiwBr — GihuBi}
(3.7B)  Giy=Ghi—Biju.

Proof. In the case that A%, has the form A4}, =W, +Ci,B.™ for
some tensor W}, and Si;, =CiClL;—C,CL,, (3.4%), (3.6%) and (3.7%)

become as follows:
(3. 4**) P}k=P;k+ ngj—B;(k),
(3. 6**) I_{;‘jk:R;,,jk“'zS;fm"Bijk"
— D {Afmk + A;lj(n)Bk" + vaj k —Pif/ann} s
(B.7*%)  Pi=Pil+2SiuB," — Ajyoo — CL Wi+ WECr.

Hence, the theorem follows immediately from Theorem 2. 1.
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3.5. It is important that these very complicated formulas have
been directly derived from the structure equations. If we calculate
these formulas from the definitions stated in Proposition 2.1, we might
be at once lost in a maze. For example, the transformation formula
of I'¥}/0x* is very troublesome.

If we use the Ricci identities, we can obtain various expressions
of the transformation formulas. For example, if we replace By,

(=BY%uy;x) in (3.6B) by BY.,m we have
(38.12) K, =Ki
- 511: {B?;k(n)ar + Bg’jar; et (B_i;;zB;:‘)(h)aras - G;tkaffmar} .

This formula missing the last term has been derived by M. S. Knebel-

man.

§ 4. Spaces conformal to some special Finsler spaces.

4, 1. In this section we shall deal with the special Finsler spa-
ces. We shall first take up the Landsberg space defined by Py =0.
Owing to (2.19) and Py =9"Phryr, Pry=0 is equivalent to Py, =0,

So we shall pay attention to the transformation formula (3. 4C), that is,
4.1) Pji=P}+ Vi,

which yields immediately the following theorems.

Theorem 4.1. The condition that a space be conformal to a
Landsberg space is that the following system of equations has a so-
lution «:

4. 2) ;k = - Vﬁcar

Theorem 4.2. A Landsberg space remains to be a Landsberg

space by a conformal transformation « if and only if « satisfies the
system of equations

4.3) o, =0,

4,2. We shall here consider (4.3) from another viewpoint.
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By (4.1), that a conformal transformation @ statisfies (4. 3) means
Pi =P}, From (2.19) we have

Proposition 4.1. P, =Pi, if and only if P}.=P},.

On the other hand, V};=0 if and only if (4.3) holds for any a.

So we have

Proposition 4. 2. V=0 if and only if Pj;.=Pi, for any

conformal transformations.

If we pﬁt
4.4 Thise:=L7'0wn0e Vi,
we have from (1.40)
(4.5) Thigie=LChisli+ Chisli+ Crirly+ Chyili 4 Cigil,

which is just the tensor treated by M. Matsumoto and H. Kawaguchi.

M. Matsumoto [21] showed that the condition that a two-dimen-
sional Finsler space admits the strictly isometric V-rotations of maximal
order 1 be Th;;,=0. All such spaces have been found by L. Berwald

[3, 4] from the following proposition.

Proposition 4. 3. In two-dimensional Finsler spaces, Thiz=0

if and onlv if the main scalar I is at most a point function.

The proof follows from Ty = Iympmm ;. Further, M. Matsumoto
[23] has recently considered three-dimensional Finsler spaces with
Ty =0 and obtained many interesting results.

And, H. Kawaguchi [13] showed in general dimensions that Py
vanishes for any Finsler spaces which are conformal to the Minkowski
space with T, =0.

Since V=0 is equivalent to T, =0, Proposition 4. 2 is restated

as follows.

Theorem 4.3. The tensor Ty, vanishes if and only if the
tensor Pfy, be invariant under any conformal transformations.
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From this theorem we have immediately

Theorem 4.4. A Landsberg space remains to be a Landsberg
space by any conformal transformations if and only if Thi;=0.

Since Py =0 for the Minkowski spaces, the above theorems are
generalizations of Kawaguchi’s result. The condition 7T}, =0 has
such distinctive geometrical meanings, and should be thought to be

very significant in the Finsler geometry.

4. 3. We consider, in particular, the two-dimensional case. Spec-

ifying Theorem 4.4, we have

Theorem 4.5. If a two-dimensional Landsberg space remains
to be a Landsberg space by a non-homothetic conformal transfor-

mation, the main scalar I is at most a point function.

Proof. From Theorem 4.2 we have Viia,=0. On the other
hand, Viy,=0 owing to (1.40). Hence, in the two-dimensional
case V}i5=0 implies «,=ay,, which contradicts the following Lemma.
Therefore, V=0, i. e,, Thyr=0. Thus, the conclusion follows from

Proposition 4. 3.

Lemma. Leta be aconformal transformation in a Finsler space
of dimension n>1. If there exists a scalar field 1 (x, v) satisfving
o, =2y, then « is homothetic.

Proof. Suppose that such a field 1 exists. Differentiating by 3*,
we have 0=y, +49,,. Since A must be positively homogeneous of
degree —1, we have (#—1) A=0 by the contraction with ¢*”. Thus
A=0 for n>1, so a,=0

4. 4. The condition Py, =0 is equivalent to Ci;,=0. If a Fins-
ler space satisfies a stronger condition Ci,,=0 (resp. Ci,, =0, Ri;;
=0), it is called an affinely connected space (resp. a Minkowski
space). In the two-dimensional case, Ci, ;=0 is equivalent to I;=0.

Hence, if I is at most a point function, then I is constant and all
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such spaces are found by L. Berwald [3,4]. Thus we have from The-
orem 4.5

Theorem 4. 6. If a two-dimensional affinely connected (esp.
Minkowski) space remains to be a Landsberg space by a non-homo-

thetic conformal transformation, the main scalar is constant.

Returning to the cases of general dimension, we shall find the con-
dition that a space be conformal to an affinely connected (resp. Min-
kowski) space. Since it is known that Cj, ;=0 be equivalent to G},
=0, we have from (3.7B)

Theorem 4.7. The condition that a space be conformal to
an affinely connected space is that the following system of equa-

tions has a solution «:

(4.6) G;;:z = B}'uar'
4.5. As to the Minkowski space we may easily conclude:

Proposition 4.4. The following conditions are mutually equiv-
alent:

(i) C?kll:(), Rijk:O; (ii) F;klflzoa Rl’fjik=0,

(i) Giu=0, Ki;=0, (iv)  Gju=0, Rj,=0.

Each of these conditions characterizes the Minkowski space. ((ii)
(resp. (iii)) means that all curvature tensors vanish with respect to
RI" (resp. BI').) Thus, we have various conditions that a space be

conformal to a Minkowski space. If we use (iv) we have from (3. 3B),

(3.7B)

Theorem 4.8. The condition that a space be conformal to a
Minkowski space is that the following system of equations has a
solution «:

(4. 6) G;kl = Bgrklars

4.7 R} =S, {(Bf )« + BinBi ot} .
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§5. C-conformal transformations.

5.1. We shall finally treat the special transformation named C-
conformal, which is, by definition, non-homothetic conformal trans-

formation satisfying
(5.1) C;.=0.

If a space admits a C-conformal transformation «, the vector field ay
is defined on the space. Since «; depends on point only, it follows
;= —Cy and aly=—2C,". Thus we have

Proposition 5. 1. The following conditions are mutually equiv-
alent:

1) Cyu=0, 2 Ci=0, (3 aslx=0, 4 aw=0.

5.2. S. Tachibana [27] has generalized the concept of the concur-
rent vector fleld on a Riemannian space ([26], [28]) and derived

the conditions that a vector field a' be concurrent as follows:
(i) « depends on point only, (i) af,+6,/=0,
(i) @’Chi=0.

From (4) and (2) in Proposition 5.1, our field @ is a generali-
zation of a concurrent one, in which the condition (ii) is weakened to

(i) a’2c0 and «; is gradient.

5.3. In their recent paper [24], M. Matsumoto and K. Eguchi
have given an elegant definition for the concurrent vector field on a
Finsler space and obtained many interesting results. Some of them hold

also in the space admitting a C-conformal transformation.

Theorem 5.1. If each of the following Finsler spaces admits
a C-conformal transformation. then the space is Riemannian:
(1) two-dimensional spaces,
(2) three-dimensional spaces satisfving the condition of
Brickel’s theorem ([7]),
(38) spaces with Thy=0,
(4) C-reducible spaces ([20]),
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(5) spaces with («. 3)-metric ([20]).

The proofs are given in the same ways as in [24]. For example,
in the two-dimensional case, C'a,=0 and C'y,=0 yield C"=0 or «,
=2v,. The latter contradicts Lemma, since our transformation is assum-
ed to be not homothetic. So, C"=0, which means that the space is

Riemannian.

5.4. Now, we shall treat the transformation formulas. We have

at once

Proposition 5.2. In the C-conformal case, the tensors By,
Bi,, Bi., U, Vi, Al and H}, are reduced to the following

forms:

(5.2) B =y,a'—0 /a0 — v,
(5.3) Bir=0a'—0 o — 0ay,
(5. 4) Bt =2C,.a,

(5.5) U= B+ aCis,

(5. 6) Vie=0aCly,

5.7 A?k = B‘,k,

(5.8) H}, =B —a,Chy.

5.5. From (b.6) the transformation formula (4.1) becomes
5.9 Fiik:P/ik'FaﬂCffkv
from which we have by putting A= —a,

Theorem 5.2. If a space is C-conformal to a Landsberg spa-
ce, the tensor P}, is proportional to the tensor Ci,, i.e.,
(5. 10) Pjik:lC;k.

Theorem 5.2 gives an example of the spaces treated by the

author [11]. On the other hand, P},=P}, implies Ci,=0 owing to

(5.9), because we have assumed the transformation « to be non-ho-
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mothetic. Thus we have

Theorem 5.3. If the tensor Pj;. is unchanged by a C-con-

formal transformation, then the space is Riemannian.

Theorem 5.3 with Theorem 4.3 gives another proof for the case
(3) in Theorem 5.1. From Theorem 5.3 we have immediately

Theorem 5.4. Ifa Landsberg space remains to be a Landsberg
space by a C-conformal transformation, then the space is Riemann-
ian. Especially, if a Minkowski space is C-conformal to a Lands-
berg space, then the space is Euclidean.
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