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§1. Introduction

Research on the random evolution of a family of semigroups
{T(1), t>0, i=1,..., N} with switching among semigroups controlled
by a finite state, stationary Markov chain v was begun by Griego-
Hersh [4] to study equations of the form

(1.1) U =Ai+0Qi

where Q is the infinitesimal matrix of v, 4 is the infinitesimal generator
of a semigroup T(1) on a Banach space B, and d(1)=T(t)f, where
feB.

Quiring [11] gave a construction of random evolutions analogous
to that of Griego and Hersh in which the Markov chain v is replaced
by a diffusion process on the real line. In [10] Pinsky introduced
discontinuous random evolutions as a representation for multiplicative
operator functionals of a Markov chain. Using the theory of discon-
tinuous random evolutions, Kertz [8] proved a type of singular per-
turbation theorem and gave new proofs of limit theorems for Markov
processes on N lines. Limit theorems and applications for random
evolutions have appeared in several other places [2], [4], and [5].

In this paper we give an alternative but equivalent formulation
of random evolutions using a perturbation principle of Phillips [9].
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This approach has the advantage of immediately furnishing the back-
ward and forward equations for random evolutions. The backward
equation is (1.1) above. The forward equation is

(1.2) 9L =A4i+40QTii, where Q7 is the matrix transpose of Q.

In section 2, we obtain a perturbation representation for T(t)
and solve (1.1) and (1.2) using an approach inspired by the work of
Schoene [12]. §3 contains an alternative perturbation formulation of
random evolutions more in the spirit of the ‘‘renewal equation”
approach to Markov chains in which the transition probabilities are
shown to solve a pair of integral equations (renewal equations), there-
by giving rise to the backward and forward Kolmogorov differential
equations. The proofs in section 3 are analogous to those in [7] and
are included for two main reasons — to show that perturbation re-
presentations for (backward and forward) random evolutions may be
obtained independent of the famous Phillips Perturbation series, and
in order that the proofs (which are analogous but longer due to the
complicated notation) may be omitted in the extension to the non-
stationary case.

In section 4, we generalize these results to the discontinuous case.
§ 5 contains the extension to the nonstationary case.

In [7] the author shows that the solution of the ‘‘transposed”
equation (1.2) is not the ‘‘transpose” of the solution of (1.1), except
in the special case that the semigroups commute with each other.
He also studies the effect of ‘‘time-reversal” of the chain, in the case
of a countable state space Markov chain with a finite ‘‘explosion
time” and a relationship is established between time-reversal and the
substitution of QT for Q in (1.1). ,

Surveys of the literature on random evolutions are given in the
papers of Pinsky [10] and Cogburn-Hersh [2]. The reader is referred
to Hille-Phillips [6] for the necessary facts about semigroups and
to Chung [1] for information about Markov chains,
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§2. Backward and forward random evolutions

Suppose v={v(t), t>0} is a right-continuous Markov chain with
state space {l,..., N}, stationary transition probabilities p,(t), and
infinitesimal matrix Q= <gq;;>=<p;(0)>. P; is the probability meas-
ure defined on sample paths w(f) for v under the condition w(0)=i.
E; denotes integration with respect to P, For a sample path weQ
of v, 7(w) is the time of the jth jump, and N(t, w) is the number of
jumps up to time t.

Let {T(t),t>0,i=1,.,N} be a family of strongly continuous
semigroups of bounded linear operations on a fixed Banach space B.
A; is the infinitesimal generator of T, Let 2; be the domain of
A,

element of B is denoted by f=<f,> where f,eB,i=1,.,N. We
equip B with any appropriate norm so that ||f||»0 as |/f;]|—0 for

B is the N-fold cartesian product of B with itself. A generic

each i.

—

Definition 2.1. A backward random evolution {R(1, w), 1>0}
defined by the product

S

R(t) = Tv(O)(Tl)T:J(r.)(TZ -7 )"'Tl'(tN(:))(t - TN(‘)) ’

Definition 2.2. For >0 define the matrix operator T(f) on B
specified componentwise by

(Twf)= E[R() fyn)]-

The following results now follow from Griego and Hersh [4].

Theorem 2.3. {T(1), t>0

} is a strongly continuous semigroup of
bounded linear operators on B.

Theorem 2.4. The infinitesimal generator A of T(t) is given by
A=diag(A4,...., A\)+Q in matrix form, or considering A as acting on
column vectors we get

(AN)i=Aifi+ ;qijfj
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for feF=2,%x - x Dy

Below we shall construct a matrix R(1) such that T()f=R()f
in usual matrix notation.

According to Theorem 3.5 of Phillips [9; p. 205], the matrix
operator A=diag(4,,..., Ay)+Q is the infinitesimal generator of a
strongly continuous semigroup of bounded linear operators, R(f) on B.
We proceed to obtain an explicit representation for R(t).

In general we have from the above perturbation principle that
if A is the infinitesimal generator of a semigroup of bounded linear
operators L(f) and P is a bounded linear operator, then A+P is the
infinitesimal generator of a semigroup of bounded linear operators R(1)
given by

R(n= 3 R,1)

n=0
where

Ro(=Lw),
R,,(t)=S;E(S)Pﬁ,,_l(t—s)ds, n>1.

In order to apply this we define L(t)=diag (e"4''T\(t),..., e~V T\(1)),
where ¢,=—gq; for each i. Then L(1) has generator A=diag(4,
—q4,...,Ay—qy) so that we take P to be the matrix obtained by
placing zeros along the diagonal in Q (leaving all other entries un-
changed). Then it is easy to see that the operator R(t) is given by
(specified componentwise)

(RON=ZRa0f 10 k<N,
where for f in B
Ru()f = 3 RPWS

R{O()f=6,e 9! T(t)f (where &, is the Kronecker delta)
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RP(f= X g e 4T(s)q R V(1 —s)fds,  n>|
j#iJo

and R,(1)= <R{{(1)>. We can state these observations in the form
of a theorem.

Theorem 2.5. R(1)f=T()f.
The following result now follows from Theorem 2.4.

Corollary 2.6. The Cauchy problem for an unknown vector ii(t),
>0
(2.0 %‘=Ai“:+ ;qu‘“;’ i0+)=J
is solved by ii(ty=R(1)f, for fe Z.

The matrix operator C=diag(4,,..., Ay)+Q7, where QT is the
matrix transpose of Q, is the infinitesimal generator of a semigroup of
bounded linear operators, S(t) on B. We now proceed to obtain an
explicit representation for S().

Obviously, (from the above cited perturbation principle),

Sin=73 S,

1

Lps

n
where

So(n=L(),
§”(t)=g;i(t—s)PT§"_ (s)ds,  n>1.

Let us define new operators as follows: for f in B, I1<i, k<N,
let

sunf= 3 spwys
where

SO f=0ue ! T() f
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and
Sf= 3§ eI T 9S00 s
Then the operator S(t) is given by (specified componentwise)
(8= ‘Zsik(t)fk'

Definition 2.7. A forward random evolution {S(t, w), t=0} is

defined by the product
SO = Tye)(t =T T )(Ta = T ) Ty (T2 = T1) Tog0)(T1)

where N(1)=n.
Hence, a forward random evolution is obtained by reversing the
order of the operators in a backward random evolution.

Definition 2.8. For >0 define the expectation semigroup U(f) on
B (specified componentwise) by

(OmJ = LE[S™Si: ut)=Fk], where

E[S()fi: v()=k]=E[S(Ofl vy=n] -
We are now ready to prove the main result of this section.
Theorem 2.9. U(t)f=5(1)f.

Proof: We need to show that
Su(fi= SELSOfi: o) =K].
Now,
SSu0fi= 3 TSP,

and

a0

2 E[S(Ofi; v)=k]l= ¥ ZE[S()f: N()=n, v(z,)=Kk].

n=0 i
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We argue by induction on n that
E[S(0fi; N(t)=n, u(z,)=k]=SP(D)f.
The case n=0 is true, so assume true for n>1.

E[S(fi: NO=n+1, u(t,,)=k]
=g' E[S(Of;; N(=n+1, o(t,,,)=klu(s), s>1]P; (€ dT’)
0
(t denotes the last discontinuity of v(-))

=2 ﬂk*g' T (t—$)E;[S(s)fi: N(s)=n, v(1,)=jlqe 4 ""%ds
0

j*k 4

= 5[ e -, 0)ds

JFk
(by the induction hypothesis)

=S{r*(1)f;, giving the desired condition.
By standard semigroup theory we obtain the following theorem.

Theorem 2.10. The Cauchy problem for an unknown wvector ii(t),
>0,

2.2) Oy _ gy 4T gty G(0+)=]
ot 7

is solved by #i(t1y=U0()f, for fe 3.

§3. Alternative perturbation representations for random
evolutions

In this section we construct matrix representations for 7T(f) and
U(t) that can not be directly obtained from Phillips perturbation prin-
ciple. We include proofs for the backward case (the proofs for forward
random evolutions are entirely parallel).

For fe B, let
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Ru(Df= 3 RP(0]

where

3.1 R{P()f =6y ! T (nf

(3.2) RiFD(Nf= X S' R{W(1 — 5)q je™ 1 Ti(s)fds.
i#kJo

Let 3 qu=r, and g=Max(r,..., ry).
iFk

Assume | T(1)||<Cef* for each i. Since T(t),i=1,..., N, is strongly
continuous, it is easily seen by induction on n that all the R{}(r)
are defined and are strongly continuous in t. Furthermore, we have

the estimates
(3.3) IRP@ < Cen (S no,1,2,...,

which can be proved by induction on n. In fact, (3.3) is true for
n=0; assuming it for n>1, we have from (3.2)

IRG ()] < Ceﬁ'@n),"ig' (t—s)"ds
. 0

(th)n+ 1

- Bt
Cet it )1

We see from (3.3) that the series is absolutely convergent, the
sum R, (1) satisfies the integral equation

Ry(=0ue ' T()+ 2 Sl R;(1—5)q e " T(s)ds
JjtkJoO
and that
(3.4) IRw(D]l < io IR{P(1)] < Ce(Carhr,

The following simple lemma will play a significant role in what

follows.
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Lemma 3.1. R,~,,(s+l)=ZlR,-,(s)R,k(t).
Proof. We first argue by induction on n that
RY(s+1)= Z ,ZE‘ RGI()RY=(1).
For n=0 this is obvious. Assuming true for a given n>1, we have

Z (v)(S)R(n+l v)(t)_ ZR('|+I)(S)R(O)(t)

01

M+

]

v

+3 3 T RY(s) R(l"_”(l—u)q'ke_"""Tk(u)du
v=0"T j#k 4 J

=e ! R V()T () + ; S R{W(s+t—u)q e 1" T(u)du
J
(by the induction hypothesis)

=e ! 3 S R{W(s+1—u)q e 9" T(u) Ty(t)du
J¥k

+ ¥ S R{P(s+1—u)q e~ 1" T(u)du

7k
=R{*V(s+1).
This completes the induction and summing over n we obtain
© ©
Ru(s+n=13 ¥ Ril'(9) X Riy™)
= ;Ru(S)Ru((t) .
Q.E.D.

For t>0 define the matrix operator R(tf) on B (specified com-
ponentwise) by

(R(t)i)i = zk:Rik(')fk-

Theorem 3.2. {R(1), t>0} is a strongly continuous semigroup of
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bounded linear operators on B.

Proof. By the estimate (3.4),
II(R(!)f);lISz?Ce‘c"””'llfkll, so R(1)

is a bounded linear operator. Also, since the R{!(t) are strongly con-
tinuous the uniform convergence of the sum implies that R(f) is strongly
continuous in t. Thus, we need only check the semigroup property.

(R(s +0f);=(R(s)ROF)..

By Lemma 3.1, we have
(Rs+0)i= ZRuls +1)fi
= Z[ZR(RW(D1fs
= TRYSTRuf]

=(RSRM:.

This completes the proof of the theorem.
Theorem 3.3. R(t)f=T(1f.
Proof. Let fie 2, Then,
lim——[(R()]); - 1]
10 1
=lim—L [ T, (/- £1]
t—0 1
+lim [ 3 e 3 Ry 9)guTu()/eds)
i»0 ¢ "kJo ik
=Afi— qiﬁ-'-k;i GacSi

=Afi+ qumfk~
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Therefore, the infinitesimal generator of R(r) is A with domain
. Thus, (by standard semigroup theory) we obtain the result of
the theorem.

The forward case can be handled in a similar manner. Assume
q;<q’ for each i. '

For fe B define

Sunf= 3 sigof

where
SiR(Of=due 1 T(Df
s or= 3, SO St = $)qy e Ts)fds.
Thus,
[Su(D] < CetCar+hr
and

Siu()=0ue” 1" TN+ X Sr St — 8)q;je” 1 T(s)ds.
iFiJo

Lemma 34. S, (t+5)=YS(NS;(s).
1
For 1>0 define the operator S(f) on B (specified componentwise) by

(g(t)f)k = lZsik(t)fi-

Theorem 3.5. {5(1),t>0} is a strongly continuous semigroup of
bounded linear operators on B.

Theorem 3.6. S(1)f=U(1)f.

§4. Perturbation representations for discontinuous random
evolutions

In this section we shall generalize the results of the previous sec-



406 Manuel Keepler

tions. The proofs involved are entirely parallel to those of section 2
and thus are omitted.

Let {I1,}, 1<j, k<N, be uniformly bounded linear operators
defined on B with IT;=I, the identity operator on B, for each i.

Definition 4.1. A discontinuous backward random  evolution
{R(t), t=0} is defined on v by the product

R(t)= TU(O)(tl)”v(O)v(t,)Tt.v(n)(TZ —Ty) Tu(:m,,)(t —Tn) -

Definition 4.2. For t>0 the expectation semigroup T(t) corres-
ponding to R(t) is defined on B by

(T(f)f)i"" Ei[R(t)fv(,)] .
Analogous to the continuous case, we make the following de-
finitions
Ru(H)= i R{(t) where, for f in B,
n=0
R{Q(0)f =0e 1 T(1)f

R 1(0f= 5 ! 10T, 11,RR (1= 9)fds.
j#iJo

Dfinition 4.3. For (>0 define the operator R(tf) on B by
RMO)i= szik(t)fIv

Using the methods of section 2 (or §3) we get that R(f) is a
semigroup of bounded linear operators on B and

Theorem 4.4.

). Rf=Twf.
ii). ii(t)=R(1f, solves the Cauchy problem

%%:AJ‘,"‘ qujnl,lu.l’ a(0+)=f
J

for fe J.
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Now, define a discontinuous forward random evolution {S(t),
t>0} by reversing the order of the operators in Definition 4.1 above.
Analogous to the continuous case, we define

(U(r)f)k=>;Ei[S<t>fi; o(t)=k].

Now, define

Su(h= i S{(1) where

n=0

S{(f=0e 1 T ()f
Sf= 3§ e T =)l S )
For t>0, define
(S )= );Sik(t)f;-

Using the methods of section 2 (or §3) we get that S(f) is a
semigroup of bounded linear operators on B and

Theorem 4.5.
). S(of=007.
ii). @(t)=5(t)f, solves the Cauchy problem
Ou, - ¥
7#=Akuk+;‘1ihnikuia i(0+)=7, fed.
Remark. Using the approach of §3, alternative perturbation
representations may be obtained for R(f) and S(1).

§5. Nonstationary random evolutions

The system of equations (2.1) taken with the system of equations
(2.2) form a formally adjoint system. The relation between (2.1) and
(2.2) shows up more clearly in the non-stationary case. Thus, in
this section we shall extend the theory of backward and forward
random evolutions to the nonstationary case.
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Suppose u(t, w) is a nonstationary Markov chain on {1,..., N}
with transition matrix

P(s, )= <puls, )> such that for 0<s<t

(5.1) pals, )= Z pi(s, 1) where
62 A n=duexp |~ audul
(5.3) pit (s, = Jgigsexpl S q(u)du}q,,(r)p""(t, Ndt

or alternatively

G4 pre 0= | exp - adufauonisc, v,
#kJs

J

so that q(1)>0, ¢q;(1)=0, qi(t)zj;;qij(t)' (Refer to Feller [3] for a
discussion of such processes.)

Assume q(t)= —q (1) = un(t)<q for all i and t. Let J}‘;kqjk(t)
=r(t) and assume r()<q for all k and .

Using ((5.1), (5.2), and (5.3)), let us now define new operators
as follows: for feB let

Ru(s, 0)f = ;iOR""(s, 1)f where for 0<s<t
R, 0 =3 exp { = | awdu} Tt )1

R s, 0f = % [ exp | = awdu} e - g, 0RR, 0.
j#EiJs s

Definition 5.1. For 0<s<t define the operator R(s,f) on B,
specified componentwise, by

(R(s, 0f);= ;Rzk(S, Ok

Modifying the techniques of §3 we have the following results:
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Theorem 5.2. i) {R(s,1),0<s<t} is a strongly continuous two
parametric family of linear operators satisfying the convolution
equation

R(s, t)=R(s, u)R(u, 1), 0<s<u<t.
o Oui(s, t)
i) —a = = Aus, )= 2q;{(u s, 1), 0<s<t,
J
is solved by ii(s, t)=R(s, t)f.

Using ((5.1), (5.2), and (5.4)), definc operators as follows: for
feB let

Suls, Of= io Si(s, 1)f  where

SI (5. nf=6uexp { = qudul T -s)f

Sﬂ-;g*”(s, nNf= 3 Stexp{—Squ(r,l)till}n(t—t)qjk(r)S‘i;!’(s, 7)fdt.
JtkJs 4

Definition 5.3. For 0<s<t define the operator S(s,t) on B
(componentwise) by

(8, Nf )= ZiS.-k(s, Of;

Using arguments analogous to those in §3 we have the following
results:

Theorem 54. i) {S(s, 1), 0<s<t} is a strongly continuous two
parametric family of linear operators satisfying the equation

S(s, )= S8(u, 1)S(s, u), 0<s<u<t.
if) 53&%’_)=Akuk(s, D+ Squdugs, 1, 0<s<t,
is solved by ii(s, t)=S(s, 1)f.

Let P;, bc the probability measure defined on sample paths for
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v under the condition u(s)=i. E;; denotes integration with respect
to Pi,s‘

Dfinition 5.5. A backward random evolution {R(s,t), 0<s<t} is
defined by the product

R(s, )= Ty s(t1 =) Tye (T2 = T1) ** T, (T — T0)
where 1,,..., 7, are the jump times between s and t.

Definition 5.6. For 0<s<t define the operator T(s,f) on B,
specified componentwise, by

(TG, 0)i=Ei [RGs, Dfuin] -

Definition 5.7. A forward random evolution {S(s, 1), 0<s<t} is
defined by the product

S(S, t) = 7‘1!(1',.)([ - Tn)'" Tv(tl)(TZ - rl)Tv(s)(tl - S)

where 7,..., 1, are the jump times between s and t.

Definition 5.8. For 0<s<! define the operator U(s, 1) on B,
specified componentwise, by

(O, 0] %= TELLSGs, 0fis v =K].

The proofs of the following results are analogous to that of
Theorem 2.9 and are omitted for brevity.

Theorem 5.9.
). R(s, )f=T(, 0)f.
ii). S(s, )f=0¢s, )f.

Acknowledgments. Portions of this paper were taken from the author’s
Ph. D. thesis written at the University of New Mexico under the direc-
tion of Professor Richard Jerome Griego. | wish to thank Professor
Griego for his guidance and many valuable remarks. A special thanks



Perturbation theory 411

goes to Professor Reuben Hersh for his expert criticism of the first

draft of the research results. Also, the author thanks Professor Mark

Pinsky of Northwestern University for useful comments.

[1]
(2]
[31]

(4]

[s]
(6]
[7]

(8]

191
{1o]
[

[12]

DEPARTMENT OF MATHEMATICS
SouTH CAROLINA STATE COLLEGE

References

Chung, K. L., Markov Chains with Stationary Transition Probabilities, 2nd
ed., New York, Springer-Verlag, 1967.

Cogburn, R. and R. Hersh, “Two Ilimit theorcms for random differential
equations,” Indiana Univ. Math. J. 22, No. |1 (1973), 1067-1089.

Feller, W., “On the integrodifferential equations of completely discontinuous
Markov processes,” Trans. Amer. Math. Soc., 48 (1940), 488-515.

Griego, R.J. and R. Hersh, “Theory of random evolutions with applica-
tions to partial differential equations,” Trans. Amer. Math. Soc., 156 (1971),
405-418.

Hersh, R. and M. Pinsky, ‘“Random evolutions are asymptotically Gaussian,”
Comm. on Pure and App. Math., 25 (1972), 33-44.

Hille, E. and R.S. Phillips, Functional Analysis and Semigroups, Providence,
Amer. Math. Soc., 1957.

Keepler, M., “Backward and forward equations for random evolutions,”
Ph. D. Thesis, University of New Mexico, 1973.

Kertz, R.P., “Limit theorems for discontinuous random evolutions with
applications to initial valuec problems and to Markov processes on N lines,”
Annals of Prob. 2, No. 6 (1974), 1046-1064.

Phillips, R.S., *‘Perturbation theory for semi-groups of lincar operators,”
Trans. Amer. Math. Soc., 74 (1953), 199-221.

Pinsky, M., ‘“Multiplicative operator functionals of a Markov process,” Bull.
Amer. Math. Soc., 77 (1971), 377-380.

Quiring, D., “Random evolutions on diffusion processes”, Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete, 23 (1972), 230-244.

Schoene, A.Y., “Semi-groups and a class of singular perturbation problems,”
Indiana Univ. Math. J. 20, No. 3 (1970), 247-263.



