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§0. Introduction. The following question has been proposed
by Prof. W. Browder: Given a finitely generated abelian group =
and an integer n>2, do there exist, for arbitrary positive integers m,
homogeneous spaces X,, such that n(X,)=n(K(n, n)) for i<m?
Prof. W. Browder has told us, orally that the question can be settled
if either n>3 or = is finite by cohomological arguments. In this paper
we prove that if n=3 and m>63 then n must be finite, thus com-
pleting the answer to the above question. Note that, for m small, it
is possible to find X, such that n(X,)~n(K(Z, 3)) for i<m; for ex-
ample, for m=14, we can take X, simply connected, compact, simple
Lie group of type Eg. The method of the proof is purely homotopical
and involves a counting argument. Our proofs depend heavily upon
the computation of the lower homotopy groups of simple Lie groups,
by Kachi [4], Kervaire [5] and Mimura and Toda ([6], [7] and [8]).

My sincere thanks are due to Prof. W. Browder for suggesting this
problem, to Prof. Mimura for supplying some informations about the
homotopy groups of exceptional Lie groups, and also to Gopal Prasad
without whose help and encouragement this paper would not have ma-
terialized.

§1. The main result

Let X and Y be any topological spaces and m>1 be an integer.
We say X is an m-approximation to Y if therc is a map f: X-Y
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such that f,: n(X)—-n(Y) is an isomorphism, for 0<i<m; if X and Y
are CW-complexes and if Y is a K(n, n) space, then this is equivalent
to saying n(X)=n(Y), 0<i<m.

Theorem. Let n be a finitely generated abelian group and X
be a homogeneous space such that X is an m-approximation to a
K(n, 3) for some m>63. Then n is finite.

It follows from the standard results that a 2-connected homogencous
space is homotopy type of G/H where G is a compact [-connected
Lie group and H is a closed I-connected subgroup of G. Therefore,
throughout the paper, all the groups are assumed to be compact and
I-connected. So, let G/H be an m-approximation to a K(=, 3)-space,
m>4. Then by the homotopy exact sequence of the fibration HGG
—-G/H, we have

(1.1) 0 — a3(H) — 73(G) — n — 0 is exact and

(1.2) ¢ r(H) — 7(G) is an isomorphism for 4<i<m—1, where : H
— G is the inclusion map.

Since G and H are I-connected, there are direct product decompositions,

(1.3) G=TJIG; and H=T]H;

iel jedJ
where G; and H; are I-connccted, simple groups, I and J are finite
sets.

For a simple group S, let [o(S) (resp. [x(S)) denote the number
of simple factors of G (resp. H) isomorphic to S and let I(S)=14(S)
—14(S). For any finitely generated abelian group A4, let r(A) denote
the number of factors in A isomorphic to the cyclic group Z, of order
n, where n=pk for some prime p and an integer k>1; let r(A)
denote the rank of A. Then from (1.2) and (1.3) it follows that

( 1-4) Zi,n= ; l‘,,(Tt;(S)) : [(S)=0

S,simple

for 4<i<m—1 and for every n=p*. Since n;(S)~Z for any simple



K(m, n)-spaces 677
group S (See Bott [1]), it follows from (1.1) and (1.3) that

(L.5) 2 (S)=rq(n).

S,sismple
In what follows the symbols A, (n>1), B, (n>3), C, (n>2), D, (n>4),
G,, F,, E;, E; and Eg denote the compact I-connected Lie groups
of the corresponding type, as usual.

(1.6) Proposition: Let p>31, be a prime. Then for each simple
group S, the p-primary components of m,,(S) and m,,,,(S) are
given as below:

m(S; p):

S A, (n<p), B,(n<p[2), C.(n<p/2)

D, Any other

D,,(ng ”sz‘ ) G, F,, Eg, E, or E,

2 z, 0 0
2p+1 0 ZDZ ‘ z

Proof. Suppose S is isomorphic to one of the groups shown in
column number 2 of the above table. Then by Serre [9], S is p-
regular and hence n(S; p) is given by n(Xs: p) where Xg is a product
of spheres having a single S3 factor. Since m,,(S*; p)=xZ, if k=3
and =0 if k#3 (see [10]), it follows that m,,(S; p)=Z, If S is not
isomorphic to a group shown in column number 2, then S is a classi-
cal group in the stable range for m,,(S) and hence by Bott’s periodicity
theorem and his computations of the stable homotopy groups of classi-
cal groups it follows that m,,(S: p)=0 (note that 2p=2 or 6 mod 8).
Similar arguments give 7,,,,(S; p) also for S®B, and D, If
Sx~B, or D,. we can use the computations of Kervaire [5].

(1.7) Lemma. [(S)=0 if S=A, B, D, (n<7), C,(n<3), G,, F,, E,
or E;.  Also I(Eg)=r_ (1), I(Ag)+I(C,)=0 and I(Bg)+ I(Dg)=0.

We shall prove this in the next section. Assuming the validity of



678 A. R. Shustri

it for a while, the proof of the theorem is completed as follows:
Let M,={S|S is simple, and 7m¢,(S;31)~Z;,} and M,={S|SxA,,
B, D, (1<8),C, (n<4), G,, F,, E;, E; or Eg}. We need,

(1.8) Lemma. If SeM, and S’ is a simple group imbeddable in
S, then S'eM,, where ‘‘imbeddable” means existence of homomor-
phism of S’ into S with finite kernel.

Proof. SeM, implies the rank, r(S)<8 and S’ is imbeddable
in S implies ~(S)<r(S). The only simple groups of rank<8 which
are not in M, are C,, 5<n<8. Hence it is enough to prove that C;
is not imbeddable in S, for Se M,. From Dynkin [3] (theorem 11.2),
all elements of M, except By are imbeddable in Eg and Cs is not
imbeddable in Eg. Thus it remains to see that Cs is not imbeddable
in Bg. If possible assume that Cs is imbeddable in Bg. Then the
natural real representation of By will give a 17-dimensional real repre-
sentation p of Cs. We claim that p is not irreducible. In fact, if p
is irreducible, then, being odd dimensional, its complexification is an
irreducible 17-dimensional complex representation. On the other hand,
it can be shown, using H. Weyl's dimension formula, that Cs has no
irreducible complex representation of dimension 17. Hence p is not
irreducible. Therefore, it follows that an imbedding of Cs5 in By
gives an imbedding of Cs in Dg. Since Dg is imbeddable in Eg
and Cs is not imbeddable in Eg, we arrive at a contradiction. This
complete the proof of the lemma.

(1.9) Proof of the theorem: By (1.4), (1.6) and the definition of M,,
it follows that

262,31= 2 1I(S)=0,
SeM,
and by (1.7) and the definition of M,, it follows that

(1.10) 2 S)=—-UEg)=—ry(n).

SeM (—-M

Let r,= @ n(,z(HJ;3[); Al= @ nﬁz(Gi; 31),

HjeM GieM;
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r2= @ n(’z(HJ; 31): A2= @ TC(,Z(G"; 3]).
Hj¢M> Gi¢M:

Then clearly ng,(H; 31)~T', @I, and 7¢,(G;31)~A,®A4,. By lemma
(1.8), it follow that (y(I';)cA,. Since by assumption, ¢, is a mono-
morphism, we have r3,(A4,)<r;,(I';). By (1.10), we have
0<r3(A))—r3i(I)=_ 3 US)=~r4(m)
SeM —M;
and hence r,(r)=0. This complete the proof of the theorem modulo
the lemma (1.7).

§2. The lemma (1.7)

The table below gives n(S), where S is a simple group and 5<i
<18. Only the information relevent to the proof of the lemma have
been tabulated. The sources of these informations are Kachi [4],
Kervaire [5], Mimura [6] and Mimura and Toda [8]. For the odd
primary components of lower homotopy groups of exceptional Lie
groups, we refer to unpublished work of Mimura [7]. The notations
are as in Mimura and Toda [8]: the symbols oo, + and an integer r
indicate an infinite cyclic group, direct sum and a cyclic group Z,
of order r respectively. We put various values for i and » in the
equation (1.4) and prove lemma (1.7).

(2.1) i=6,n=4,3,2: I(A)=I(A})=1(G;)=0.

(2.2) i=5,n=2, o, together with (2.1): ¥ I(C,)=0= Y I(A,).
n=2 n1
(2.3) i=7, n=o0, together with (2.2): ¥ I(B,)+ ¥ I(D,)+I/(D,)=0.
n=3 n=4
(24) i=8,n=3,2, together with (2.3): I(A;)=0;

I(B5)+ I(D,) + I(B,) + I(F,)=0.
(2.5 i=9, n=00, (Ds)+I(Eg)=0.

(2.6) i=10,n=5,3,8,4,2:
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0

0 and hence

0 and hence I(D,)

0
0

0=I(B5),

I(A)+1(Cy)+1(B3)+21(D,) + I(By,)

I(A)+1(Cy)
I(A)+1(Cy)+1(D,)
I(B3)+1(B,)

I(Ds)
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and by (2.4) I(F,)=0 and finally by (2.5), I[(Es)=0.
(2.7) i=11, n=2, oo, together with (2.6) and (2.3):
I(C3)=0; hence from (2.6) I(A;)=0 and I(Dy)+ I(E,;)=0.

(2.8) i=12,n=5: I(A5)=0.

(29) i=14,n=3,32,16,7,8,4 and 2:

I(Dg)=1(C3)=I(Ag)=I(B;)=0 and hence I(E,)=I(B,)=0

(by (2.7) and (2.6)). Further I(Bg)=I(D,)=I(B;)=0. Also by (2.2), (2.3),

(2.6) and (1.5), I(Eg)=r(n).

(2.10) i=16,n=5: I(A;)=0.

(2.11) i=18,n=5,3,8: I(Ag)+I(Cy)=0: [(Dg)+ I(Eg)=0;
2U(Dg)+ I(Bg) + I(Eg) =0

and hence I(Dg)+I(Bg)=0.

Now the under-lined equations in (2.1) to (2.11) together prove
lemma (1.7).
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