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Abstract. The purpose of this note is to give an algebraic proof
to Liouville’s theorem that any solution of a transcendental equation
logy=y/x is not an elementary transcendental function of x([5, pp.
526-531]).

§0. Introduction. Let K be an algebraically closed field of char-
acteristic 0. We shall suppose that H is a differential ficld whose field
of constants is K. Consider a differential equation

(1 y'=A
and a homogeneous differential equation
() y'=By,

where A4, Be H. Suppose that F is a differential extension of H whose
field of constants is K. Then, Kolchin [2, pp. 801-803] proved the fol-
lowing two theorems (Cf. Ostrowski [6], Kolchin [3, p. 1156], Risch [7,
p. 172]):

1. Suppose that an element n of F satisfies (1). Then, n is algebraic
over H if and only if neH.

2. Suppose that an element { of F satisfies (2). Then, { is algebraic
over H if and only if there exists such a positive integer k that (ke H.

Take a transcendental element 0 over H. Let us define 6 =A.
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Then, H(0) is a differential extension of H. Suppose that any element
of H does not satisfy (1). Then, the field of constants in H(A) is K.

Take a transcendental element p over H. Let us define p'=Bp.
Then, H(p) is a differential extension of H. Suppose that for each
positive integer k any element of H different from 0 does not satisfy
y'=kBy. Then, the field of constants in H(p) is K(Cf. Remark 1).

Any algebraic extension of H is a differential extension of H. Its
field of constants is K, because K is algebraically closed.

Suppose that M, is a differential field whose field of constants is K,
and that M, is a differential extension of M,;. Then, M, will be
called a primitive extension of M, if the following two conditions are
satisfied :

(i) The field of constants in M, is K.

(ii) There exists a finite system of elements u,,..., 4, of M, which
satisfies the following two conditions:

(ii); For each i(1LiZr), u; is a solution of either y'=A4; or
y'=Cy, where A;, C;e M,.

(i), M, is an algebraic extension of M,(u,..., #,) of finite degree.

We shall suppose that M is a differential field whose field of constants
is K. A finite chain of extending differential fields LocL,<:-- <L, will
be called a Liouville chain over M if the following two condition sare
satisfied :

(i) For each i(1<i<n), L; is a primitive extension of L;_;.

(ii) L, is an algebraic extension of M of finite degree.

A differential extension L of M is called a Liouville extension
of M if there exists in L a Liouville chain over M which ends with
L.

Take a transcendental element x over K. Let us define x'=1
and a’'=0 for any element a of K. Then, K(x) is a differential field whose
field of constants is K. Kolchin [2, p. 771] proved that every differential
field of characteristic 0 has a universal extension. We shall take and
fix a universal extension Q of K(x). An element z of Q is called an
elementary transcendental function of x over K if there exists a
Liouville extension of K(x) in  which contains z.
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Let u, v be elements of Q. Suppose that v'£0. Then we write

u=I() if u'v=v'.

Liouville [4, pp. 91-94] proved the following theorem:

Let p,...., p, be algebraic functions of x over K different from O,
and «,,...,a, B be elements of K. Suppose that Y a;p;/p;=p. Then,
p=0.

As a corollary to this theorem we see that I(p) is transcendental
over K(x) for any algebraic function p of x over K different from a con-
stant (Cf. Rosenlicht [8, p. 22]).

Theorem. Any solution of a transcendental equation I(y)=y[x is not

an elementary transcendental function of x over K.
This theorem can be stated in the following form:

Any nontrivial solution of a differential equation x(y—x)y' =y? is
not an elementary transcendental function of x over K.

Remark 1. Kolchin [I] proved that there exists a Picard-Vessiot ex-
tension for any lincar homogeneous ordinary differential equation over
a differential field of characteristic 0 with an algebraically closed field of
constants.

Remark 2. Liouville ([4], [5]) treated [udx only in the case where
u=v'fv and [udx=log v. It seems that to him log v is a transcenden-
tal function of v defined by logv=—3(1—v)"/n (1=n<oo) rather than
a solution of a differential equation vy’=v" in a fixed differentiation signed
by the prime. He claimed that log v satisfies a differential equation
vy=0 in any differentiation signed by the dot. Liouville’s proof of
Theorem [5, pp. 526-531] is not an algebraic one.

Remark 3. Liouville [5, pp. 536-539] stated the following theorem:
Suppose that f is an algebraic function of x, y, and that f,#0 and
f,#0. Then, any solution of a transcendental equation log y=f(x, y)
is not an elementary transcendental function of x unless it is a con-
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stant.

The author wishes to express his sincere gratitude to Professor K.
Okugawa for his kind advices.

§1. Integral and exponential extensions. In this section we shall
prepare several lemmas. We shall suppose that N is a Liouville extension
of H, where H is a differential field whose field of constants is K.

Definition 1. N will be called an integral extension of H if
there exists an element 0 of N which satisfies the following two con-
ditions:

(i) 0 is transcendental over H, and N=H(0).

(i) 0 is a solution of y'=A, where Ae H.

Definition 2. N will be called an exponential extension of H if
there exists an element p of N which satisfies the following two condi-
tions:

(i) p is transcendental over H, and N=H(p).

(i) p is a solution of y'=By, where Be H.

Through this section H() and H(p) will denote an integral and an
exponential extension of H respectively.

If an elment Q of H[0] divides Q', then Qe H. Let R be an element
of H[0], and u be an elment of H(0) different from 0. Suppose that
u'=Ru. Then, ReH and ueH.

Suppose that an element S of H[p] divides S’. Then, S=bp™, where
beH and m is a nonnegative integer. Let T be an element of H[p], and
v be an element of H(p) different from 0. Suppose that v'=Tv. Then,
TeH and v=cp', where t is an integer and ce H.

Lemma 1. Suppose that an element u of H(p) satisfies u'=a, where
aeH. Then, ueH.

Proof. Suppose that u=Q/P, where P, Qe H[p] and (P, Q)=1. The
leading coeflicient of P is assumed to be one. Then, PQ'—P'Q=aP?.
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Hence, P|P' and P=p®, where s is a nonnegative integer. We have
Q' —sBQ=aps. Suppose that

0= b,_ip'  (by#0, bye H, 0<i<n).
i=0

Then, b, +(n—k—s)Bb,=0 for any k(0<k=n) different from n-s.
Hence, b,=0 for such k. Since by#0, we have n=s. Suppose that s>0.
Then, b,=0. This is a contradiction to the assumption that (P, Q)=1.
Hence, n=s=0.

Lemma 2. Suppose that two elements u, v of H(0) satisfy u'=uv’,
and that u#0. Then, ueH.

Proof. Suppose that u=Q/P, v=S/R where P, Q, R, Se H[0] and
that (P, @Q)=(S, R)=1. The leading coefficient of R is assumed to be
one. Then, R*(PQ’'—P'Q)=PQ(RS'—R’S). Suppose that X is an irre-
ducible factor of R and that R=X'T, where (X, T)=1, t>0. The
leading coefficient of X is assumed to be one. Then, X'*'T2-(PQ'—
P'Q)=PQ{XTS'—S(tX'T+ XT’)}. Hence, X|P or X|Q or X|X'. Suppose
that X|P and that P=XsP,, where (X, Py)=1, s>0. Then,

X' T2{XP,Q —Q(sX Py+XPy)} =P,Q{XTS — SUX' T+ XT")} .

Hence, X|X’, because (X, Q)=(X, S)=1. Suppose that X|Q. Then we
also have X|X'. Hence, in any case X|X’, and X=1. This is a con-
tradiction. Hence, R=1. We have ue H, because u'=S"u.

Lemma 3. Suppose that two elements u, v of H(p) satisfy u' =uv’,
and that u#0. Then, veH.

Proof. Let us replace 8§ by p in the previous proof. Then, the
proof goes to a conclusion that X|X'. In this case we have X=p.
Hence, R=p™, and p™(PQ'—P'Q)=PQ(S'—mBS). Suppose that m=>0.
Then, p|P or p|Q or p|(S'—mBS). Suppose that p|(S'—mBS), and that

S=3Y bt (bo#0, be H,0<i<n).
i=0
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Then, b,—mBb,=0. Hence, b,=0. This is a contradiction to the
assumption that (R, S)=1. Hence, p does not divide S’—mBS. Sup-
pose that p|P, and that P=p'P,. where (p, Po)=1 and r>0. Then,
P"{PyQ'—Q(Py+rBPy)} =PyQ(S'—mBS), and p|Q. This contradicts to
the assumption that (P, Q)=1. Suppose that p|Q. Then we also meet
a contradiction. Hence, m=0 and R=1!. We have veH[p], and
v’ e H[p]. Hence, v' e H, because u'=uv’. We have ve H by Lemma I.

§2. Proof of Theorem. By the definition of /(y), y is a solution
of I(y)=y/x if and only if it is a nontrivial solution of

(3) X(y—x)y' =y2.

Suppose that this equation has a nontrivial solution in a Liouville
extension N of K(x). where N is a subfield of Q. Then such a solu-
tion is transcendental over K(x), since [(p) is transcendental over
K(x) for any algebraic function p of x over K different from a con-
stant. Let M be the algebraic closure of N in Q. Then, the field
of constants in M is K. To each element v of M we can correspond
a nonnegative integer n(u) which satisfies the following two conditions:

(i) In M there exists such a Liouville chain LycL,c---<L,,,
over K(x) that L, 3u.

(ii) Suppose that Hy<H,c---<H, is a Liouville chain over
K(x) in M, and that H,3u. Then, m=n(u).

For each nonnegative integer n, let M(n) denote a subset {ueM;
n(u)y=n} of M. Suppose that n>0. Then, to each element u of M(n)
we can correspond a positive integer r,(u) which satisfies the following
two conditions:

(iii) In M there exists such a Liouville chain LycL;c-.-cL, that
L,2u and the transcendental degree of L, over L,_, is r(u).

(iv) Suppose that HycH,c---<H, is a Liouville chain over K(x) in
M, and that H,su. Then, the transcendental degree of H, over H,_, is
not less than r,(u).

Supposc that r(u)=r. Then, there exist r elements p,..., u, of L,
which satisfy the following three conditions:
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(v) u is algebraic over L,_ (sty,..., jt,).

(vi) For each i(1<i=sr), y,; satisfies either p;j=A; or u;=Cjy;, where
A;, C,eL,_,.

(vii)) py,..., p, are algebraically independent over L,_ .

Let I' be a subset of M consisting of all nontrivial solutions of (3)
in M. Then, I' is not empty by our assumption. There exists an element
y of I' which satisfies the following two conditions:

(viii) n(y)=min{n(u); uel}.

(ix) r,(y)=min{r,(u); uel n M(n)}, where n=n(y).

We shall take such an element y of I'. Suppose that r(y)=r.
Then, there exist r elements pu,,...,u, of M which satisfy the three
conditions (v)-(vii) if we replace u by y. Let L denote L,_,(1y,...,
U—1) and p denote p,. Then, L(x) is either an integral extension of
L or an exponential extension of L. Over L(u), y satisfies an irredu-
cible algebraic equation f(y)=0. We shall suppose that

"

f= Z am-—iyi (O(0= I’ o€ L(/")’ 1§1:<:’n)
i=0

We have m;él.vln fact suppose that m=1. Then, yeL(p). It
satisfles y'=(y/x)'y. If L(p) is an integral extension of L, then yelL
by Lemma 2. If L(p) is an exponential extension of L, then y/xeL
by Lemma 3. In any case we meet a contradiction. Differentiating
f=0, we have f,+y'f,=0, where

m

m . . .
fx= .zoaf,.—i)", fy= .Zolam—iy’ I-'
i=

By (3) we have an identity x(y—x)f,+y%f,={my+(xa)—o)}f in y,
since f is irreducible. Hence,

“4) (o/x*y = oy [ ¥ (o [x) (g [x*71),  2Zk=<m,
) o, + (ot /x) o, =0.

Let B, denote o/x* for each k(1<k<m). Then,

) pimBis+ (K4 80) B, 28ksm,
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() | 0=t ( L+, ) B

Suppose that L(u) is an exponential extension of L. Then, by Lemma
3, we have a,eL because of (5). Hence, by Lemma 1, we obtain
o, €L, 2<k<m, inductively from (4). This is a contradiction to the
assumption on y. Hence, L(u) is an integral extension of L and u'
=A, where AeL. By Lemma 2, we have a,eL and f;eL from
(5). By (3), L(y) is a differential field. By the assumption on y, it is
transcendental over L. Hence, pu is algebraic over L(y). We have ue L(y),
because p'=A. Let us express u in the form Q/P, where P, Qe L[y]
and (P, Q)=1. The leading coefficient of P is assumed to be one.
Differentiating u=Q/P, we have Ax(y—x)P? =PQ*—P*Q, where P*=
x(y—x)P,+y2P, and the notation Q* has the same meaning as P*.
Hence, P|P*. Let us express P in the form

Zs:as,,-y’ (ap=1,a,eL, 1Zi<ys).
i=o
Then, P*={sy+(xa’),—a,)}P. Suppose that S is an irreducible factor
of P, and that P=S"R, where (S, R)=1 and h>0. The leading co-
efficient of S is assumed to be one. Then,

€)) x(y—x)(hS,R+SR,)+y*(hS,R+SR,)={sy+(xa’; —a,)}SR.

An irreducible algebraic equation S(y)=0 has a solution z in M, since
M is algebraically closed. Suppose that z#0. Then, zel by (8).
We have either n(z)<n(y) or rf(z)<r,(y). This is a contradiction.
Hence, S=y, and P=ys. We obtain Q—puys=0. This algebraic equa-
tion in y over L(u) is irreducible because (Q, y)=1. Suppose that
s>degQ. Then, s>0, and the constant term ¢ in Q is not 0. We
have f=ys—u 'Q, and «,=c/p. Since a,€ L, this is a contradiction.
Suppose that s=degQ. Then, s>0 because u&sL. We have f=(b—p)~!
«(Q—uy®), where b is the leading coefficient of Q. Hence, a,=c/(b—p).
This is also a contradiction. Hence, s<degQ. We have f=b"1(Q
—uy®), and s>0 because a,€L. Hence, f,eL for any k(1=k<m)
different from m—s. We shall express f,_, in the form cou+c,,
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where co=—b"'x>"" and c¢,eL. First suppose that s<m—1. Set
k=m—s in (6). Then, f,_=pn - +{f +(m—s—1)/x}B,——,. The
right hand member is an element of L. Hence, fB,_.eL. Set k
=m—s—1 in (6). Then, B, o =PF_+{f +(m—s)/x}B,-,. Hence,
coffi+(m—s)/x}=0. We have p)+(m—s)/x=0 because c,#0. Sec-
ondly suppose that s=m—1. Set k=2 in (6). Then, B,=p,+(f,
+1/x)B;. Hence, (B +1/x)co=0 because f;eL. In any case we have

©® pi+-L0,

where j is a positive integer less than m. Integrating this equation,
we get B, =b,—jl(x), where b, e K. By (6) and (9) we have

k=1
Bi=- =i+ TG=)BY,  25ksm.
Integrating this equation inductively, we obtain
k
fi= 3 e {l(x)}, 2<ksm,
i=0

where ¢,;€K,0<i<k. On the other hand, we have B, +p,(m—j)/x=0
from (7) and (9). Integrating this equation, we obtain f,,=b,xi~™, where
b,e K. Since f is irreducible, f8,,#0. Hence, we meet a contradiction,
because /(x) is not an algebraic function of x over K.
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