A remark on the foliated cobordisms of codimension-one foliated 3-manifolds

by
Kazuhiko FUKUI

(Received April 25, 1977)

Introduction

In [6], Rosenberg and Thurston posed the following problem: Are the Reeb foliations of S^{3} foliated cobordant to zero? And Mizutani [5] and Sergeraert [7] gave the affirmative answer.

The purpose of this note is to generalize their result.
Let M^{3} be an oriented closed 3 -manifold. Then the manifold M^{3} has a spinnable structure (cf. Alexander [1]). By the wellknown method [3], we can construct a foliation on M^{3} from this spinnable structure \mathscr{S}. Let this foliation denote $\mathscr{F}_{\mathscr{S}}$. Note that the Reeb foliations of S^{3} are also constructed from a spinnable structure of S^{3}.

Our main theorem is as follows:
Theorem. For any oriented closed 3-manifold M^{3} with any spinnable structure \mathscr{S}, the foliated manifold $\left(M^{3}, \mathscr{F}_{\mathscr{S}}\right)$ is foliated cobordant to zero.

We shall work in the smooth category and all the foliations we shall consider, will be smooth and of codimension one.

§ 1. Reeb foliations and results of Sergeraert

We consider the Reeb foliation on S^{3}. Let T^{2} be a torus which is a unique compact leaf of this foliation. The holonomy along T^{2} is a homomorphism of groups, $\mathscr{H}: \pi_{1}\left(T^{2}\right) \rightarrow G$, where G is the set of germs at 0 of C^{∞}-diffeomorphisms of $\boldsymbol{R}, f: \boldsymbol{R} \rightarrow \boldsymbol{R}$, with $f(0)=0$. Let p_{1}, p_{2} be the standard generators of $\pi_{1}\left(T^{2}\right)$. If we .orient adequately a small
segment transverse to T^{2} serving to define \mathscr{H}, we may assume that the germs of diffeomorphisms $\mathscr{H}\left(p_{1}\right)$ and $\mathscr{H}\left(p_{2}\right)$ have their support respectively in $(-\varepsilon, 0]$ and $[0, \varepsilon)$. Furthermore $\mathscr{H}\left(p_{1}\right)$ and $\mathscr{H}\left(p_{2}\right)$ are contained in G_{∞}, where G_{∞} is the set consisting of germs at 0 of C^{∞}-diffeomorphisms of \boldsymbol{R} which are C^{∞}-tangent to identity at 0 , and are fixed point free respectively on $(-\varepsilon, 0)$ and $(0, \varepsilon)$. The Reeb foliations are characterized by conjugates of $\left(\mathscr{H}\left(p_{1}\right), \mathscr{H}\left(p_{2}\right)\right)$. Put $g_{1}=\mathscr{H}\left(p_{1}\right)$ and g_{2} $=\mathscr{H}\left(p_{2}\right)$. We denote by $\mathscr{F}\left(g_{1}, g_{2}\right)$ the associated Reeb foliation. In this section we shall recall the following theorem due to Sergeraert [7].

Theorem 1. $\mathscr{F}\left(g_{1}, g_{2}\right)$ is foliated cobordant to zero.
This foliation is represented by a homotopy class of a mapping f : $S^{3} \rightarrow B \Gamma_{1}^{\infty}$, where $B \Gamma_{1}^{\infty}$ denotes the Haefliger classifying space. In our case the image of S^{3} by f is contained in $B \bar{\Gamma}_{1}^{\infty}$, where $B \bar{\Gamma}_{1}^{\infty}$ denotes the homotopy fiber of the map $\nu: B \Gamma_{1}^{\infty} \rightarrow B O_{1}$. We denote by $\pi_{3}\left(g_{1}, g_{2}\right)$ this homotopy class of $\pi_{3}\left(B \bar{\Gamma}_{1}^{\infty}\right)$ and $H_{3}\left(g_{1}, g_{2}\right)$ the homology class of $H_{3}\left(B \bar{\Gamma}_{1}^{\infty}\right)$ corresponding to $\pi_{3}\left(g_{1}, g_{2}\right)$ via the Hurewicz homomorphsm. This is the image of the fundamental class $\left[S^{3}\right]$ by the Hurewicz homomorphism $H_{3}(f)$.

Proposition 2. The Hurewicz homomorphism $H_{3}: \pi_{3}\left(B \bar{\Gamma}_{1}^{\infty}\right) \rightarrow H_{3}\left(B \bar{\Gamma}_{1}^{\infty}\right)$ is an isomorphism.

Proof. It is trivial from such a fact that $B \bar{\Gamma}_{1}^{\infty}$ is 2 -connected (Haefliger [2], Mather [4]).

Theorem 3 (Sergeraert [7]). For any g_{1}, g_{2} in G_{∞}, which have their support respectively in $(-\varepsilon, 0]$ and $[0, \varepsilon)$, and are fixed point free respectively on $(-\varepsilon, 0)$ and $(0, \varepsilon), H_{3}\left(g_{1}, g_{2}\right)=0$.

Let $\operatorname{Diff}{ }_{K}^{\infty}(\boldsymbol{R})$ be the group of C^{∞}-diffeomorphisms of \boldsymbol{R} with compact support, equipped with the discrete topology. Now we consider the Eilenberg-Maclane homology of Diff ${ }_{K}^{\infty}(\boldsymbol{R})$. If g_{1} and g_{2} in $\mathrm{Diff}_{K}^{\infty}(\boldsymbol{R})$ commute, then $\left(g_{1}, g_{2}\right)-\left(g_{2}, g_{1}\right)$ is a 2 -cycle. Let denote this homology class by $H_{2}\left(g_{1}, g_{2}\right)$. In particular, if g_{1} has the support in $(-\infty, 0]$ and g_{2} in $[0, \infty)$, then g_{1} and g_{2} commute. Hence the homology class $H_{2}\left(g_{1}, g_{2}\right)$ is defined.

Theorem 4 (Sergeraert [7]). If the supports of g_{1} and g_{2} are contained respectively in $(-\infty, 0]$ and $[0, \infty)$, then $H_{2}\left(g_{1}, g_{2}\right)=0$.

Proof. Let D_{1} (resp. D_{2}) be the subgroup consisting of elements of D iff ${ }_{K}^{\infty}(\boldsymbol{R})$ whose supports are in ($\left.-\infty, 0\right]$ (resp. [0, ∞)). There is a canonical inclusion $\iota: D_{1} \times D_{2} \rightarrow \operatorname{Diff}_{\mathrm{K}}^{\infty}(\boldsymbol{R})$ defined by $\iota\left(g_{1}, g_{2}\right)=g_{1} g_{2}$.

Therefore it is sufficient to prove that the homology class $H_{2}\left(g_{1}, g_{2}\right)$ is zero in $H_{2}\left(D_{1} \times D_{2}\right)$. From Künneth formula, $H_{2}\left(D_{1} \times D_{2}\right) \approx H_{2}\left(D_{1}\right) \oplus$ $\left(H_{1}\left(D_{1}\right) \otimes H_{1}\left(D_{2}\right)\right) \oplus H_{2}\left(D_{2}\right)$. This canonical isomorphism decomposes H_{2} $\left(g_{1}, g_{2}\right)$ into $H_{2}\left(g_{1}, e\right) \oplus\left(H_{1}\left(g_{1}\right) \otimes H_{1}\left(g_{2}\right)\right) \oplus H_{2}\left(e, g_{2}\right)$, where e is a unit element. It is easy to see that the first and third parts are zero. On the other hand, $H_{1}\left(D_{1}\right)=0$ from the following result [7]: $\operatorname{Diff}_{\infty}^{\infty}([0,1])$ is perfect, where $\operatorname{Diff}_{\infty}^{\infty}([0,1])$ is the group of C^{∞}-diffeomorphisms of $[0,1]$ which are C^{∞}-tangent to identity at 0 and 1 . Hence $H_{1}\left(g_{1}\right)$ $=H_{1}\left(g_{2}\right)=0$. This completes the proof.

Proof of Theorem 3. The germ g_{1} (resp. g_{2}) is the germ of an element \hat{g}_{1} (resp. \hat{g}_{2}) of $D_{1}\left(\right.$ resp. $\left.D_{2}\right)$. Furthermore we can assume that $\hat{g}_{1}(x)=x$, $\hat{g}_{2}(x)=x$ if $|x| \geqq 1$ and \hat{g}_{1} (resp. \hat{g}_{2}) is fixed point free on $(-1,0)$ (resp. (0,1)). Let $\mathscr{H}: \pi_{1}\left(T^{2}\right) \rightarrow \operatorname{Diff}_{\infty}^{\infty}([-1,1])$ be the homomorphism which maps p_{1} and p_{2} to \hat{g}_{1} and \hat{g}_{2} respectiviely. We can construct a foliation on $T^{2} \times[-1,1]$ whose global holonomy is \mathscr{H}. We define an equivalence relation \sim on $T^{2} \times[-1,1]$ as follows: for $\left(\theta_{1}, \theta_{2}, t\right)$, $\left(\theta_{1}^{\prime}\right.$, $\left.\theta_{2}^{\prime}, t^{\prime}\right) \in T^{2} \times[-1,1],\left(\theta_{1}, \theta_{2}, t\right) \sim\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, t^{\prime}\right)$ if and only if $\theta_{1}=\theta_{1}^{\prime}$ when $t=t^{\prime}=1, \theta_{2}=\theta_{2}^{\prime}$ when $t=t^{\prime}=-1$, and $\theta_{1}=\theta_{1}^{\prime}, \theta_{2}=\theta_{2}^{\prime}$ and $t=t^{\prime}$, otherwise. The foliation on $T^{2} \times[-1,1]$ induces a Γ_{1}^{∞}-structure on S^{3} under this quotient map, which is denoted by $\mathscr{F}\left(\hat{\mathrm{g}}_{1}, \hat{g}_{2}\right)$. This Γ_{1}^{∞}-structure resembles the Reeb foliation $\mathscr{F}\left(g_{1}, g_{2}\right)$. Let $g: S^{3} \rightarrow B \bar{\Gamma}_{1}^{\infty}$ be a map representing the Γ_{1}^{∞}-structure $\mathscr{F}\left(\hat{g}_{1}, \hat{\mathrm{~g}}_{2}\right)$.

On the other hand, Mather [4] constructed an isomorphism S : $H_{2}\left(\operatorname{Diff}_{K}^{\infty}(\boldsymbol{R})\right) \rightarrow H_{3}\left(B \bar{\Gamma}_{1}^{\infty}\right)$. We can see from the construction of this isomorphism that $S\left(H_{2}\left(\hat{g}_{1}, \hat{g}_{2}\right)\right)=H_{3}(g)\left(\left[S_{3}\right]\right)$, where $\left[S^{3}\right]$ is the fundamental homology class of S^{3}.

Lemma 5. Γ_{1}^{∞}-structures $\mathscr{F}\left(g_{1}, g_{2}\right)$ and $\mathscr{F}\left(\hat{g}_{1}, \hat{g}_{2}\right)$ are homotopic.
Proof. See [7. Lemma 6. 9].
Therefore the map $g: S^{3} \rightarrow B \bar{\Gamma}_{1}^{\infty}$ is a map associated with the Reeb foliation $\mathscr{F}\left(g_{1}, g_{2}\right)$. Hence $H_{3}\left(g_{1}, g_{2}\right)=H_{3}(g)\left(\left[S^{3}\right]\right)=S\left(H_{2}\left(\hat{g}_{1}, \hat{g}_{2}\right)\right)=0$ (from Theorem 4). This completes the proof of Theorem 3.

Proof of Theorem 1. From Proposition 2 and Theorem 3, we have $\pi_{3}\left(g_{1}, g_{2}\right)=0$, i. e., $f: S^{3} \rightarrow B \bar{\Gamma}_{1}^{\infty}$ is homotopic to a constant map $f_{0}(p)=x_{0}$ for any $p \in S^{3}$, where x_{0} is a base point of $B \bar{\Gamma}_{1}^{\infty}$. Choose a compact oriented 4-manifold V^{4} such that $\partial V^{4}=S^{3}$ and its Euler number vanishes. Let $\partial V \times[0,1]\left(\subset V^{4}\right)$ be a collar neighborhood of ∂V, and $F: \partial V \times[0,1] \rightarrow B \bar{\Gamma}_{1}^{\infty}$ denote a homotopy of f and $f_{0}, i . e .,\left.F\right|_{\partial V \times(0)}=f$ and $\left.F\right|_{a v \times(1)}=f_{0}$. Then we define a map $H: V^{4} \rightarrow B \bar{\Gamma}_{1}^{\infty}$ as follows:

$$
H(p)=\left\{\begin{array}{l}
F(p) \quad \text { for } p \in \partial V \times[0,1] \\
x_{0} \quad \text { otherwise }
\end{array}\right.
$$

Since the Euler number of V^{4} vanishes, we can extend any vector field on S^{3} transverse to $\mathscr{F}\left(g_{1}, g_{2}\right)$ to V^{4} without singularities. From the theorem of Thurston [8, Theorem 2], there exists a C^{∞}-foliation \mathscr{G} on V^{4} such that $\left.\mathscr{G}\right|_{\partial V}=\mathscr{F}\left(g_{1}, g_{2}\right)$. This completes the proof.

§ 2. Statement of results

A closed 3 -manifold M is called spinnable if there exists a 1 -submanifold X, which is a finite union of circles, called an axis, satisfying the following conditions: 1) the normal bundle of X is trivial, 2) let $X \times D^{2}$ be a tubular neighborhood of X, then $M-X \times i n t D^{2}$ is the total space of a fiber bundle ξ over a circle S^{1}, and 3) let $p: M$ - $X \times$ int D^{2} $\rightarrow S^{1}$ be the projection of ξ, then the diagram

commutes, where ℓ denotes the inclusion and p^{\prime} denotes the projection onto the second factor. The pair $\mathscr{S}=(X, \xi)$ is called a spinnable strurture on M. We can construct a foliation on M from a spinnable structure $\mathscr{S}=(X, \xi)$ as follows. Our problem is to extend the foliation of $M-X \times$ int D^{2}, given naturally by p, to $X \times D^{2}$. Choose the polar coordinates on $D^{2},(\theta, r)$, where θ is the polar angle mod. 1 and r is the radius, $0 \leqq r \leqq 1$.

At first we construct a foliation on the anullus $A=\left\{(\theta, r) \in D^{2} ; 1 / 2\right.$ $\leqq r \leqq 1\}$ choosing a C^{∞}-vector field v on A such that $v=\frac{\partial}{\partial r}$ for $3 / 4 \leqq$ $r \leqq 1$ and $v=\frac{\partial}{\partial \theta}$ for $r=1 / 2$ (see Fig. 1).

Fig. 1.

Defining each on $X \times A$ to be a product of a orbit of the flow v and a connected component of X, we can extend the foliation of $M-X \times i n t D^{2}$ to $X \times A$ naturally. Note that $X \times \partial_{0} A$ is a union of tori, where $\partial_{0} A=$ $\{(\theta, r) \in A ; r=1 / 2\}$. The place where we do not construct a foliation is $X \times D(1 / 2)$, which is a finite union of solid tori, where $D(1 / 2)=$ $\left\{(\theta, r) \in D^{2} ; 0 \leqq r \leqq 1 / 2\right\}$. Therefore we put the Reeb component into each solid torus. We denote this foliation by $\mathscr{F}_{\mathscr{S}}$.

Remark 1. In the above construction, there is an ambiguity for an orientation of the Reeb component (see Mizutani [5] for definition).

Remark 2. When the number of connected components of X is greater than one, we can construct another foliation on M, which is different from $\mathscr{F}_{\mathscr{S}}$ on $X \times A$. Choose a C^{∞}-vector field v^{\prime} on the anullus A such that $v^{\prime}=\frac{\partial}{\partial r}$ for $3 / 4 \leqq r \leqq 1$ and $v^{\prime}=-\frac{\partial}{\partial \theta}$ for $r=1 / 2$. We define a foliation on $X \times A$ by putting foliations induced from the vector fields v and v^{\prime} on $X_{1} \times A$ and $X_{2} \times A$ respectively, where X_{1} and X_{2} are connected components of X such that $X_{1} \cup X_{2}=X$. We denote this foliation by $\mathscr{F}_{\mathscr{\varphi}}{ }^{\prime}$.

Theorem 6. For any closed oriented 3-manifold M^{3} with a ny spinnable strurture $\mathscr{S},\left(M, \mathscr{F}_{\varphi}\right)$ is foliated cobordant to zero.

Theorem 7. For any closed oriented 3-manifold M^{3} with any spinnable strurture $\mathscr{S},\left(M, \mathscr{F}_{\mathscr{S}}\right)$ is foliated cobordant to zero.

§3. Proof of Theorem 6

Let $S^{1} \times[0,2]$ be an anullus with natural coordinates (θ, t). We define a foliation on the anullus $S^{1} \times[0,2]$ by choosing a C^{∞}-vector field u such that $u=\frac{\partial}{\partial t}$ for $0 \leqq t \leqq 1 / 2$ and $u=-\frac{\partial}{\partial \theta}$ for $1 \leqq t \leqq 2$. And we can lift this foliation to $\left\{M-X \times i n t D^{2}\right\} \times[0,2]$ via the map p \times identity, where p denotes the projection of ξ. From definition of spinnable structure, we see that θ in the above coordinates is identif ied with the polar angle in the polar coordinates of D^{2} in $\S 2$. We denote by \mathscr{F}_{1} the foliation on $\left\{M-X \times i n t D^{2}\right\} \times[0,2] . \mathscr{F}_{1}$ restricted to $\{M-$ $\left.X \times i n t D^{2}\right\} \times\{0\}$ is $\mathscr{F}_{\mathscr{S}}$ restricted to $M-X \times i n t D^{2}$ and \mathscr{F}_{1} restricted to $\left\{M-X \times \operatorname{int} D^{2}\right\} \times[1,2]$ is a product foliation such that each leaf is defined by $\left\{M-X \times\right.$ int $\left.D^{2}\right\} \times\{t\}, t \in[1,2]$. Furthermore we investigate the foliation on a boundary of $\left\{M-X \times\right.$ int $\left.D^{2}\right\} \times[0,2], X \times S^{1} \times[0,2]$. \mathscr{F}_{1} restricted to $X \times S^{1} \times[0,2]$ is the foliation lifted from the above foliation on the anullus $S^{1} \times[0,2]$, that is, \mathscr{F}_{1} restricted to $X \times S^{1} \times\{0\}$ is
a foliation such that each leaf is defined by $\{$ a connected component of $X\} \times\{\theta\}, \theta \in S^{1}$ and \mathscr{F}_{1} restricted to $X \times S^{1} \times[1,2]$ is a product foliation such that each leaf is defined by a connected component of $X \times S^{1} \times\{t\}, t \in[1,2]$, which is a torus. Let $f_{1}:\left\{M-X \times i n t D^{2}\right\} \times[0,2]$ $\rightarrow B \bar{\Gamma}_{1}^{\infty}$ be a map representing the Γ_{1}^{∞}-structure \mathscr{F}_{1}. Since \mathscr{F}_{1} restricted to $\left\{M-X \times\right.$ int $\left.D^{2}\right\} \times[1,2]$ is the product foliation, we may assume that f_{1} restricted to $\left\{M-X \times \operatorname{int} D^{2}\right\} \times[3 / 2,2]$ is a constant map, i.e., $f_{1}(p)=x_{0}$ for any p in $\left\{M-X \times\right.$ int $\left.D^{2}\right\} \times[3 / 2,2]$, where x_{0} denotes a base point of $B \bar{\Gamma}_{1}^{\infty}$. Without loss of generality, we may assume the number of connected components of the axis X is equal to one, i.e., X is a circle. Put $Y=X \times S^{1} \times[0,2] \cup X \times D^{2} / \sim$, where \sim is an equivalence relation which identifies $X \times S^{1} \times\{0\}$ with $X \times \partial D^{2}$. This is a solid torus. Note that Y has a foliation \mathscr{F}_{2} as follows: \mathscr{F}_{2} on $X \times S^{1} \times[0,2]$ is defined by \mathscr{F}_{1} restricted to $X \times S^{1} \times[0,2]$ and \mathscr{F}_{2} on $X \times D^{2}$ is defined by $\mathscr{F}_{\mathscr{S}}$ restricted to $X \times D^{2}$. Let $f_{2}: Y \rightarrow B \bar{\Gamma}_{1}^{\infty}$ be a map representing the Γ_{1}^{∞}-structure \mathscr{F}_{2} such that f_{2} restricted to $X \times S^{1} \times[0,2]$ is equal to f_{1} restricted to $X \times S^{1} \times[0,2]$.

Now we shall prove Theorem 6 assuming that f_{2} is homotopic to the constant map $f_{0}\left(f_{0}(p)=x_{0}\right.$ for any p in Y, relative to $X \times S^{1} \times[3 / 2,2]$. Choose an oriented 4-manifold V_{1} such that $\partial V_{1}=M$ and the Euler number of V_{1} vanishes. (This is possible.) Let $F_{s}(0 \leqq s \leqq 1)$ be a homotopy relative to $X \times S^{1} \times[3 / 2,2]$ from f_{2} to f_{0}, i.e., $F_{0}=f_{2}$ and $F_{1}=f_{0}$. Put $V=V_{1} \cup M \times[0,2] / \sim$, where \sim is an equivalence relation which identifies ∂V_{1} with $M \times\{2\}$. And let $N=Y \times[0,1]$ be a onesided tubular neighborhood of Y in $M \times[0,2]$ such that $Y \times\{0\}$ corresponds to Y (see Fig. 2).

Fig. 2.

Then we can define a map $H: V \times B \bar{\Gamma}_{1}^{\infty}$ as follows:

$$
H(p)= \begin{cases}f_{1}(p) & \text { for } p \in\left\{M-X \times \operatorname{int} D^{2}\right\} \times[0,2] \\ F_{s}(q) & \text { for } p=(q, s) \in N=Y \times[0,1] \\ x_{0} & \text { otherwise }\end{cases}
$$

Hence by Thurston's Theorem [8, Theorem 2], we can extend the foliation $\mathscr{F}_{\mathscr{S}}$ on M to V as in the proof of Theorem 1 in $\S 1$.

Construction of a homotopy of f_{2} and f_{0}

We will construct a Γ_{1}^{∞}-structure on Y which is homotopic to the Γ_{1}^{∞}-structure \mathscr{F}_{2} by the same way as in $\S 1$. Let a torus T^{2} be an isolated compact leaf of \mathscr{F}_{2} and a homomorphism $\mathscr{H}: \pi_{1}\left(T^{2}\right) \rightarrow G$ the holonomy. Let p_{1}, p_{2} be the standard generators of $\pi_{1}\left(T^{2}\right)$ which is mapped to the germs of diffeomorphisms having their support respectively in $(-\varepsilon, 0]$ and $[0, \varepsilon)$, by the map \mathscr{H}. Furthermore $\mathscr{H}\left(p_{1}\right)$ and $\mathscr{H}\left(p_{2}\right)$ are C^{∞}-tangent to identity at 0 and are fixed point free respectively on $(-\varepsilon, 0)$ and $(0, \varepsilon)$. As in $\S 1$, the germ $\mathscr{H}\left(p_{1}\right)$ (resp. $\mathscr{H}\left(p_{2}\right)$) is represented by an element $\hat{\mathrm{g}}_{1}$ (resp. $\hat{\mathrm{g}}_{2}$) of D_{1} (resp. D_{2}) such that $\hat{g}_{1}(x)=x, \hat{g}_{2}(x)=x$ if $|x| \geqq 1$ and \hat{g}_{1} (resp. \hat{g}_{2}) is fixed point free on $(-1,0)$ (resp. (0,1)). Let $\tilde{\mathscr{H}}: \pi_{1}\left(T^{2}\right) \rightarrow \operatorname{Diff}_{\infty}^{\infty}([-1,2])$ be the homomorphism which maps p_{1} and p_{2} to \hat{g}_{1} and \hat{g}_{2} respectively. Therefore we can construct a foliation on $T^{2} \times[-1,2]$ whose global holonomy is $\tilde{\mathscr{H}}$. We define an equivalence relation \approx on $T^{2} \times[-1,2]$ as follows: for $\left(\theta_{1}, \theta_{2}, t\right),\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, t^{\prime}\right) \in T^{2} \times[-1,2],\left(\theta_{1}, \theta_{2}, t\right) \approx\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, t^{\prime}\right)$ if and only if $\theta_{2}=\theta_{2}^{\prime}$ when $t=t^{\prime}=-1$ and $\theta_{1}=\theta_{1}^{\prime}, \theta_{2}=\theta_{2}^{\prime}$, and $t=t^{\prime}$ otherwise. Then the quotient space $T^{2} \times[-1,2] / \approx$ is homeomorphic to Y. The foliation on $T^{2} \times[-1,2]$ induces a Γ_{1}^{∞}-structure on Y under this quotient map, which is denoted by $\mathscr{F}_{2}^{\prime}\left(\hat{g}_{1}, \hat{\mathrm{~g}}_{2}\right)$. This Γ_{1}^{∞}-structure resembles the Γ_{1}^{∞}-structure \mathscr{F}_{2} on Y.

On the other hand, we can define a quotient map

where the relation \sim is a relation which adds to the relation \approx a following condition: $\left(\theta_{1}, \theta_{2}, t\right) \sim\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, t^{\prime}\right)$ if $\theta_{1}=\theta_{1}^{\prime}$ when $t=t^{\prime}=2$. Let $\mathscr{F}^{\prime}\left(\hat{g}_{1}, \hat{g}_{2}\right)$ denote the Γ_{1}^{∞}-structure on S^{3} as in $\S 1$. The map q carries the $\Gamma_{1}^{\infty}-$ structure $\mathscr{F}_{2}^{\prime}\left(\hat{g}_{1}, \hat{g}_{2}\right)$ on Y to the Γ_{1}^{∞}-structure $\mathscr{F}^{\prime}\left(\hat{g}_{1}, \hat{g}_{2}\right)$ on S^{3}. If $f: S^{3}$ $\rightarrow B \bar{\Gamma}_{1}^{\infty}$ is a map representing the $\Gamma_{1_{-}}^{\infty}$-structure $\mathscr{F}^{\prime}\left(\hat{g}_{1}, \hat{g}_{2}\right)$, then the composition map $f \circ q$ represents the Γ_{1}^{∞}-structure $\mathscr{F}_{2}^{\prime}\left(\hat{g}_{1}, \hat{g}_{2}\right)$ on Y. We can assume $f \circ q(p)=x_{0}$ for any p in $T^{2} \times[3 / 2,2]$. Using the same method in the proof of Lemma 5, we can see that f_{2} is homotopic to $f \circ q$
relative to $X \times S^{1} \times[3 / 2,2]$. By the arguement in $\S 1$, we see that f is homotopic to the constant map f_{0}. Since $B \bar{\Gamma}_{1}^{\infty}$ is 2 -connected, f_{2} is homotopic to the constant map f_{0} relative to $X \times S^{1} \times[3 / 2,2]$.

Corollary 8. The Γ_{1}^{∞}-structure $\mathscr{F}_{\mathscr{S}}$ on M is homotopic to a trivial one.

§4. Proof of Theorem 7

It is sufficient to prove for the case of the foliation constructed using the vector field v^{\prime} (see Remark 2 in $\S 2$). In this case, the foliation restricted to $B=X \times S^{1} \times[0,1] \cup X \times D^{2}$ is as follows.

Fig. 3.
Put $C=B \cup D^{2} \times S^{1} / \sim$, where \sim is an equivalence relation which identifies $X \times S^{1} \times\{1\}$ with $\partial D^{2} \times S^{1}$. Note that C is homeomorphic to a 3-sphere. We put an oriented Reeb component on the solid torus as follows. Let α be a C^{∞}-function $\alpha:[0,1) \rightarrow \boldsymbol{R}$, such that $\alpha(0)=0$, $\alpha^{\prime}(t)>0$ for all $t \in(0,1), \alpha^{(k)}(0)=0, \lim _{t \rightarrow 1} \alpha^{(k)}(t)=\infty$ for all k. Express a point p of $D^{2} \times S^{1}$ as $p=(t, x, \theta),(t, x) \in D^{2}, \theta \in S^{1}, t$ is the radius $(0 \leqq t$ $\leqq 1$) and x is the polar angle mod. 1. Define a foliation on $D^{2} \times S^{1}$ as follows: for two points $p=(t, x, \theta), p^{\prime}=\left(t^{\prime}, x^{\prime}, \theta^{\prime}\right)$ of $D^{2} \times S^{1}, L_{p}=L_{p^{\prime}}$ if and only if $t=t^{\prime}=1$ or $\alpha(t)-\theta \equiv \alpha\left(t^{\prime}\right)-\theta^{\prime}(\bmod .1)$, where L_{p} is the leaf that contains p. We denote this foliation on the 3 -sphere C by \mathscr{F}_{3}

Proposition 9. $\left(C, \mathscr{F}_{3}\right)$ is foliated cobordant to zero.
Proof. This foliation \mathscr{F}_{3} and a Reeb foliation are concordant because \mathscr{F}_{3} is obatined from the Reeb foliation by perturbing along a transversal simple curve. From Theorem 1, the Reeb foliation is foliated cobordant to zero. Hence (C, \mathscr{F}_{3}) is so.

We consider the foliation on $X \times S^{1} \times[1,2] \cup D^{2} \times S^{1} / \sim$, where \sim is an
equivalence relation which identifies $X \times S^{1} \times\{1\}$ with $\partial D^{2} \times S^{1}$.
This is a special case of the foliation \mathscr{F}_{2} on Y in $\S 3$. Therefore by the same method as in the proof of Theorem 6, we can prove Theorem 7.

Department of Mathematics
 Kyoto Sangyo University

References

[1] J. W. Alexander, A lemma on systems of knotted curves, Proc. Acad. Sci. U. S. A., 9 (1923), 93-95
[2] A Haefliger, Homotopy and integrability, Manifolds-Amsterdam 1970, Lecture notes in Math.
[3] H.B. Lawson, Codimension-one foliations of spheres, Ann. of Math., 94 (1971), 494-503.
[4] J. Mather, Integrability in codimension one, Comm. Math. Helv., 48 (1973), 195-233.
[5] T. Mizutani, Foliated cobordisms of S^{3} and examples of foliated 4-manifolds, Topology 13 (1974), 353-362.
[6] H. Rosenberg and W. Thurston, Some remarks on foliations, in Dynamical Systems, Acad. Press, New York and London, 1973.
[7] F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, preprint.
[8] W. Thurston, Existence of codimension one foliations, Ann of Math., 104 (1976), 249-268.

