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Introduction

In [6], Rosenberg and Thurston posed the following problem: Are
the Reeb foliations of S foliated cobordant to zero? And Mizutani [5]
and Sergeraert [7] gave the affirmative answer.

The purpose of this note is to generalize their result.

Let M® be an oriented closed 3-manifold. Then the manifold M?*
has a spinnable structure (cf. Alexander [1]). By the wellknown
method [3], we can construct a foliation on M?® from this spinnable
structure &. Let this foliation denote %4 Note that the Reeb folia-
tions of S* are also constructed from a spinnable structure of S°

Our main theorem is as follows:

Theorem. For any oriented closed S—maﬁifold M?® with any spinnable
structure &, the foliated manifold (M?, Fg) is foliated cobordant to zero.

We shall work in the smooth category and all the foliations we
shall consider, will be smooth and of codimension one.

§1. Reeb foliations and results of Sergeraert

We consider the Reeb foliation on S%. Let 7% be a torus which is
a unique compact leaf of this foliation. The holonomy along T? is a
homomorphism of groups, # : ,(T?) >G, where G is the set of germs
at 0 of C~-diffeomorphisms of R, f: R—R, with f(0)=0. Let p,, p,
be the standard generators of =, (7%). If we .orient adequately a small
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segment transverse to 7? serving to define #, we may assume that the
germs of diffeomorphisms # (p,) and # (p,) have their support respec-
tively in (—¢, 0] and [0, ¢). Furthermore s (p,) and # (p,) are contain-
ed in G., where G. is the set consisting of germs at 0 of C=-diffeo-
morphisms of R which are C™-tangent to identity at 0, and are fixed
point free respectively on (—¢, 0) and (0, ¢). The Reeb foliations are
characterized by conjugates of (# (p,), # (p.)). Put gg=#(p,) and g,
= (p,). We denote by ZF (g, g,) the associated Reeb foliation. In
this section we shall recall the following theorem due to Sergeraert [7].

Theorem 1. % (g, g,) is foliated cobordant to zero.

This foliation is represented by a homotopy class of a mapping f:
S*—BI'y, where BI'y? denotes the Haefliger classifying space. In our
case the image of S°® by f is contained in BI'Y, where BI'Y denotes the
homotopy fiber of the map v: BI'T—BO,. We denote by (g, g,) this
homotopy class of =,(BI'7") and H,(g,, g,) the homology class of H,(BI'Y)
corresponding to m,(g,, &) via the Hurewicz homomorphsm. This is
the image of the fundamental class [S*] by the Hurewicz homomor-
phism H,(f).

Proposition 2. The Hurewicz homomorphism H,:r,(BI’7)—H,(BI'")
is an isomorphism.

Proof. It is trivial from such a fact that BI'yY is 2—connected
(Haefliger [2], Mather [4]).

Theorem 3 (Sergeraert [7]). For any g, g, in G., which have their
support respectively in (—e, 0] and [0, €), and are fixed point free respec-
tively on (—e, 0) and (0, ¢), H,(g,, g,)=0.

Let Diffg(R) be the group of C*-diffeomorphisms of R with compact
support, equipped with the discrete topology. Now we consider the
Eilenberg-Maclane homology of Difff(R). If g and g, in Diffg(R)
commute, then (g, &) — (g &) is a 2-cycle. Let denote this homology
class by H,(g,, g&). In particular, if g, has the support in (—oo, 0]
and g, in [0, ), then g, and g, commute. Hence the homology class
H,(g,, g,) is defined.

Theorem 4 (Sergeraert [7]). If the supports of g, and g, are contained
respectively in (—oo, 0] and [0, ), then H,(g, g,) =0.

Proof. Let D,(resp. D,) be the subgroup consisting of elements of
Diffz (R) whose supports are in (—o0, 0] (resp. [0, o0)). There is a
canonical inclusion ¢ :D,xD, —»Difff(R) defined by ¢(g, &) =28
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Therefore it is sufficient to prove that the homology class H,(g,, &) is
zero in H,(D,xD,). From Kiinneth formula, H,(D,xD,) ~H,(D,)®
(H,(D,) ®H,(D,))®H,(D,). This canonical isomorphism decomposes H,
(g1, &) into H,(g, e)@(Hl(g1)®H1(gz))®Hz(e, &), where e is a unit
element. It is easy to see that the first and third parts are zero. On
the other hand, H,(D,) =0 from the following result [7]: DiffZ([0, 11)
is perfect, where Diff=([0, 1]) is the group of C=-diffeomorphisms
of [0, 1] which are C-tangent to identity at 0 and 1. Hence H,(g,)
=H,(g,)=0. This completes the proof.

Proof of Theorem 3. The germ g, (resp. g,) is the germ of an element
&, (resp. &,) of D,(resp. D,). Furthermore we can assume that g, (z) =z,
g.(x)=z if |z|=1 and g, (resp. &,) 1is fixed point free on (—1, 0)
(resp. (0, 1)). Let o#: n,(T?)-Diff2([—1, 1]) be the homomorphism
which maps p, and p, to g, and £, respectiviely. We can construct a
foliation on T*x[—1, 1] whose global holonomy is #. We define an
equivalence relation ~on T?x[—1, 1] as follows: for (6, 6, t), (0,
0, thYeT*x[-1, 1], (0, 0, t)~ (0}, 0, t') if and only if 6,=6; when
t=t'=1, 6,=60, when t=t'=—1, and 6,=0;, 0,=0, and t=¢, otherwise.
The foliation on T?x[—1, 1] induces a ['7°-structure on S°® under this
quotient map, which is denoted by £ (&, g,). This ['"-structure
resembles the Reeb foliation Z (g, g,). Let g: S*>BI? be a map
representing the I'y-structure & (&, £.).

On the other hand, Mather [4] constructed an isomorphism S:
H,(Diffg(R)) -H,(BI'*). We can see from the construction of this
isomorphism that S(H,(g, £,)) =H,(g) ([S.]), where [S*] is the fun-
damental homology class of S°.

Lemma 5. [I'7-structures & (g, g,) and F (&, &,) are homotopic.
Proof. See [7. Lemma 6. 9].

Therefore the map g: S*—>BI7 is a map associated with the Reeb

foliation # (g, &). Hence Hi(g, g&)=H(g) ([S’]) =S(H, (&, £.))=0
(from Theorem 4). This completes the proof of Theorem 3.

Proof of Theorem 1. From Proposition 2 and Theorem 3, we have
7, (g, g,) =0, i. e., f: S*—>BI™ is homotopic to a constant map f,(p) =z,
for any p=.S°, where z, is a base point of BI'Y. Choose a compact
oriented 4-manifold V* such that aV*=S® and its Euler number van-
ishes. Let aVx[0, 1] (CV*) be a collar neighborhood of dV, and
F:38Vx[0, 1]1-BI'tY denote a homotopy of f and f,, i. e., F|,yxo=f and
Flwxw=/fe Then we define a map H: V*-BI'? as follows:
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Hp) ={F(p) for pedVx[0,1],

x, otherwise.

Since the Euler number of V* vanishes, we can extend any vector field
on §° transverse to & (g,, &) to V* without singularities. From the
theorem of Thurston [8, Theorem 2], there exists a C=-foliation % on
V* such that ¢|,,=%# (g, g&). This completes the proof.

§2. Statement of results

A closed 3-manifold M is called spinnable if there exists a l-sub-
manifold X, which is a finite union of circles, called an axis, satisfying
the following conditions: 1) the normal bundle of X is trivial, 2) let
XXD? be a tubular neighborhood of X, then M-XXintD* is the total
space of a fiber bundle & over a circle S', and 3) let p: M-XXxintD?
—S' be the projection of &, then the diagram

X xSt > M-XxintD?
PX(S“/P

commutes, where ¢ denotes the inclusion and p’ denotes the projection
onto the second factor. The pair = (X, §) is called a spinnable
strurture on M. We can construct a foliation on M from a spinnable
structure &= (X, &) as follows. Our problem is to extend the foliation
of M— XXintD? given naturally by p, to XXD’ Choose the polar
coordinates on D% (0, r), where 0 is the polar angle mod.1 and r is
the radius, 0=r<1.

At first we construct a foliation on the anullus A= {(4, r)eD*; 1/2

0
<r<1} choosing a C=-vector field v on A such that V=5 for 3/4

r<1 and v:—aa—ﬁ— for r=1/2 (see Fig. 1).

Fig. 1.
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Defining each on XX A to be a product of a orbit of the flow v and a
connected component of X, we can extend the foliation of M— X XintD?
to XX A naturally. Note that Xxd,A is a union of tori, where J,A=
{6, »eA; r=1/2). The place where we do not construct a foliation
is XxD(1/2), which is a finite union of solid tori, where D(1/2)=
{6, »eD*; 0<r=<1/2}. Therefore we put the Reeb component into
each solid torus. We denote this foliation by Fg.

Remark 1. In the above construction, there is an ambiguity for an
orientation of the Reeb component (see Mizutani [5] for definition).

Remark 2. When the number of connected components of X is
greater than one, we can construct another foliation on M, which is
different from F4 on XX A. Choose a C”-vector field v' on the anullus

A such that °o’=r§7 for 3/4<r<1 and ’0’:—7;70— for r=1/2. We define

a foliation on XX A by putting foliations induced from the vector
fields v and v" on X, XA and X, XA respectively, where X, and X, are
connected components of X such that X,U X,=X. We denote this
foliation by Fg.

Theorem 6. For any closed oriented 3-manijold M* with any spinnable
strurture &, (M, F4) is foliated cobordant to zero.

Theorem 7. For any closed oriented 3-manifold M*® with any spinnable
strurture &, (M, F4') is foliated cobordant to zero.

§3. Proof of Theorem 6

Let $*X [0, 2] be an anullus with natural coordinates (6, t). We
define a foliation on the anullus $'X[0, 2] by choosing a C*-vector

field % such that u= 0 for 0<t<1/2 and u:~?% for 1<¢<2. And

ot
we can lift this foliation to {M— XxintD*} x[0, 2] via the map p
Xidentity, where p denotes the projection of &  From definition of
spinnable structure, we see that 0 in the above coordinates is identified
with the polar angle in the polar coordinates of D* in §2. We denote
by &, the foliation on {M— XxintD*} x [0, 2]. &, restricted to {M—
X xintD?} x {0} is Fg restricted to M— XxintD* and &, restricted to
{M—XxintD?*) x[1, 2] is a product foliation such that each leaf is
defined by {M—XxintD?} x {t}, t€[1, 2]. Furthermore we investigate
the foliation on a boundary of {M—XxintD%} x[0, 2], XxS'x [0, 2].
&, restricted to XxS'x [0, 2] is the foliation lifted from the above foli-
ation on the anullus S'x [0, 2], that is, &, restricted to XxS'x {0} is
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a foliation such that each leaf is defined by {a connected component
of X} x {0}, 08" and F, restricted to XXS'x[l, 2] is a product
foliation such that each leaf is defined by a connected component of
XxS'x {t}, t€[1, 2], which is a torus. Let f;: {M—XxintD?} x [0, 2]
—BI'® be a map representing the I'Y-structure &,. Since &, restricted
to {M—XxintD?} x[1, 2] is the product foliation, we may assume
that f, restricted to {M—XxintD} x[3/2, 2] is a constant map, i.e.,
fi(p) =z, for any p in {M— XxintD*} x[3/2, 2], where z, denotes a
base point of BI'Y. Without loss of generality, we may assume the
number of connected components of the axis X is equal to one,i. e, X
is a circle. Put Y=XxS'%[0, 2]U XX D?/~, where ~ is an equivalence
relation which identifies XxS'x {0} with XxaD?. This is a solid
torus. Note that Y has a foliation &, as follows: &, on XxS'x[0, 2]
is defined by %, restricted to XxS'X[0, 2] and &, on XxD* is
defined by F restricted to XxD%. Let f,: Y>BI'? be a map repre-
senting the I'?-structure &, such that f, restricted to XX S'X[0, 2] is
equal to f; restricted to XxS'x[0, 2].

Now we shall prove Theorem 6 assuming that f, is homotopic to
the constant map f,(f;(p) =z, for any p in Y), relative to XxS5'x[3/2, 2].
Choose an oriented 4-manifold V, such that dV,=M and the Euler
number of V, vanishes. (This is possible.) Let F,(0=s=1) be a
homotopy relative to XxS8'x[3/2, 2] from f, to f,, i.e, F,=f, and
F,=f., Put V=V,UMX[0, 2]/~, where ~ is an equivalence relation
which identifies dV, with Mx {2}. And let N=Yx[0, 1] be a one-
sided tubular neighborhood of Y in Mx [0, 2] such that Yx {0} cor-
responds to Y(see Fig. 2).

Fig. 2.
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Then we can define a map H: VX B[y as follows:

fi@) for pe {M— XxintD*} x [0, 2],
H(p)= | F.(q) for p=(q, ) EN=Yx[O, 1],

X, otherwise.

Hence by Thurston’s Theorem [8, Theorem 2], we can extend the
foliation F4 on M to V as in the proof of Theorem 1 in §1.

Construction of a homotopy of f, and f,

We will construct a I'?-structure on Y which is homotopic to the
I'?-structure &, by the same way as in §1. Let a torus 7% be an
isolated compact leaf of #, and a homomorphism #: 7, (T%)—>G the
holonomy. Let p,, p, be the standard generators of =, (7?) which is
mapped to the germs of diffeomorphisms having their support respec-
tively in (—¢, 0] and [0, ¢), by the map #. Furthermore #(p,) and
o# (p,) are C™-tangent to identity at 0 and are fixed point free respec-
tively on (—e, 0) and (0, ¢). As in §1, the germ # (p,) (resp. # (p.))
is represented by an element g, (resp. g,) of D,(resp. D,) such that
sH(x)=z, g,(x)=x if |z|=1 and g, (resp. $,) 1is fixed point free on
(=1, 0) (resp. (0, 1)). Let o: =, (T*) —Diffs([—1, 2]) be the homo-
morphism which maps p, and p, to g, and g, respectively. Therefore
we can construct a foliation on T*Xx[—1, 2] whose global holonomy
is #. We define an equivalence relation ~ on T?X[—1, 2] as follows:
for (0, 0, t), (0;, 0,, ¥)ET*x[-1, 2], 0, 0, t)~(0;, 6, t) if and
only if 6,=60, when t=t'=—1 and 6,=6,, 0,=0,, and t=t otherwise.
Then the quotient space T°Xx[—1, 2]/~ is homeomorphic to Y. The
foliation on T?x[—1, 2] induces a I¢-structure on Y wunder this
quotient map, which is denoted by #,(¢, ¢,). This [?-structure
resembles the I'7-structure &%, on Y.

On the other hand, we can define a quotient map

q: T XH[— 1,2]/~——T*x [”— 1,21/~
Sa

where the relation ~ is a relation which adds to the relation = a following
condition: (0, 0, t)~(0;, 0,, t') if 6,=60, when t=t'=2. Let F'(&, 8,
denote the I'"-structure on S° as in §1. The map ¢ carries the I'v-
structure F;(g,, §,) on Y to the I'7-structure F'(g, g,) on S If f:5°
—BI7 is a map representing the I'=-structure %'(g, £.,), then the
composition map foq represents the I'y-structure Z,(g, g,) on Y.
We can assume foq(p) =z, for any p in T?x[3/2, 2]. Using the same
method in the proof of Lemma 5, we can see that f, is homotopic to foq
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relative to XX S'x [3/2, 2]. By the arguement in §1, we see that f is
homotopic to the constant map f,. Since BI'® is 2-connected, f, is
homotopic to the constant map f, relative to XxS'x[3/2, 2].

Corollary 8. The I'y-structure F4 on M is homotopic to a trivial one.

§4. Proof of Theorem 7

It is sufficient to prove for the case of the foliation constructed
using the vector field v (see Remark 2 in §2). In this case, the
foliation restricted to B=XxS'x [0, 17U Xx D? is as follows.

Fig. 3.

Put C=BU D*x §'/~, where ~ is an equivalence relation which identi-

fies XxS'x {1} with 8D*xS'. Note that C is homeomorphic to a

3-sphere. We put an oriented Reeb component on the solid torus as

follows. Let a be a C~-function a: [0, 1)>R, such that «(0)=0,

a’ (¢) >0 for all t€ (0, 1), a®(0)=0, lim a®(t) = for all .. Express a
t=>1

point p of D*xS' as p=(t, z, 0), (t, ) ED*, €S, t is the radius (0=t
<1) and z is the polar angle mod. 1. Define a foliation on D*xX.S' as
follows: for two points p= (¢, z, ), p'= (', 2', 0') of D*xS', L,=L, if
and only if t=t'=1 or a(t)—0=a (') —0 (mod. 1), where L, is the
leaf that contains p. We denote this foliation on the 3-sphere C by &,

Proposition 9. (C, &,) is foliated cobordant to zero.

Proof. This foliation &, and a Reeb foliation are concordant be-
cause &, is obatined from the Reeb foliation by perturbing along a
transversal simple curve. From Theorem 1, the Reeb foliation is foliated
cobordant to zero. Hence (C, &,) is so.

We consider the foliation on XxS'x [1, 2]U D?*x S'/~, where ~ is an
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equivalence relation which identifies XxS'x {1} with 9D*x S
This is a special case of the foliation &, on Y in §3. Therefore by
the same method as in the proof of Theorem 6, we can prove Theorem

7.
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