A remark on the foliated cobordisms of codimension-one foliated 3-manifolds

by

Kazuhiko FUKUI

(Received April 25, 1977)

Introduction

In [6], Rosenberg and Thurston posed the following problem: Are the Reeb foliations of S^3 foliated cobordant to zero? And Mizutani [5] and Sergeraert [7] gave the affirmative answer.

The purpose of this note is to generalize their result.

Let M^3 be an oriented closed 3-manifold. Then the manifold M^3 has a spinnable structure (cf. Alexander [1]). By the wellknown method [3], we can construct a foliation on M^3 from this spinnable structure \mathscr{S} . Let this foliation denote $\mathscr{F}_{\mathscr{S}}$. Note that the Reeb foliations of S^3 are also constructed from a spinnable structure of S^3 .

Our main theorem is as follows:

Theorem. For any oriented closed 3-manifold M^3 with any spinnable structure \mathcal{G} , the foliated manifold $(M^3, \mathcal{F}_{\mathcal{G}})$ is foliated cobordant to zero.

We shall work in the smooth category and all the foliations we shall consider, will be smooth and of codimension one.

$\S 1$. Reeb foliations and results of Sergeraert

We consider the Reeb foliation on S^3 . Let T^2 be a torus which is a unique compact leaf of this foliation. The *holonomy* along T^2 is a homomorphism of groups, $\mathscr{H}: \pi_1(T^2) \to G$, where G is the set of germs at 0 of C^{∞} -diffeomorphisms of \mathbf{R} , $f: \mathbf{R} \to \mathbf{R}$, with f(0) = 0. Let p_1 , p_2 be the standard generators of $\pi_1(T^2)$. If we orient adequately a small segment transverse to T^2 serving to define \mathscr{H} , we may assume that the germs of diffeomorphisms $\mathscr{H}(p_1)$ and $\mathscr{H}(p_2)$ have their support respectively in $(-\varepsilon, 0]$ and $[0, \varepsilon)$. Furthermore $\mathscr{H}(p_1)$ and $\mathscr{H}(p_2)$ are contained in G_{∞} , where G_{∞} is the set consisting of germs at 0 of C^{∞} -diffeomorphisms of \mathbb{R} which are C^{∞} -tangent to identity at 0, and are fixed point free respectively on $(-\varepsilon, 0)$ and $(0, \varepsilon)$. The Reeb foliations are characterized by conjugates of $(\mathscr{H}(p_1), \mathscr{H}(p_2))$. Put $g_1 = \mathscr{H}(p_1)$ and $g_2 = \mathscr{H}(p_2)$. We denote by $\mathscr{F}(g_1, g_2)$ the associated Reeb foliation. In this section we shall recall the following theorem due to Sergeraert [7].

Theorem 1. $\mathscr{F}(g_1, g_2)$ is foliated cobordant to zero.

This foliation is represented by a homotopy class of a mapping $f: S^3 \rightarrow B\Gamma_1^{\infty}$, where $B\Gamma_1^{\infty}$ denotes the Haefliger classifying space. In our case the image of S^3 by f is contained in $B\overline{\Gamma}_1^{\infty}$, where $B\overline{\Gamma}_1^{\infty}$ denotes the homotopy fiber of the map $\nu: B\Gamma_1^{\infty} \rightarrow BO_1$. We denote by $\pi_3(g_1, g_2)$ this homotopy class of $\pi_3(B\overline{\Gamma}_1^{\infty})$ and $H_3(g_1, g_2)$ the homology class of $H_3(B\overline{\Gamma}_1^{\infty})$ corresponding to $\pi_3(g_1, g_2)$ via the Hurewicz homomorphism. This is the image of the fundamental class $[S^3]$ by the Hurewicz homomorphism $H_3(f)$.

Proposition 2. The Hurewicz homomorphism $H_3: \pi_3(B\bar{\Gamma}_1^{\infty}) \to H_3(B\bar{\Gamma}_1^{\infty})$ is an isomorphism.

Proof. It is trivial from such a fact that $B\bar{\Gamma}_{1}^{\infty}$ is 2-connected (Haefliger [2], Mather [4]).

Theorem 3 (Sergeraert [7]). For any g_1, g_2 in G_{∞} , which have their support respectively in $(-\varepsilon, 0]$ and $[0, \varepsilon)$, and are fixed point free respectively on $(-\varepsilon, 0)$ and $(0, \varepsilon), H_3(g_1, g_2) = 0$.

Let $\operatorname{Diff}_{\kappa}^{\infty}(\mathbf{R})$ be the group of C^{∞} -diffeomorphisms of \mathbf{R} with compact support, equipped with the discrete topology. Now we consider the Eilenberg-Maclane homology of $\operatorname{Diff}_{\kappa}^{\infty}(\mathbf{R})$. If g_1 and g_2 in $\operatorname{Diff}_{\kappa}^{\infty}(\mathbf{R})$ commute, then $(g_1, g_2) - (g_2, g_1)$ is a 2-cycle. Let denote this homology class by $H_2(g_1, g_2)$. In particular, if g_1 has the support in $(-\infty, 0]$ and g_2 in $[0, \infty)$, then g_1 and g_2 commute. Hence the homology class $H_2(g_1, g_2)$ is defined.

Theorem 4 (Sergeraert [7]). If the supports of g_1 and g_2 are contained respectively in $(-\infty, 0]$ and $[0, \infty)$, then $H_2(g_1, g_2) = 0$.

Proof. Let D_1 (resp. D_2) be the subgroup consisting of elements of $\operatorname{Diff}_{\kappa}^{\infty}(\mathbf{R})$ whose supports are in $(-\infty, 0]$ (resp. $[0, \infty)$). There is a canonical inclusion $\iota: D_1 \times D_2 \to \operatorname{Diff}_{\kappa}^{\infty}(\mathbf{R})$ defined by $\iota(g_1, g_2) = g_1g_2$.

Therefore it is sufficient to prove that the homology class $H_2(g_1, g_2)$ is zero in $H_2(D_1 \times D_2)$. From Künneth formula, $H_2(D_1 \times D_2) \approx H_2(D_1) \bigoplus$ $(H_1(D_1) \otimes H_1(D_2)) \bigoplus H_2(D_2)$. This canonical isomorphism decomposes $H_2(g_1, g_2)$ into $H_2(g_1, e) \bigoplus (H_1(g_1) \otimes H_1(g_2)) \bigoplus H_2(e, g_2)$, where *e* is a unit element. It is easy to see that the first and third parts are zero. On the other hand, $H_1(D_1) = 0$ from the following result [7]: Diff $\mathfrak{m}([0, 1])$ is perfect, where Diff $\mathfrak{m}([0, 1])$ is the group of C^{∞} -diffeomorphisms of [0, 1] which are C^{∞} -tangent to identity at 0 and 1. Hence $H_1(g_1) = H_1(g_2) = 0$. This completes the proof.

Proof of Theorem 3. The germ $g_1(\text{resp. } g_2)$ is the germ of an element $\hat{g}_1(\text{resp. } \hat{g}_2)$ of $D_1(\text{resp. } D_2)$. Furthermore we can assume that $\hat{g}_1(x) = x$, $\hat{g}_2(x) = x$ if $|x| \ge 1$ and $\hat{g}_1(\text{resp. } \hat{g}_2)$ is fixed point free on (-1, 0) (resp. (0, 1)). Let $\mathscr{H}: \pi_1(T^2) \to \text{Diff}_{\infty}^{\infty}([-1, 1])$ be the homomorphism which maps p_1 and p_2 to \hat{g}_1 and \hat{g}_2 respectively. We can construct a foliation on $T^2 \times [-1, 1]$ whose global holonomy is \mathscr{H} . We define an equivalence relation \sim on $T^2 \times [-1, 1]$ as follows: for $(\theta_1, \theta_2, t), (\theta_1', \theta_2', t') \in T^2 \times [-1, 1], (\theta_1, \theta_2, t) \sim (\theta_1', \theta_2', t')$ if and only if $\theta_1 = \theta_1'$ when $t = t' = 1, \theta_2 = \theta_2'$ when t = t' = -1, and $\theta_1 = \theta_1', \theta_2 = \theta_2'$ and t = t', otherwise. The foliation on $T^2 \times [-1, 1]$ induces a Γ_1^{∞} -structure on S^3 under this quotient map, which is denoted by $\mathscr{F}(\hat{g}_1, \hat{g}_2)$. This Γ_1^{∞} -structure resembles the Reeb foliation $\mathscr{F}(g_1, g_2)$. Let $g: S^3 \to B\bar{\Gamma}_1^{\infty}$ be a map representing the Γ_1^{∞} -structure $\mathscr{F}(\hat{g}_1, \hat{g}_2)$.

On the other hand, Mather [4] constructed an isomorphism $S: H_2(\text{Diff}_{\kappa}^{\infty}(\mathbf{R})) \to H_3(B\bar{\Gamma}_1^{\infty})$. We can see from the construction of this isomorphism that $S(H_2(\dot{g}_1, \dot{g}_2)) = H_3(g)([S_3])$, where $[S^3]$ is the fundamental homology class of S^3 .

Lemma 5. Γ_1^{∞} -structures $\mathscr{F}(g_1, g_2)$ and $\mathscr{F}(g_1, g_2)$ are homotopic.

Proof. See [7. Lemma 6. 9].

Therefore the map $g: S^3 \to B\overline{\Gamma_1^{\infty}}$ is a map associated with the Reeb foliation $\mathscr{F}(g_1, g_2)$. Hence $H_3(g_1, g_2) = H_3(g)([S^3]) = S(H_2(\mathring{g}_1, \mathring{g}_2)) = 0$ (from Theorem 4). This completes the proof of Theorem 3.

Proof of Theorem 1. From Proposition 2 and Theorem 3, we have $\pi_3(g_1, g_2) = 0$, *i. e.*, $f: S^3 \to B\bar{\Gamma}_1^{\infty}$ is homotopic to a constant map $f_0(p) = x_0$ for any $p \in S^3$, where x_0 is a base point of $B\bar{\Gamma}_1^{\infty}$. Choose a compact oriented 4-manifold V^4 such that $\partial V^4 = S^3$ and its Euler number vanishes. Let $\partial V \times [0, 1]$ ($\subset V^4$) be a collar neighborhood of ∂V , and $F: \partial V \times [0, 1] \to B\bar{\Gamma}_1^{\infty}$ denote a homotopy of f and f_0 , *i. e.*, $F|_{\partial V \times (0)} = f$ and $F|_{\partial V \times (1)} = f_0$. Then we define a map $H: V^4 \to B\bar{\Gamma}_1^{\infty}$ as follows:

Kazuhiko Fukui

$$H(p) = \begin{cases} F(p) & \text{for } p \in \partial V \times [0,1], \\ x_0 & \text{otherwise.} \end{cases}$$

Since the Euler number of V^4 vanishes, we can extend any vector field on S^3 transverse to $\mathscr{F}(g_1, g_2)$ to V^4 without singularities. From the theorem of Thurston [8, Theorem 2], there exists a C^{∞} -foliation \mathscr{G} on V^4 such that $\mathscr{G}|_{\partial V} = \mathscr{F}(g_1, g_2)$. This completes the proof.

§2. Statement of results

A closed 3-manifold M is called *spinnable* if there exists a 1-submanifold X, which is a finite union of circles, called an axis, satisfying the following conditions: 1) the normal bundle of X is trivial, 2) let $X \times D^2$ be a tubular neighborhood of X, then $M-X \times intD^2$ is the total space of a fiber bundle ξ over a circle S^1 , and 3) let $p: M-X \times intD^2$ $\rightarrow S^1$ be the projection of ξ , then the diagram

$$X \times S^{1} \xrightarrow{\ell} M - X \times intD^{2}$$

commutes, where i denotes the inclusion and p' denotes the projection onto the second factor. The pair $\mathscr{G} = (X, \xi)$ is called a *spinnable structure* on M. We can construct a foliation on M from a spinnable structure $\mathscr{G} = (X, \xi)$ as follows. Our problem is to extend the foliation of $M - X \times intD^2$, given naturally by p, to $X \times D^2$. Choose the polar coordinates on D^2 , (θ, r) , where θ is the polar angle mod. 1 and r is the radius, $0 \le r \le 1$.

At first we construct a foliation on the anullus $A = \{(\theta, r) \in D^2; 1/2 \le r \le 1\}$ choosing a C^{∞} -vector field v on A such that $v = \frac{\partial}{\partial r}$ for $3/4 \le r \le 1$ and $v = \frac{\partial}{\partial \theta}$ for r = 1/2 (see Fig. 1).

Fig. 1.

192

Defining each on $X \times A$ to be a product of a orbit of the flow v and a connected component of X, we can extend the foliation of $M - X \times intD^2$ to $X \times A$ naturally. Note that $X \times \partial_0 A$ is a union of tori, where $\partial_0 A = \{(\theta, r) \in A; r = 1/2\}$. The place where we do not construct a foliation is $X \times D(1/2)$, which is a finite union of solid tori, where $D(1/2) = \{(\theta, r) \in D^2; 0 \le r \le 1/2\}$. Therefore we put the Reeb component into each solid torus. We denote this foliation by $\mathscr{F}_{\mathscr{Y}}$.

Remark 1. In the above construction, there is an ambiguity for an orientation of the Reeb component (see Mizutani [5] for definition).

Remark 2. When the number of connected components of X is greater than one, we can construct another foliation on M, which is different from $\mathscr{F}_{\mathscr{G}}$ on $X \times A$. Choose a C^{∞} -vector field v' on the anullus A such that $v' = \frac{\partial}{\partial r}$ for $3/4 \leq r \leq 1$ and $v' = -\frac{\partial}{\partial \theta}$ for r = 1/2. We define a foliation on $X \times A$ by putting foliations induced from the vector fields v and v' on $X_1 \times A$ and $X_2 \times A$ respectively, where X_1 and X_2 are connected components of X such that $X_1 \cup X_2 = X$. We denote this foliation by $\mathscr{F}_{\mathscr{G}'}$.

Theorem 6. For any closed oriented 3-manifold M^3 with any spinnable structure \mathscr{G} , $(M, \mathscr{F}_{\mathscr{G}})$ is foliated cobordant to zero.

Theorem 7. For any closed oriented 3-manifold M^3 with any spinnable structure \mathscr{G} , $(M, \mathscr{F}_{\mathscr{G}})$ is foliated cobordant to zero.

§3. Proof of Theorem 6

Let $S^{i} \times [0, 2]$ be an anullus with natural coordinates (θ, t) . We define a foliation on the anullus $S^{i} \times [0, 2]$ by choosing a C^{∞} -vector field u such that $u = \frac{\partial}{\partial t}$ for $0 \le t \le 1/2$ and $u = -\frac{\partial}{\partial \theta}$ for $1 \le t \le 2$. And we can lift this foliation to $\{M - X \times intD^2\} \times [0, 2]$ via the map p $\times identity$, where p denotes the projection of ξ . From definition of spinnable structure, we see that θ in the above coordinates is identified with the polar angle in the polar coordinates of D^2 in § 2. We denote by \mathscr{F}_1 the foliation on $\{M - X \times intD^2\} \times [0, 2]$. \mathscr{F}_1 restricted to $\{M - X \times intD^2\} \times \{0\}$ is $\mathscr{F}_{\mathscr{S}}$ restricted to $M - X \times intD^2$ and \mathscr{F}_1 restricted to $\{M - X \times intD^2\} \times [1, 2]$ is a product foliation such that each leaf is defined by $\{M - X \times intD^2\} \times \{t\}$, $t \in [1, 2]$. Furthermore we investigate the foliation on a boundary of $\{M - X \times intD^2\} \times [0, 2]$, $X \times S^1 \times [0, 2]$. \mathscr{F}_1 restricted to $X \times S^1 \times [0, 2]$ is the foliation lifted from the above foliation on the anullus $S^1 \times [0, 2]$, that is, \mathscr{F}_1 restricted to $X \times S^1 \times \{0\}$ is a foliation such that each leaf is defined by {a connected component of X} $\times \{\theta\}$, $\theta \in S^1$ and \mathscr{F}_1 restricted to $X \times S^1 \times [1, 2]$ is a product foliation such that each leaf is defined by a connected component of $X \times S^1 \times \{t\}, t \in [1, 2],$ which is a torus. Let $f_1: \{M - X \times intD^2\} \times [0, 2]$ $\rightarrow B\bar{\Gamma}_1^{\infty}$ be a map representing the Γ_1^{∞} -structure \mathscr{F}_1 . Since \mathscr{F}_1 restricted to $\{M - X \times intD^2\} \times [1, 2]$ is the product foliation, we may assume that f_1 restricted to $\{M - X \times intD^2\} \times [3/2, 2]$ is a constant map, *i.e.*, $f_1(p) = x_0$ for any p in $\{M - X \times intD^2\} \times [3/2, 2]$, where x_0 denotes a base point of $B\bar{\Gamma}_{1}^{\infty}$. Without loss of generality, we may assume the number of connected components of the axis X is equal to one, *i.e.*, Xis a circle. Put $Y = X \times S^1 \times [0, 2] \cup X \times D^2 / \sim$, where \sim is an equivalence relation which identifies $X \times S^1 \times \{0\}$ with $X \times \partial D^2$. This is a solid torus. Note that Y has a foliation \mathscr{F}_2 as follows: \mathscr{F}_2 on $X \times S^1 \times [0, 2]$ is defined by \mathscr{F}_1 restricted to $X \times S^1 \times [0, 2]$ and \mathscr{F}_2 on $X \times D^2$ is defined by $\mathscr{F}_{\mathscr{G}}$ restricted to $X \times D^2$. Let $f_2: Y \to B\bar{\Gamma}_1^{\infty}$ be a map representing the Γ_1^{∞} -structure \mathscr{F}_2 such that f_2 restricted to $X \times S^1 \times [0, 2]$ is equal to f_1 restricted to $X \times S^1 \times [0, 2]$.

Now we shall prove Theorem 6 assuming that f_2 is homotopic to the constant map $f_0(f_0(p) = x_0$ for any p in Y), relative to $X \times S^1 \times [3/2, 2]$. Choose an oriented 4-manifold V_1 such that $\partial V_1 = M$ and the Euler number of V_1 vanishes. (This is possible.) Let $F_s(0 \le s \le 1)$ be a homotopy relative to $X \times S^1 \times [3/2, 2]$ from f_2 to f_0 , *i.e.*, $F_0 = f_2$ and $F_1 = f_0$. Put $V = V_1 \cup M \times [0, 2]/\sim$, where \sim is an equivalence relation which identifies ∂V_1 with $M \times \{2\}$. And let $N = Y \times [0, 1]$ be a onesided tubular neighborhood of Y in $M \times [0, 2]$ such that $Y \times \{0\}$ corresponds to Y(see Fig. 2).

Then we can define a map $H: V \times B\overline{\Gamma}_1^{\infty}$ as follows:

$$H(p) = \begin{cases} f_1(p) & \text{for } p \in \{M - X \times intD^2\} \times [0, 2], \\ F_s(q) & \text{for } p = (q, s) \in N = Y \times [0, 1], \\ x_0 & \text{otherwise.} \end{cases}$$

Hence by Thurston's Theorem [8, Theorem 2], we can extend the foliation $\mathscr{F}_{\mathscr{G}}$ on M to V as in the proof of Theorem 1 in §1.

Construction of a homotopy of f_2 and f_0

We will construct a Γ_1^{∞} -structure on Y which is homotopic to the Γ_1^{∞} -structure \mathscr{F}_2 by the same way as in §1. Let a torus T^2 be an isolated compact leaf of \mathscr{F}_2 and a homomorphism $\mathscr{H}: \pi_1(T^2) \to G$ the holonomy. Let p_1 , p_2 be the standard generators of $\pi_1(T^2)$ which is mapped to the germs of diffeomorphisms having their support respectively in $(-\epsilon, 0]$ and $[0, \epsilon)$, by the map \mathcal{H} . Furthermore $\mathcal{H}(p_1)$ and $\mathscr{H}(p_2)$ are C^{∞}-tangent to identity at 0 and are fixed point free respectively on $(-\epsilon, 0)$ and $(0, \epsilon)$. As in §1, the germ $\mathscr{H}(p_1)$ (resp. $\mathscr{H}(p_2)$) is represented by an element $\hat{g}_1(\text{resp. } \hat{g}_2)$ of $D_1(\text{resp. } D_2)$ such that $\dot{g}_1(x) = x$, $\dot{g}_2(x) = x$ if $|x| \ge 1$ and $\dot{g}_1(\text{resp. } \dot{g}_2)$ is fixed point free on (-1, 0) (resp. (0, 1)). Let $\mathscr{H}: \pi_1(T^2) \to \text{Diff}_{\infty}^{\infty}([-1, 2])$ be the homomorphism which maps p_1 and p_2 to \hat{g}_1 and \hat{g}_2 respectively. Therefore we can construct a foliation on $T^2 \times [-1, 2]$ whose global holonomy is \mathscr{H} . We define an equivalence relation \approx on $T^2 \times [-1, 2]$ as follows: for (θ_1, θ_2, t) , $(\theta_1', \theta_2', t') \in T^2 \times [-1, 2]$, $(\theta_1, \theta_2, t) \approx (\theta_1', \theta_2', t')$ if and only if $\theta_2 = \theta'_2$ when t = t' = -1 and $\theta_1 = \theta'_1$, $\theta_2 = \theta'_2$, and t = t' otherwise. Then the quotient space $T^2 \times [-1, 2]/\approx$ is homeomorphic to Y. The foliation on $T^2 \times [-1, 2]$ induces a Γ_1^{∞} -structure on Y under this quotient map, which is denoted by $\mathscr{F}'_{2}(\dot{g}_{1}, \dot{g}_{2})$. This Γ_1^{∞} -structure resembles the Γ_1^{∞} -structure \mathscr{F}_2 on Y.

On the other hand, we can define a quotient map

$$q: T^2 imes \llbracket -1,2
bracket / lpha \longrightarrow T^2 imes \llbracket -1,2
bracket / \ arphi \ arh$$

where the relation \sim is a relation which adds to the relation \approx a following condition: $(\theta_1, \theta_2, t) \sim (\theta'_1, \theta'_2, t')$ if $\theta_1 = \theta'_1$ when t = t' = 2. Let $\mathscr{F}'(\hat{g}_1, \hat{g}_2)$ denote the Γ_1^{∞} -structure on S^3 as in § 1. The map q carries the Γ_1^{∞} structure $\mathscr{F}'_2(\hat{g}_1, \hat{g}_2)$ on Y to the Γ_1^{∞} -structure $\mathscr{F}'(\hat{g}_1, \hat{g}_2)$ on S^3 . If $f: S^3 \rightarrow B\bar{\Gamma}_1^{\infty}$ is a map representing the $\Gamma_{1_4}^{\infty}$ -structure $\mathscr{F}'(\hat{g}_1, \hat{g}_2)$, then the composition map $f \circ q$ represents the Γ_1^{∞} -structure $\mathscr{F}'_2(\hat{g}_1, \hat{g}_2)$ on Y. We can assume $f \circ q(p) = x_0$ for any p in $T^2 \times [3/2, 2]$. Using the same method in the proof of Lemma 5, we can see that f_2 is homotopic to $f \circ q$

Kazuhiko Fukui

relative to $X \times S^1 \times [3/2, 2]$. By the argument in § 1, we see that f is homotopic to the constant map f_0 . Since $B\bar{\Gamma}_1^{\infty}$ is 2-connected, f_2 is homotopic to the constant map f_0 relative to $X \times S^1 \times [3/2, 2]$.

Corollary 8. The Γ_1^{∞} -structure $\mathscr{F}_{\mathscr{G}}$ on M is homotopic to a trivial one.

§4. Proof of Theorem 7

It is sufficient to prove for the case of the foliation constructed using the vector field v' (see Remark 2 in § 2). In this case, the foliation restricted to $B = X \times S^1 \times [0, 1] \cup X \times D^2$ is as follows.

Fig. 3.

Put $C=B\cup D^2\times S^1/\sim$, where \sim is an equivalence relation which identifies $X\times S^1\times \{1\}$ with $\partial D^2\times S^1$. Note that C is homeomorphic to a 3-sphere. We put an oriented Reeb component on the solid torus as follows. Let α be a C^{∞} -function α : $[0, 1) \rightarrow \mathbf{R}$, such that $\alpha(0)=0$, $\alpha'(t)>0$ for all $t\in(0, 1)$, $\alpha^{(k)}(0)=0$, $\lim_{t\to 1} \alpha^{(k)}(t)=\infty$ for all k. Express a point p of $D^2\times S^1$ as $p=(t, x, \theta)$, $(t, x)\in D^2, \theta\in S^1$, t is the radius $(0\leq t\leq 1)$ and x is the polar angle mod. 1. Define a foliation on $D^2\times S^1$ as follows: for two points $p=(t, x, \theta)$, $p'=(t', x', \theta')$ of $D^2\times S^1$, $L_p=L_{p'}$ if and only if t=t'=1 or $\alpha(t)-\theta\equiv\alpha(t')-\theta'$ (mod. 1), where L_p is the leaf that contains p. We denote this foliation on the 3-sphere C by \mathscr{F}_3

Proposition 9. (C, \mathcal{F}_3) is foliated cobordant to zero.

Proof. This foliation \mathscr{F}_3 and a Reeb foliation are concordant because \mathscr{F}_3 is obtined from the Reeb foliation by perturbing along a transversal simple curve. From Theorem 1, the Reeb foliation is foliated cobordant to zero. Hence (C, \mathscr{F}_3) is so.

We consider the foliation on $X \times S^1 \times [1, 2] \cup D^2 \times S^1 / \sim$, where \sim is an

196

On the foliated cobordisms

equivalence relation which identifies $X \times S^1 \times \{1\}$ with $\partial D^2 \times S^1$. This is a special case of the foliation \mathscr{F}_2 on Y in §3. Therefore by the same method as in the proof of Theorem 6, we can prove Theorem 7.

DEPARTMENT OF MATHEMATICS KYOTO SANGYO UNIVERSITY

References

- [1] J.W. Alexander, A lemma on systems of knotted curves, Proc. Acad. Sci. U.S.A., 9 (1923), 93-95
- [2] A Haefliger, Homotopy and integrability, Manifolds-Amsterdam 1970, Lecture notes in Math.
- [3] H.B. Lawson, Codimension-one foliations of spheres, Ann. of Math., 94 (1971), 494-503.
- [4] J. Mather, Integrability in codimension one, Comm. Math. Helv., 48 (1973), 195-233.
- [5] T. Mizutani, Foliated cobordisms of S³ and examples of foliated 4-manifolds, Topology 13 (1974), 353-362.
- [6] H. Rosenberg and W. Thurston, Some remarks on foliations, in Dynamical Systems, Acad. Press, New York and London, 1973.
- [7] F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, preprint.
- [8] W. Thurston, Existence of codimension one foliations, Ann of Math., 104 (1976), 249-268.