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Notes on induced maps
of Moore families

By
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(Communicated by prof. S. Mizohata, August 3, 1976)

Let $ and T be Moore families on S and T respectively. Then a
map F :S—7T induces maps F,: S——T and F*: T—S$. We study
the lattice theoretic properties of these maps. In the latter half we treat
inductive limits which will be applied in [3] to study ideals of germs
of functions and their ‘zero filters’.

Lattices of Moore families

A lattice L is called complete if it contains the least upper bound

\/ a; and the greatest lower bound /\ @, for any subset {a},esCL. Let
1E€EA €4

m be a cardinal number greater than 1 and let ® : L—L’ be a

map of complete lattices. We define @ to be an (m\/)-morphism (or

to be (mM\/)-continuous) if @®(\/ a,)=\/ @(a;) holds for any subset
€4 PI=r ]

{a.},eaCL such that #4<m. If L is (m\/)-continuous for any m=2
we define it an (VV)-morphism (or (V\/)-continuous). For the sake
of convenience, we call an order preserving map a (1\/)-morphism (or
(1\/)-continuous). Dually we can define (MA)-morphisms. If @ is
both (W\/)-continuous and (n/\)-continuous we call it an (m\/, n1/\)-
morphism (or (M\/, n/\)-continuous).

Let S be a set and = {X},c, be a subfamily of the family P(S)
of all subsets of S. § is called a Moore family on S if it contains S
and o X, for any KCA4 (cf. [1]). A Moore family forms a complete

lattice with respect to the order of inclusion. Let ¢ :P(S)—S be
the associated closure operation defined by c¢(X)=" Y. If Y=c(X)
YoOX
resd
we say that X (or its elements) generates Y. If an element of S is
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generated by one point of S, it is called principal. Let S and T be
Moore families on S and T respectively and ¢ : S——T be a map. We
define the direct induced map (or ideal map) ¢, : S——T and the inverse
one o*: T—8 by ¢*(X)=c{p(X)}, e*(Y)=c{p'(Y))}. Of course
these are order-preserving ((1\/)-continuous). Let us consider the
following conditions about ¢ :

@ ¢ (NES (e ¢*(V)=¢7(Y) for any YET).

@) o(X)ET (i.e. p . (X)=¢(X) for any XES).

(b)  ¢*op (X)=X\/9*(O) for any XES, where O denotes the minimal
element of T.

(a) is a fairly natural condition: it is satisfied in many practical
cases.

1 Lemma. Let ¢: S——T and ¢: R——>S be maps of sets with Moore
families. Suppose that ¢ satisfies (a). Then we have the following :
(1) cle(@}=clo(c(A))} for any ACS.

(i1)  (@od) s =0¢uody, (pod)*=¢%o0*,

(i)  @4o9*(0) =0, ¢4,(0)=0, ¢*o¢,(R)=R, ¢*(S)=R.

(iv) If ¢ is surjective, ¢, is also so.

(v) If ¢, is surjective, @,o@* is the identity and hence ¢, (S)=T.

Proof. (1) ¢ ' (clo(@})=clp7'(c{p(A)})} Dc(A). Hence c{p(A)}
=coc{p(A)} Dclofc(A)}} D cl{p(A)} and cl{p(A)} =cl{p(c(A)]}.
(i1), (ii1), (iv) We omit the proofs.
(v) If YET there exists XES such that ¢,(X)=Y. Then we have
Yoc{p(p™ (Y))} =@uop*(Y) = puop*op, (X) Doy (X) =Y,

proving that ¢,op* is the identity, g. e. d.

2 Theorem. Let ¢ :S——T be a map of sets with Moore families.
(1) If ¢ satisfies (a), ¢4 is (V\/)-continuous and ¢* is (¥ /\)-conti-
nuous.

(11) If ¢ satisfies (a), (b) and if ¢, is surjective then o* is (VV, V
/\) -continuous. ¢, and ¢* induces mutually inverse(N'\/, ¥ /\)-morphisms
between T and S/¢* Q)= {X\/¢*(Q) : XES§}.

(ii1) Suppose that ¢ satisfies (a) and (b), @, is surjective and that ¢*
(O)\/(é\X,,)=<\{go* O)\V X} holds for any {X;} CS such that #{X,} Sm.

Then ¢, is (V\/, m/\)-continuous.
Remark. If L is a complete lattice and if a€L, L/a={r\/a :z€L}

is a complete lattice with respect to the induced order. Its \/a, and
/\a, coincide with those in L.
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Proof. (i) If {X}cS and (Y} T,

2+ (VX)) DV ou (X)) D0u0p* (V0u (X)) Dos (V@*004 (X)) D
2. (V X)),
o* (A\Y) TNA@* (V) Co*opu (Ae* (Y)) Co*o (Apsop*(Y)) C
P*(AY).

These prove the assertions.

(i1) By (1; v), ¢« and ¢* induce mutually inverse order isomorphisms
between T and S/¢*(O). It is easy to see that order isomorphisms
are (VV,V /\)-continuous.

(iii) If ${X)} =m,

@* (N@x (X)) = Ap*ops (X)) = A\ (XV¢* (0))
=(AX)Ve* (O) = ¢ o0, (AX).

Hence A¢. (X)) =0« (AX)) by (15 V) t.e. o is (mA)-continuous,
g. e. d.

Let us call a Moore family S finitary if its associated closure opera-
tion ¢ is finitary i.e. XCS belongs to S if ¢(Y) CX for any finite subset
Y of X. The following is known (cf. [1, VIII, §4]) :

3 Lemma. (i) IfS is finitary and if {X;} S is a directed subset,
vXx,eS.

2

(i1) If S is finitary and if xEc(A) there exists a finite subset F of A
such that x€c(F).

4, Proposition. Let ¢: S—T satisfy (@) and (a’).
(i) If ¢ is surjective and if S is finitary, T is finitary.
(i1) If ¢ is injective and if T is finitary, S is finitary.

The proof is easy.

Example 1. Let E be the set of ideals of a commutative ring E
with unity 1. E is a finitary Moore family. Suppose that ¢: E——F
is a unitary (¢(1)=1) ring homomorphism. Then we have the following.
(i) ¢ satisfies (a).

(ii) If ¢ is surjective it satisfies (@), (@) and (b).
(iii) If F is flat over E, ¢, is (VV, 2/\)-continuous (cf. [2]).

Ezxample 2. The set L of ideals of a lattice L is a finitary Moore
family. A (2\/)-morphism of lattices ¢: L—K satisfies (a). A sur-
jective (2/\)-morphism satisfies (a’).
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Ezample 3. Let P(A) be the family of nonvoid dual ideals of the
complete Boolean lattice P(A) of A (cf. [1]). Of course this is a
finitary Moore family on P(A). It is just the family of filters on A
except the maximal element P(A)EP(A). If f:B——A is a map we
can define a map ¢=¢,: P(A)—P(B) by ¢(:)=f"(-).
¢ satisfies (@) and (b). If c{z} is a principal dual ideal of P(A) we
have A(c{z}\V/X)=c{z}\/ (AX) for any {X,}CP(A). Since Ospum=
{B} and ¢* (Osw) =c{f(B)} is principal,/l\{go* Oswy) V X3} = p* (Op<a))V({\
X,).f Now suppose that f is injective. Then ¢ is surjective (and

satisfies (a’) also). Hence ¢4 and ¢* are (VV, V/\)-continuous in
this case.

Inductive limits of sets with Moore families.

In the first section we have studied the importance of the condi-
tion (a). Here we treat inductive systems in the category # whose
objects are sets with Moore families and whose morphisms are maps
satisfying (a). It is easy to see that a morphism is an epimorphism
(resp. a monomorphism) if it is set-theoretically so. By (1; ii) the
correspondences (S, ©)— (S, ¢.) and (S, )— (S, 0*) are respectively
a covariant and a contravariant functor from # into the category of
ordered sets (suitably defined). We always assume that the index set
A of an inductive system is a directed set.

5. Theorem. ] An inductive system {S,, ¢} in M has an inductive limit
lim S, unique up to isomorphism. That is, if ¢,:S,—1lim S, are the
set-theoretical inductive maps, there exists a Moore family (lim S,)~ on
lim S, such that:

(1) ¢, are morphisms.

(ii) There exists a unique morphism lim ¢,: lim S,——T with lim ¢,o
©,=¢, for any given system {¢,:S,——T)} of morphisms satisfying ¢,00,,
=¢,.

Proof. We have only to put

(lim S)~={Xe€P(lim S,) : o;*(X) €S, for any 1€ 4},
Remark. If MCA is a cofinal set,

(lim S)~={zx€P(im S,) : ¢;'(X) €S, for any 2€M}.

6 Proposition. Suppose that all S, are finitary. Then we have the
Sfollowing :



Moore families 91

(1) (X =\ P (P (X)).
(i) plopu(X)= o/ 0a(Pue(X)).
(i) If all ¢, satisfy (b), ¢, do also so.
Proof. (1) Let us put u ¢,(0ux(X))=A. Then
it (A) =\ oi °sop(som(X)) N et (Pu (X))
c N ¢,.5(¢,1*(X))C”=\‘JJ, ¢z oso,ow.yosow(som(X))
C N eron (P (X)) =0 (Y 0.(0an (X)) Coit(A).
Hence go;‘(A)=. ™ P (P (X)) €S, by (3). Then A€ (lim S,)".

Since ¢,(X) CAC@,,(X), we have A=¢,,(X).
(i1) is obvious from the above calculation.
(iii) Since ¢,.4(0,) =0, and ¢, (0;) =0, we have

(2 °§01*(X) \/ ¢y1°¢p1*(X) \/(X\/Sopz(o )
—X\/(\/ 90,,;(0)) X\/(\/ PrePux (0:))
_X\/901 (0)3 q. e. d.
For the application in [3], we consider the following condition :
C) (i) Qus(S)=S, for any p22.
(i) @(X) =0,(Pue (X)) for any p=2 and XES,.
(ii) is equivalent to the following:

(i) If XES8, and b€, (X), there exist vy and a€X such
that ¢,,(a) =¢,,(b).

7 Proposition. If {S, ¢,} satisfies (C) and if all S, are finitary,
then ¢, are epimorphisms, ¢, satisfy (a’) and (lim S,)~ is also finitary.

Proof. Obvious from (6; i) and (4; 1).

Let {S, ¢,} and {T, ¢,} be inductive systems in 4 and {;:S,—
T, be morphisms satisfying {,09,=¢,,0(, for any pu=A4

8 Theorem. (i) (lim £,)«00x=¢x8x, ©Fo(lim §,)*=CFogf.
(11) If ¢, is surjective,

(lim Cp) * =¢1*°C1*°¢;" (lim Cp) Y= %*03 °¢';‘-

(iii) Suppose that all T,, are finitary, ¢, satisfies (b), ¢, is surjective
and that C*o¢,, (Y) C 0,08k (Y) for all v=2 (or for all v=2of a cofinal
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subset of A). Then (lim {,)*cd,=@,xoC}.
(iv) Suppose that all S, and T,, are finitary, ¢, and ¢, satisty (b) and
that ¢, and ¢, are surjective. If {00k (0,) D¢%(0,) holds for any
v=2 we have ¢fo(lim (,)«=Cwo0).  Moreover if {u is (M\/, n/N)-
continuous, (lim §,)« is also so.
(v) Suppose the same as the first sentence of (iv) and that {},¢%(0,)D
0% (0,) holds for any v=2A. If {F is (m\/, n/)-continuous, (lim ,)* is
also so.
Proof. (1) 1is obvious from (1; ii).
(ii) (im Cp)*: (lim Cp)*°§9x*°¢f=¢x*°Cz*°§0;.
(lim £)*=@iopfo(lim ) * =@uoff o).
(i) (lim ) *o¢e (Y) =¢uol (YV 3 (0)) =c {0l (c{YU ¢ (O)])} .
If z€0,007 (c{YU¢;(0)}), €9, (¢ {YUF}) for some finite subset
FcC¢:'(0O) by (8). Then
2E Q00,007 (c{YU F}) Co,ol ¢, (c{YUF})
CSDF*OC:OC {¢VI(YU F)} .

Since FC ¢fodiy (0)) =\ ¢%(0,), FC¢X(O) for some v. Then ¢,,(F)
C¢wa*°¢; (Ov) =Ovc¢vl* (Y). Hence
TEQ,xoLf o, 1x (Y) Co,u00,500* (Y) =@l (Y).

This proves that (lim §,)*o¢,. (Y) Ceuolf (Y). The converse inclusion
is obvious.
(iv) Since

Gixo ol (X) DEixop (0O) =Cis (}zjl o (O"))D,\z'{ Cixopn (0,)
oY 5 (0,) =¢7 (0)

by (6), we have
¢Fo(lim &)« (X) =¢Foduolinopf (X) =Linoor (X) V3 (0)
=Lo0f (X)

The second assertion follows from (2; ii) and (8; ii).
(v) is quite similar to (iv), q. e. d.

9 Corollary. Suppose that ¢, is an epimorphism and §, and ¢, satisfy
@"). Then lim {, satisfies (a') also.
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Notes

t If a finitary Moore family forms a distributive lattice, it is Brouwerian (a generalization of
the theorem of M. H. Stone, cf. [1; (V, 10))). Hence YV (X;AX,) =Y \VX)DAT\VXL), Y
NCYX) =V (YNX,) for any ¥, X, Xy, X, eb4).

I Let m be a cardinal and C(m\/) be the category of (m\/)-semilattice : the objects are ordered
sets having \/a, for any subset {2,} satisfying ${2,}<<m and the morphisms are (m\/)-
continuous maps. Any inductive system in C(2\/) has an inductive limit in it (false for
infinite m). In our case lim S, has the canonical structure of (2V)-semilattice and the
canonical map #: lim Sy—>(lim Sp)~ is (2\/)-continuous.
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