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Introduction

Abel's theorem o n  general open Riemann surfaces was first investigated by
Ahlfors [1, 3] a n d  Kusunoki [5, 7] independently. After then, some generaliza-
tions were obtained ([10], [11], [20] and so o n ) .  Recently, Sainouchi [12] and
Watanabe [16-18] studied the corresponding problems from view points of canonical
semiexact differentials and behavior spaces respectively. Cf. also Minda [9].

All of these modern results thus far obtained concern with, just as the classical
Abel's theorem, the existence of certain meromorphic functions, i. e., analytic map-
pings of a Riemann surface R  into the Riemann sphere. It seems yet worth while
to study how the situation varies if we replace the Riemann sphere by a  general
Riemann surface R ' .  The problem in the most general setting would involve much
difficulties. So w e shall treat in  this paper a simple case where R ' is a compact
Riemann surface T of genus one (torus).

First we have to formulate the problem more precisely, and to do this we appeal
to the following familiar yet profound idea: the problem o f  singularities may be
changed into the problem of boundary behaviors (see, for example, [3] pp. 299-300
as well as p. 148 ff.). Correspondingly the notion of singularities may be generalized.
Although there would be several distinct and equally reasonable ways to generalize
"singularities", it turns out that the one which we have done in  [14] is of use at
least for our present purposes.

Our task is thus to give a  necessary and sufficient condition for the existence
of analytic mappings of an open Riemann surface R  into a  torus T  which have
prescribed (generalized) singularities at the ideal boundary of R .  And, in fact, we
shall be able to give such a condition (see Theorem 1; cf. also Theorem 3) which is
very close to the classical case.

After such rather classical consideration, we then set about an investigation
of the topological aspect of Abel's theorem. In  general, a  homomorphism of the
(one-dimensional integral) homology group of R  modulo dividing cycles into the
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homology group of T does not always arise from an analytic mapping of R  into T,
while every analytic mapping induces such a homomorphism. This was shown by
Gerstenhaber ([4]) when R is compact. (For a compact surface R of positive genus
there is a theorem of H. Hopf: every homomorphism between homology groups
is induced by a continuous mapping of R onto T.)

We shall characterize all the homomorphisms induced by analytic mappings
(Theorem 2), provided that we consider only particular homomorphisms called
"of finite type". This condition is trivially satisfied if R is of finite genus. A na ly tic
mappings with simple homological properties will be studied in some detail (Theorems
3, 3' and 4 etc.). Finally we shall confine ourselves to surfaces of finite connectivity
(see Theorems 5 and 6).

Applications of the present results to the problem of reduction (degeneration)
of Abelian integrals to elliptic integrals will appear elsewhere together with some
related topics.

I. Preliminaries

1. Throughout this paper R  denotes an open Riemann surface of genus
g (< co), and a R denotes its KerékArt6-StoIlow ideal boundary 1 ). We set 1 = {1,

g}. Denote by a' = {R} 1 a  fixed canonical exhaustion o f R , and take a
canonical homology basis E(R)= S(R, 3')= {Ai , 13 i b e j  o f R modulo OR such that 2 )

i) {Ai , Bi l i d „ forms a canonical homology basis of R„ modulo its  border
aRn , and

ii) a certain subcollection of {A j , j } j o n + i _ j .  forms a canonical homology
basis of each component R;,k)  o f  R 1 -11„ modulo OR;,k) , k=1, x „ ,

where .1n = {1, 2,..., g„}, g„ being the genus of R„, and x„ is the number of components
o f R„,, —.R„. Furthermore we set S (R )=  { U  R IU  i s  a  canonical end of R,
i.e., R-171 is a canonical region}.

The following lemma is fundamental. For the proof, see [13], for instance.

Lemma 1. L et 9,, 9 2  be  c losed  0 -d if f eren tials o n  th e  closure IZ„ o f  Rn

E . .  Suppose, f u rther, that 9 ,  is  semiexact. L et 0 ,  be  a prim itiv e function
of 9, on R „ —  (A j U I3j ). Then we have

j e  J,,

.ÇSR o , 91 A  (0-2=
 e i ? .

(1) 1 iin0A.,(1)1SBJ(P2—Bi911A) (T2) •

We denote by A= A(R) th e  real Hilbert space of square integrable complex
differentials on R with the following inner product :

<A1, A2 > =Re 15 A, A AI=Re (aia2+ bib2)dX dY ,

1) The results below would be valid for a compact R , i f  a R  is then interpreted as an empty set.
Cf. [14].

2) In the preceding papers [13, 14] we did not write down these conditions explicitly, but assumed
them implicitly.
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where Ai =a i dx+b i dy, j=1, 2 (z = x + iy is a local parameter). The norm induced
by this inner product is denoted by II • J. T here are many important subspaces of A,
among which we shall be mainly concerned with the following ones :

A h =  A h (R )=  e A1.1. is harmonic on R),

Ahse =  Ahse(R)= {A E Ah1/1. is semiexact} ,

E  C 2 (R ) and 3f„ e C6(R)
A (e f,)  = 4 1

0
) ( R) = Ae A  such that df= A and[

Ildf — dfiiii - 3 0  as n----4 oo.

Note that Ab> is not a closed subspace of A.
Needless to say, elements of these spaces are square integrable. We shall yet

need some spaces of differentials which are not necessarily square integrable. To
define them, let sal(D) be the family of all regular analytic differentials on an open
set D =R  and set

si(aR)= {91(p e af(U) for some U e S(R)} ,

(P).si „(DR)= {tp E si(OR) I 9 is (P)semiexact} ,

where P  stands for any regular partition of the ideal boundary OR (cf. [3]). By
saying that 9 e d(OR) is (P)semiexact we mean that Ç 9 = 0  for any (P)dividing cycle

d
d  which lies in dom 9, the domain of definition of 9 .  As usual, we refer to (Q)
semiexact differentials simply a s  semiexact differentials, Q  being the canonical
partition. The family ..ce (a R) has a  vector space structure over the reals provided
that we identify its elements appropriately. The real vector space thus obtained is
also denoted by si(OR). The same convention is applied to each subspace of
af(OR).

2 .  A straight line L  in the complex plane C passing through the origin will
be called simply a line in C .  Also, we shall use the notation " z  0  mod L" to indi-
cate that a  complex number z  belongs to L .  A subspace A, = Ao (R, 2 )  of A„s e

is called a behavior space (on R) associated with 2 = {Li }i o , a family of lines L i

in C, if the following conditions (i) and (ii) are satisfied:

(i)

(ii) for a ll )10  e Ao , 20 SI O E E Ø m o d  Li
Ai Bi

where A i; stands for the orthogonal complement of Ao in  A h .  This considerably
simplified definition of a behavior space is due to Matsui [ 8 ] .  The original defini-
tion [13] was rather complicated.

Let Lo be a  line in C .  Two behavior spaces Ao = Ao (R, 2 )  and A = A 0 (R,
_V') are called mutually dual (cf. [13]) with respect to Lo , or simply 4-dual, if

(1°) < 1 0 , > + i < 20 ,  i '0">  0  mod Lo f o r  all (1,, E Ao x A;) , and
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(2 °) L i oVi  = (j e .7) where L i oL'i  = {z e CI z = zi z  (z i , e x 2 '=
{4 } i o .

In this paper, we shall restrict ourselves to the case L 0  =R , the real axis. Then we
know that Ao and 'To , the complex conjugate of Ao , are always (R-)dual (cf. [13]).
Conversely, we have

Proposition 1 . ([15 ]) Let A , and A  be behav ior spaces w hich are R-dual
to each other. T hen A =  ;1- 0 .

In view of this proposition we shall always denote by A,S the (uniquely deter-
mined) dual behavior space of Ao with respect to R.

On the other hand, it is recently shown [8] that one can construct a  behavior
space associated with an arbitrarily prescribed family of lines. Thus we have

Proposition 2. ([8]) T here alw ay s ex ist a  behav ior space associated w ith
a given 29  and its dual behavior space (with respect to R).

3 .  Let there be given a  behavior space A0 = A o (R, 2 ), 2=  {L i } j e i . A
(closed) 0-differential 9 defined near OR is said to have A 0 -behavior ([13, 15];
see also [20]) if there are some Ao e Ao , Aeo e A (elo) and U e S(R) such that

(P=Ao+Aeo o n  U.

Suppose a semiexact 0-differential 9  on V= R—R„, R„ e such that 9
A, B,

0  mod L i , j E J —J„ has A 0 -behavior. Then 9  admits a  representation 9=2 0

;te ,  on the whole of V. For the proof, see [15 ]. We say that a behavior space
A , is equiv alent to another Ao , if every 0-differential with A 0 -behavior has A0 -
behavior and every 0-differential with Jo -behavior has A0 -behavior (cf. [15]).

We are particularly interested in analytic differentials with A 0 -behavior. Denote
by afA o the real vector space consisting of all q, e d(OR) with A0 -behavior, and set

= {9 E (P) .940 R) 9  1  9  0  mod Li  fo r every j eJ such that A i , BiA, B,
dom 9 ) .  Then, clearly A , .sze si; s i  (O R ). The elements of the factor space sa"Pr /
St(4 0  are called (P )A 0 -singularities ([14]), or sometimes (generalized) singularities.
Each (P)A 0-singularity a  is represented by a regular analytic differential near OR,
which we often denote by the same letter A differential 9 e .21(R) is said to have
a generalized singularity a  i f  9—a has A 0 -behavior. A  m o re  formal definition
of the generalized singularities (described in terms of inductive limits) will be found
in the recent paper ([18]) of Watanabe, who also studied the connection between
these generalized singularities and the classical polar singularities.

The following propositions were proved in [13, 14].

Proposition 3 .  A regular analy tic dif ferential 9 on R which has A0 -behavior
(i.e., 9 E  (R ) n d A 0 )  is identically  zero if

1Aj t 5BJ
4.,=_O mod L, je J
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for some family of lines L1 . (Of course, L = L  except for a f inite number off .)

Proposition 4 .  F o r any rif e C, risi # 0  m od L i , t h e re  are  regular
analy tic dif ferentials 0 (A ; )=4)(A i ; A o , and  4),,i (B; )= ck(Bi ; A o , q i )  such that

(i) 0 4 j (A i ) and 0 ( B i ) have A 0 -behavior,

A chi (A; ) UA ;  x = 0 ,  Bk (h lA i) M A i  x Bk )(ii) 
mod Lk.

0,71B j) --7=7 11 x A O= — q i k ,  1 0, (B q •(B • x Bk )  = 0
B k

Here y x ô means the intersection number of two (1-)cycles y, (5 (cf. [3], p. 67ff.).

Proposition 5 . For any  (P)A 0 -singularity  a  there exists a unique differential
tlf, with the following properties:

(i) ç is regular analy tic on (the interior of ) R,
(ii) tic, has a  a s  its singularity , i.e., on som e U  ‘(R ) , is  eq u al to  a

modulo A 0 -behavior,
(iii) the periods of tfr, are normalized:

tk„, -= 1//, 0  mod L i , j E J.
A, a,

Roughly speaking, a differential with A 0 -behavior which is regular analytic over
R plays a quite similar role to an Abelian differential of the first kind in the classical
th e o ry . So, hereafter, such a differential will be called a A 0 - A belian dif ferential of
the f irst k ind. Similarly, a regular analytic differential on R which has a generalized
singularity a  will be called a  4 - A belian dif ferential of  the second (resp. third)
k ind if a is (resp. is not) (Q)semiexact. Under these observations, Propositions 3,
4 and 5 correspond to the classical uniqueness and existence theorems of elementary
Abelian differentials of three kinds.

Now we remind that A , and .4  are two behavior spaces which are dual to
each other (w.r.t. R) . The following proposition may be considered a generaliza-
tion of the Riemann's period relations (cf. [5, 7]).

Proposition 6 .  L et & V  b e  a  .4-A belian dif f erential of  the f irs t  or second
k ind, and  co any  A 0 -A belian differential. Suppose further that co has a (P)A 0 -
singularity  a (m aybe EA), P being a regular partition of  OR . T hen

1  (i) Res O'w =lin Re[ — 2ni O'col alw ay s ex ists (and is f inite). A ctually
n - ■ 0 0  

we have

Res 0 '   E im co d lo '1  co).27r i s  j( 5 / 1 1B i Bi Ai

(ii) Res 'a can be also def ined. In particular, if  dO' is of the first kind, then
OR

we have Res O'a = Res 0' C O.
OR
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P roo f. Omitted (see [14] 3 )). Cf. Lemma 1. W e also  n o te  that 0 '  is
considered a  single-valued holomorphic function on the planar surface R— J  (A J

i c i
U

II. Abel's theorem

4. L et T be a compact Riemann surface of genus one (torus). A s is well
known, there are two complex numbers n o , n i , 1m (n i ln o )<O, called the fundamental
(or primitive) periods, such that T is biholomorphically homeomorphic to the factor
space C /17, where H =[n o , n i ] = {z eClz=mn o + nit 1 , m , n  e  Z } , t h e  period
m odule . We denote by p  the  natural projection mapping C—).7'. S e t Lk = {z e
Clz = tirk , t e R} and  Lk = Lk= {Z E C1Z =  t k ,  t E R }  for k = 0, I. L e t  E be a  map-
ing of J into the set {0, 1 }. We define the complementary mapping s* of E by s*(j)
=1 —s(j), j e J .  Clearly s* is also a mapping of J  into the set {0, 1}, and (0)* =e.
We now obtain a  family of lines in C: 2  = {4 c/i }i a . T here  is  a  behavior space
A, = A o (R, 2 )  associated with the 2  (P rop . 2). [Set-theoretically 2 '  consists of
only two elements L , and L 1 . But as is easily seen from the definition of behavior
spaces, it is very important how they are  arranged. Different s 's  (there are 2 9

distinct s's in all) give rise to different behavior spaces.] Such a A o will be called an
e-allowable behavior space belonging to 17= [no , n i l It should be noted that for
each s  there generally exist infinitely many (distinct) s-allowable behavior spaces.
Cf. Proposition 7 in  sec. 7. The dual behavior space of A o (w.r.t. R ) is denoted
by A .  We know that A'o = = { ) ,  e A hi  e A o }  a  behavior space associated with

= (4(;)},i.J.
A generalized singularity a will be called II-admissible if

cr O  mod 17
Y

for every dividing cycle y (outside some compact set). This means, of course, that
there are some integers /; (y), j = 0, 1 such that a = l o (y )it + 1(y)7t 1 . (There should
be no confusion with the expression "z 0 mod L".)

5. Suppose, first of all, that there is an  analytic mapping f : R  T such that
d(p - i . f )  has a (P)A 0 -singularity a. Here P  denotes an arbitrary regular partition
of the  ideal boundary (cf. Remark 1  in  sec. 6). Then, there exist U e e(R);
6  AO, Aeo e il (eb) such that

d(p - i ° f ) =  + Ao+ o n  U.

As was noted earlier, the a in the above expression stands for a representative of the
(P)A0 -singularity a .  Namely, a  is an element o f  se ,. T ak ing  U smaller if neces-

3) Here we want to make a correction to [14]. Namely, the term ( 2 0 - 1 - 2 : 0 ) r o  in  th e  eighth
, 12line from the bottom in p. 11 should be read as f r o .

•
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sary, we may assume th a t a e  s i(U ). For th is  U, there is an  /2„ e .1' such that
R — R „c1.1. Hence we have

A;

 o- -=-; 5 JEEO mod L, ( j ) , f e J - 4 .

We also note that /le, is exact and the Aj - and Bj -periods of A., belong to L ( J ) for all
J E J .  Therefore we see that

d(p -  f )_ = 1  d (p - 1 0 f 0  mod Lew , j E J — J..
A i Bi

On the other hand, since f  maps every closed curve on R  onto a closed curve on T,
we can find integers m 1, m7, n j , n7 (j eJ) satisfying

f(Aj)

f l i

d(P-1 ,4)=S  
f ( B i )

dp

dp - i =n i tt,( ; ) + npr e ( j )

in J.

  

Because Im Pro n l1r ( i ) ]00 , je  J, we conclude that

m jt = =0 fo r  a ll j E J

This fact enables us to construct a  regular analytic differential 1110  on R  with
A0 -behavior (i.e., a A0 -Abelian differential of the first kind) such that

(d(p - '0 f)— (d(p-1. f)— o  mod Lg ( j ) , j e J.

Indeed, th is obtained by making a (finite) linear combination of elementary differ-
entials of the first kind (see Prop. 4) with real coefficients. T h e  periods of tko can be
written in the form

.,,, , 0 =OEilr.(J)+ mIlre(i)
j e J ,

d i 
lAo --- fiproh+ npr e ( j )

where oi j  and 13 are appropriate real numbers.
N ow  le t 0'(A 1) =0 (il j ; A ,  —27riltro p )  and 4 '(B j )=4)(B 1 ; A ,  —27r1ltro p )  be

regular analytic differentials on R with AS-behavior such that

1 A  k rk ' (A i ) B fr 4:0'  (1 3 ) —= 0

 

mod 1.4(k).

 

— 1 - 27ribikin(i)Bk Ak

 

Such differentials surely exist, since —27rihro j ) 0 0 mod L (  J ) (cf. Prop. 4). These
differentials evidently form a basis for AS-Abelian differentials of the first kind. W e
set further



( 1) ne(i) Res 0 '4 i °-

BR Ai

Similarly we have

(1')

mod H, j E J.

mod17, j e J.ir •  Res 0 ' cl=e(j) Bi r 0
OR Bi
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Cii(P) = P  ( 1) ' (Aj), C 3 i(P ) = P  0'(13j), p e R — U (A J UB J ).
J  6 J

Applying the generalized period relation (Prop. 6) for the  differentials (/)'(A i )
and Vic, — d(p - tof)—tfro , we obtain

11)7 0A /y = — 2
1
7r k ; I M ( 1 ,4 k 4;q 2 4 i)1  lfr a

 — 1 .1)' (.41) tfra )
Bk Bk Ak

= 0 C J -1 1 1 i ,

since we can write the periods o f  (1)'(,•4i )  a s  1 O' (A i ) = ao , ( k ) , 0'(A i )= b o ( k )
Ak Bk

— 27Cibikin,(k) for suitable real numbers ak , b k and  the  periods o f i/i, are
Ak

(rnk — ak)Trv(k), (nk - 130 7-ccao• Consequently
Bk

nE(j) Res OA' J o. =(a i  — mi )n, ( i )
OR

=  t l f  — [m •ir • + m •o e t i )

Or

A i

Next let y be any dividing cycle on R .  We assume that y c U .  Then, since the
image f (y ) is again a closed curve on T, we can find integers /o (y), / i (y) for which

Y 
d(P - '° f )=1

. f ( y )
dP- ' = l0(Y)7r0+ 11()))7rt.

The left hand side is equal to  a, for and Ae o  a re  both semiexact. Hence we
Y

have

(1") cy -a 0 mod H for every dividing cycle y.
Y

That is, a  is  a II-admissible singularity.
Equations (1), (1') and (1") are necessary for the existence of an analytic map-

ping f :  s u c h  t h a t  the differential d(p - 1 . f )  has the prescribed (P)A 0 -singularity
a. We have thus proved the only if part of the following theorem.

Theorem 1 .  L et R  be  an  open  R iem ann  surf ace  o f  genus g ( co) and
T =C117 be a compact Riemann surface of genus one, II —Pro , n j= { z  E  C IZ  miro

+nn i , m, n E  Z } .  L et p : C  T  be  the natural projection. L et s  be a  mapping



A bel's theorem for analytic mappings 313

of  J={1, g}  in to  the set {0, 1}. Let A o  b e  an e-allow able behavior space
(on R) belonging to H and a a (P)A 0 -singularity , P being a  regular partition of
aR.

Then there ex ists an  analy tic m apping f  of  R  in to  T  such  that d(r'o f ) has
the singularity  a if  and only  if  a is H-admissible and there is a A 0 -A belian differ-
ential * 0 of  the first kind satisfying

(2) nohRes (P'A j a 0 0  mod II, j E J.
PR Bi

6 . To prove the converse, we assume that there is such a  differential 4/0  as in
the theorem. By Proposition 5 there is a  unique differential Vio  o n  R , the nor-
malized A0 -Abelian differential (of the second or third kind) whose generalized
singularity is exactly a. Since tko  is  a A0 -Abelian differential of the first kind, tfro

+ tfr. is obviously a A0 -Abelian differential with the singularity a.
A use of the period relation (Prop. 6) for 49'(A1)(resp. (Y(Bi )) and tfr, yields that

tfr.= — /te c h  Res VA j a, j e J,
A, PR Bi
Di

and therefore we know that

(4/0 +0,)=1 . ( 0 . 0 -1-1//,) 0  mod /7, j e J.
A, el

Moreover, for a dividing cycle y we have

(0 0 + 1//,)=• 0 m odI7,
Y

because a  is /7-admissible and 4,0 +11,„— a is  semiexact.
The function T =  (0 0 +0,) is thus multi-valued, but the composition f=p0V 1

gives a  well-defined analytic mapping of R  into T. It is obvious that d ( rio f )
=d T  has the singularity a .  This completes the proof of Theorem I.

Remarks. (1) In the above theorem, the regular partition P  of OR is quite
arbitrary; as a matter of fact, it is sufficient to consider the case P =I ,  the identity
partition (cf. Theorem 2).

(2 ) The analytic mapping f  in the above theorem is not necessarily uniquely
determined. In fact, uniqueness is not assured if there is a non-constant analytic
mapping f c,  such that d(p - lofo )  is  of the first kind. (In other words, f  i s  not
unique if there is a reducible A0 -Abelian integral of the first kind other than trivial
ones. As for the properties of reducible Abelian integrals and some other related
topics, see a forthcoming paper.)

Theorem 1 can be viewed as an Abel's theorem for analytic mappings of an
open Riemann surface into tori. The classical Abel's theorem gives a necessary and
sufficient condition for a divisor of degree zero to be principal, i.e., the divisor of
a meromorphic function f  on the surface considered. Namely, we are concerned



f(r4 i ).:,m i o Co +171i 1 C 1
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with both of zeros and poles of f  (cf. [7], [19] etc.). H ow ever, if we lift f  to  the
universal covering surface C  o f e_ 10, .01 an d  take its differential, the zeros and
poles of f  are equally transformed into the singularities of the third kind. Likewise,
our Abel's theorem (Th. 1 above) deals with the preassignment of only the singu-
larities of the differential d(p - '0 f )  of the lifting of an analytic mapping f :
to  the universal covering surface C of T. (Notice that w e have made good use of
parabolicity of the universal covering surface of T.)

I I I .  Homology groups

7 .  Let Co , C , be 1-cycles on T  corresponding to n o , 7r1 respectively. Then
Co , C , forms a  canonical homology basis E(T) o f  T .  We denote by  H 1(T ) the
1-dimensional integral homology group of T.

Let 111`(R) be the 1-dimensional integral homology group of R modulo dividing
cycles (the relative homology group with respect to the ideal boundary). The group
Hr(R ) is defined as the quotient group H A R ) where H ,fi(R) stands for the
homology classes of dividing (singular) cycles (cf. [3]). The S.-",(R) defined in  sec. 1
gives rise to a basis of 111(R).

Every continuous mapping h: R--■ T induces a homomorphism of 1-11"(R) into
H i (T), which we denote by h , .  We also use the symbols t o  express "is homolo-
gous to" and [y] to indicate the homology class (modulo dividing cycles) determined
by a  1-cycle y.

From  now o n , a  continuous mapping f :  R—*T will be called of finite type
(relative to (E(R), E(T))) if

FTf  (A i ) x Ck)2  + ( f (13 i ) x Ck)2 ] < oo .
j e J  k= 0,1 -

If a stronger condition

E fl UPAJ/x Ck)2 +(f (B j ) x Ck)2 ] = 0
icr k= 0 . I

is satisfied, we shall call f  a mapping of null type (relative to (E(R), E(T))).
lf f  is a mapping of null type relative to (E(R),E,'(T)), then for each j E J  [f  (A i )]

and [f (B i )] are both integral multiples of a single one of [C o ] ,  [C ,] (i.e., there are
integers k = k( j) = 0  or 1  such that f (A )  i C k , f(B i ) n i C k w ith m j , n  E Z ) and
vice versa. Similarly a mapping of finite type relative to (E(R), E(T)) is a  mapping
f  with the following property: When we write f (A i ), f(B i )  as

(mik, n i k e Z ,  j  e J, k  =0 , 1 ) ,

either m i o = ni , = 0  or m i , =n i , =0  except for a finite number of j  e J .  See Lemma
2 below.

The mapping f  which we constructed in Theorem 1 is of finite ty p e . If the sur-
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face R  is of finite genus, every continuous mapping of R  into T is trivially of finite
type . A  detailed study on analytic mappings of null type will be postponed to sec. 9.
In this section we shall mainly consider analytic mappings of finite type.

Since the intersection number y x .5 of two 1-cycles y, is unaltered under the
replacement of y, (5 with other 1-cycles y', (5' such that y' (cf. [3 ], [7 ]
etc.), it is also possible to ask whether a  homomorphism of Hr(R ) into H i (T ) is of
finite type . T he  following lemma is almost trivial.

Lemma 2 .  Let q: Ht(R)—.11 1(T )  be a homomorphism  of  f inite type relative
to (E(R ), E(T)). Then w e can f ind a mapping E=s, i : J--{ 0, 1} such that

q([4 i p =m i [C e ( i ) ]+m y [C ,. ( i ) ]

q([B i ]).= n i [C, ( i ) ]+n l[C ,. ( i ) ]

where m i , ni, n1 e Z  and in, = n1=0 for all but a f inite num ber of  j e J. T he
converse is also true.

By Proposition 2 and Lemma 2 we have at once

Proposition 7 .  F o r  any q: Ht(R)— , H i (T ), a  homoniorphism of f inite type,
there is an en-allow able behav ior space. (We always denote such an E as in Lemma
2 by e, when it is necessary to indicate rj explicitly.)

As was already remarked (in sec. 4), an c-allowable behavior space is not uniquely
determined by E. Furthermore, in  Lemma 2 , q  does not determine en uniquely.
A fortiori, the behavior space in Proposition 7  is not the unique one for the pre-
assigned

Examining the proof of Theorem 1, we arrive at

Theorem 2 .  Let R , T  and H be the sanie as in  T h e o re m  I . Suppose that
q: H r ( R ) — H 1 ( T )  is  a given homomorphism of f inite type relative to (E(R), E(T)).
We may assume that q is expressed in (3), c=e,.

If  f : R— >T is an analy tic m apping (of  f inite type) w hich induces q, then for
"any" e,,-allowable behavior space A o  belonging to T i, w e can f ind a A 0 -A belian
dif ferential 00  of  the f irst k ind and a I7-admissible (I)A 0 -singularity 4 ) c i  such that

10  = no ; )  Res (P',, j a + tni rc ( ; ) + Inpre ( i )
A i OR

00 = lI c co  Res O'B j cr+ ni rr ( i ) +n 4
itii,. ( i )

Eje i i

Conversely, assume that for "some" en-allowable behavior space A , (belonging
to H) we can find a A 0 -A belian differential 00  of the f irst k ind and a H-admissible
(0/1 0 -singularity  a for which the system of equations (4) is satisfied. T h en  th e re
exists an analy tic m apping f: R --*T (of  f inite type) such that f ,=--q and the dif fer-

(3) j E J,

(4) j e J .

4) In some cases, this a  may be identified with an appropriate (P)A, -singularity, P  being a regular
partition of a R, P Q .  (See also Remark (I) to Theorem I.)
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ential d(p - lof ) has the (1)/4-singularity  a.

P ro o f . Omitted.

As corollaries of this theorem, we have the following propositions as to  the
existence of an analytic mapping of finite ty p e .  Expediently we shall separate the
results into two parts.

Proposition 8 - 1 .  Suppose that f : ( = C / F °  i s  an  analy tic m apping of
f in ite  type. Then, f o r "any" sr.-allow able behav ior space A , (belonging to H)
there are  a A 0 -A belian dif ferential Ilt o  o f  th e  f irs t  k in d  a n d  a  II-admissible
(1)A 0 -singularity  a such that (2) holds for 6=E1..

Proposition 8 - 2 .  L et 17= [7r0 , n i ] ,  no , n, E C, (it ,Ino )  < 0  an d  p :
=C117 be the projection m ap p in g . Suppose that there is an s: J-■{0, 1) such that
(2) holds for "some" s-allowable behavior space A , belonging to 17, a A 0 -A belian
dif ferential tli„ o f  the f irst k ind an d  a II-admissible (1)A 0 -singularity  a. Then
there exists an  analy tic m apping f : o f  f in ite  ty pe such that d(p - '0 f )  has
the singularity  a. W hat is m ore, the A , is e 1 ,-allow able (s=s f .).

Theorem 2 above gives a  characterization o f  th e  boundary behavior of an
analytic mapping (of finite type) f : T  w h ic h  in d u c e s  a  prescribed homomor-
phism ri of finite type, H  ,(T ) . More generally it will make sense to ask
the following problem:

Let R  be the same as before and R ' a n o th e r . Let there be given a homomor-
phism n: Ht(R ) -4 1 ,(K ) (or Flt(R')). How should a n  analytic mapping f  o f  R
into R ' which induces ri behave near the ideal boundary o f  R?

8 .  In case that R  be of finite type') and R ' be the punctured plane S =C -  {0}
{0< I zl < co}, th e  classical Abel's theorem gives a n  answ er to  th e  preceding

problem. Indeed, viewing the routine proof (see [7], [19], for instance), we can
reformulate the Abel's theorem as follows.

Theorem 2 ' .  L e t [C ] b e  the f ix ed generator of  H 1(S )  represented by  the
positively  oriented u n it c irc le  C : Iz i= 1 . T hen, for a hom om orphism  n: Ht(R )
-+H 1( S )  w hich is described w ith naA  j p= m  [C], n([13 j ])=n j [C] (ni p  n  e  Z ,
j e J ) , the following assertions (1) and (II) are equivalent.

( 1 )  There exists an analy tic m apping f : R -oS  w hich is algebraic at OR  and
induces n.

(II) W e can find a polar singularity  a of  the f irst order at aR with integral
residues such that

(5) Res 0,, j a=m j , Res 0„,a= n j ;
OR '

where d0 4 ,, d0,, j  are  square integrable holom orphic dif ferentials on R

5) This means that there is a compact Riemann surface Ro such that Ro contains R and Ro — R
consists of only a finite number of points.
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w ith the f o llow ing  properties: Re d4),,= Re 1 dO i„ = 0, Re d 0 A i
Ak Bk Bk

= —Re1.

Ak

Notice that lit(R )-'12H
1
(R

0
)  with Ro explained in footnote 5), and that d 0 ,,,

dOB ,  may be identified with Abelian differentials of the first kind (in the classical
sense) on the surface Ro . We also note that the singularity a can be more general if
we allow f  to be transcendental at OR (cf. [1 7 ]) . Moreover, even if R  is completely
general, the equivalency of (I) and (II) is still valid with a few necessary but natural
modifications. Refer to Kusunoki [5]; see also [7], [10], [20] etc..

For the completeness, we shall finally include another remark. The classical
Abel's theorem as well as its generalizations to open Riemann surfaces ([1, 3],
[5, 7] etc.) are, of course, concerned primarily with the assignment o f zeros and
poles with their multiplicities, i.e., the local degree of mapping at these points. In
other words, the Abel's theorem, classical and modern alike, is also expressed in
terms of a set of homomorphisms between 2-dimensional local homology groups.
To be more precise, let 6= p"i i■p122.•• grIg7102.••q;. b e  a divisor o f degree zero,
given on a Riemann surface R  (p i Oq k ; m i , n k >0, Ez,/ nk ) ,  and let p, q
E C,  p 0 q .  Then the problem of finding a  meromorphic function whose divisor
is exactly the (5 is nothing other than the problem of finding an analytic mapping of
R  into e which induces the following set of hom om orphism s and 16:

H 2 (R , p i ) - - 0  H2 (e, p), v i i (d i )=m i Dp , j =1, r,

H 2 (R , q k ) ---+ H2 (e, q), n 'k ( 4 ) = n k Dq ,k =  1, s.

Here H 2 (X , xo ) stands for the 2-dimensional local homology group of X  at xo (with
integral coefficients) and z1i , A , D p , D q a re  generators o f  H 2 (R , p i ), H 2 (R , q k ),
HA e, p), H2 (e, q) respectively. The number mi  (resp. ilk)  is what we call the local
degree of mapping at p i  (resp. qk ).

IV .  Analytic mappings of null type

9 .  So far we have dealt with analytic mappings of finite type. We shall now
study analytic mappings of null type in some detail.

Let e be a fixed mapping of J  into the set {0, 1} and Lo , L 1 be the lines in C as
in sec. 4. With the family _V = {Lo i ) }i o  we associate a uniquely determined family
.V*= { L , ( i ) }i o . For a finite subset J*  of J  we define a mapping E: J-+ {0, 1) by

E(.0= 1 8*(i)
j e J *

and set ..2;= {LE(i)}jEJ. We also set

6(i) J*,

Ag• ={2 e A k IA has A 0 -behavior and S mod LE (i) , je J}  .
A, iD,
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Later we shall make use of the following propositions whose proofs may be found
in [15].

Proposition 9. For any  f inite subset J* o f  J an d  any e-allowable behavior
space A 0 , A-0 * is a behavior space which is equivalent to A , (i.e., every  C 1-differ-
e n tial w ith  A 0 -behav ior has A t"-behav ior a n d  ev ery  0 -d if f e ren tial w ith
A t . -behavior has A 0 -behavior). A .4* is &allowable.

Proposition 1 0 .  L et iro be  an  &allowable behavior space which is equivalent
to an s-allowable A ,. T hen there is a f inite subset J* of  J such that A 0 = A .

Proposition 1 1 .  I f  A , is  an s-allow able behavior space, then we have (A n '
=(A DJ* for any  f inite subset J* of  J. (W e rem ind that A .;) denotes the (R-)dual
behavior space of A 0 ).

As a corollary of Proposition 9 we have

Proposition 1 2 .  Let A 0 , J*  be as above and  P a regular partition of the ideal
boundary  o f  R. T h e n  a (P)A 0 -singularity  i s  a (P)A .1*-singularity  and v ice
versa.

We are now ready to prove

Theorem 3 .  S uppose th at th e re  is  g iv e n  a non-triv ial H -adm issible (I)
A 0 -s in g u larity  a. T hen w e can f ind an  analy tic m apping of  null type (relative
to (E(R), E(T)))f  : R-+T such that d(p - 1 . f ) has the singularity  a  if  and only  if

(6) Res Res 45g o- -= 0 mod Z, j e J
OR OR

f o r som e behav ior space A ; w hich is equiv alent to A .  H e re , o f  c o u rse , d C , J

=4)(A i ; A6, —21ciln, ( D ) and dikk i =4)(B j ; ;176, —21til1t" ) .

Pro o f . We begin with the assumption that there is an analytic mapping f  R
T  such that d(p -  1  f )  has a  as its generalized singularity. S in c e  a  is an (I)A 0 -

singularity, it is easy to see that f  is of finite ty p e . Furthermore, by Theorem 1 we
can find a A 0 -Abelian differential Vio of the first kind and integers m i ,  m , ni ,
(m 1= = 0 for alm ost a ll j e .1) fo r which (4) holds. I f  f  i s  of n u ll type,
(m3+ n3)(mr + n r)=0 , j e  J. W e can not, however, insist that m j =  =  0  for
all j e J ;  some of m 1 and n  m a y  n o t  v a n is h . If we set J' e =  =  0 },
then we only know that J* =J— J' is a finite subset of J.

Now let it- , = A4* and iL =( A ) J* . By Proposition 11, ;17(') is  the dual behavior
space of zro (w.r.t. R ) .  Due to  Proposition 12 w e can regard a  as an (I)A 0-sin-
gularity. Thus, we have instead of (4)

(4')
'1r ( J ) ResRes (3,4 +m

j
a (i)

A OR
I

1

= ng(i
)  

Res (3 'B
i
c -1-ni ng o )

OR

j  e J,



tko = (Res t 4 a+ 0
A i OR j

(4") mod L l( i ) ,  j  E J .

0 = (Res .3 'a  a + n =0J c ( J ) —
B, OR
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for some IT/ 0 ,  a  ;1- 0 -Abelian differential of the first kind, and integers mi , ni . By
Proposition 9 tTio can be considered a A0-Abelian differential of the first kind as well.
Hence we write th for th .  Equations (4') then imply

Proposition 3 is now applicable and we deduce that t h  0 .  Turning to (4") again,
we obtain Res a  R e s 0  mod Z , j E J .

OR OR
Conversely, le t a  be a non-trivial fl-admissible (I)A 0 -singularity which satisfies

the system of equations (6) for some ;f0, an-allowable behavior space equivalent
to A .  It follow s from  Proposition 10 that there is a finite subset J *  of J  such that

=(A'or .  We set ;1-0 = A6*. Then (4') is fulfilled by the A0-Abelian differential
=- 0 and suitable integers m i , n i . If we take the normalized ;1- 0 -Abelian differential

LT', with the singularity a  (cf. Prop. 5), the A i -  and Bi -periods of tii„ are of the form

1A i tTi,=i i n."  a n d  5B , ITJ,= $ e R. A  u se  o f  P ro p o sitio n  6 yields that

5i = mi  a n d  r3i = n j . It follows that f =p(5 P tlf„) (p e R ) defines an analytic mapping

of R  into T (cf. Theorem 1 ). We also know that f  is a mapping of null type relative
to (E (R), E(T)) and d(p - l . f )  has the singularity a. q. e. d.

It should be noted that condition (6) is very similar to (5) in  Theorem 2' (the
classical Abel's theorem). See Theorem 6.

10. L et a, dVA , cla■'A a n d  ITJ, be the same as above. We may write
13;

( 1 A  k  a l l, "4 , = a i k n e ( 0 5 .

1 B k  dV g i  =- bikTC,(k)— 2tri A

S , I k= 6 6.1k 7 r' (  k )
1

irEcnuik, 11),r=  1102(k)
Bk

fo r  appropriate real num bers ai k , b i k , i k, ilk . These numbers a re  uniquely de-
termined only by a and J* .

We may use Proposition 6 to compute

R e a ' a — R e s  0 ' a = R e s ( ' )tA, A, A, Ai a ,

OR OR OR

since isis regarded a s  a  A- -Abelian differential o f  th e  first kind (cf.
Prop. 9 ).  We find out that

Res o- —ResAi A ,
OR OR

E ( —1 ) (k) (a j kfik —bikik)+6ii(Re 
p c 1 - 2 e ( j ) ]  1 ) ,

={

P E  ( - 1 ) 8 ( k) (aikfik — bikik), i f  j  e J— J* .
ke.t*

i f  j  e  J *

(7 ) (k  e J )



d C l i =  d
ik n

E(k) • r r J .6,,
Ak e(k )

Bk 
dcIY J = 7r,( k )

(7 ')

then

2ni

k ik eR ,
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w here w e set -r=n 1 /n 0  a n d  2np=Im(n1 710 )= In, 12 Im  ( < 0 ) .  Similar formulae
hold for Res 45'pp. -  Res 0 '0  cr. Actually, if we set

OR OR j

Res 43'D a -R es 0' a
BR OR

I t i E . ( - 1 ) 48 ( k)(a k - k i k e ilik ) +  J (R e[r 1 - 2 0 i ) ] -  I), i f  jE J*
keJ

i i  E  (_  
i )

(k )t d .
k  j k f l k  —  

k
jk

6
1c)

,i f  j e J — J * •
k e .I .

In particular, when the fundamental periods no , n i  o f T are normalized so that
In0 1 =1, we have

Lemma 3 .  If we set

(7 ")

then

1 Oi k =ai k +(- 1)0k) 2n
I m  

i t  (1 -R e  [ti-2Eum,s.
-1/ ` . .1k

4 .  =a' k.  - ( - 1 ) r
8(k)

2 n   

(1 Re [T' - 2 8 (i)])(5
j kj k j T

j ,  k e J,

MIh ,Res -R es V A a = 1.1
k -  (

1' ka Pkik -  u  j k ,Lk.1
OR OR j 2n k e .l .

j e J .
R e s  ' r -R es O'B ,a= E  ( - 1 ) " (a jk  k b;kik)

G IL  k e J"OR '

Combining this lemma with Theorem 3, we obtain the following

Theorem 3'. Let 17=[n 0 , ii i ]  and assume Ino 1 = 1 .  L e t e: J-■{0, 1) and
A o  b e  an e-allowable behav ior space belonging to II. T h en , fo r a  non-trivial
TI-admissible (I)A 0 -singularity  a, the follow ing tw o statem ents are equivalent.

(I) There exists an analy tic m apping f : R -*T  such that f  is of null type and
d(p - lo f )  h as  the singularity  a. ( p  is the projection m apping C -+T =
C/17.)

(II) There is a f inite subset J* of J such that

Res VA ,6 +1m r  E ( - 1 ) e " ) ( a ) k f ik - 6 J k ik ) - _, .()
OR k e.1.

{ — ,Res 45 'B j er + E  (-1 ) . (k)(ivi kfik—b'ikeek) -.......- o
BR .4 .7 r ) (e l*

mod Z, j e J ,

where a i k , bi k ; â ,  b ii k; flk a r e  real num bers def ined by  equations
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(7), (7') and (7").

In contrast with Theorems 3 and 3', we now claim

Theorem 4 .  A non-triv ial analy tic m apping of R  into a torus T  cannot be
of n u ll type w ithout hav ing  singularity . More precisely , le t p: C---0T=C111,
17=[n 0 , ic i ] and e a m apping of  J into the set { 0, 1} . L et f : b e  an analytic
m apping (#const.) o f nu ll type. T h e n , fo r  every  s-allow able behav ior space
A o  belonging to H, d(p - i.f )  can  nev er be  a A 0 -A belian dif ferential of the f irst
kind.

For the proof we need the following lemma which can be shown in a way quite
similar to the compact case (cf. Prop. 6; see also [5, 7], [13] etc.).

Lemma 4 .  Let A o  b e  a behavior space and cp any A 0 -A belian dif ferential of
the f irst k ind. T hen w e have

2E 11111  (p1  0= --1  E (1  (1 9— 1  ( P 1 ( 1 3)=11(PI1 2 0 .
J e J Ai B i J e J  Ai B i B i A i

Proof of Theorem 4. Let A 0  be an arbitrary s-allowable behavior space belong-
in g  to  H .  W e set 0= p - 'of . Consider the case where d O  can be regarded as
a  4-Abelian differential. Suppose that dO is a  4-Abelian differential of the first
kind. Then

d0=-m .ir -1-m *n d 0 =n +n*rc •J  gin J  e t! ) ,
i

Ea) J  g * ( J )A i

for some integers tn . ' , m j, n j , nj`. Since f  is non-constant, d O # 0 .  Lemma 4 now
implies that

27ry E (- 1)0 -0 (mIn•— m .nt)> 0,
i c j J J  J

=Im( 1 fc0 )12n 0 O .  It follows that

{jeJlm j =n j =0}

Hence f  cannot be of null type. q. e. d.

1 1 .  In this and the next sections we shall confine ourselves to surfaces of finite
connectivity. If this is the case, every continuous mapping is o f finite type and
therefore our Theorem 1, for example, is concerned with analytic mappings without
any homological restrictions. Here we shall be concerned with analytic mappings
of null type.

For our purposes, let r  be  a  complex number with negative imaginary part and
Lo  = iR, = {z t e R ) .  S e t /7 = [2n i, 2n it] a n d  T =C 117. Let
p: be the natural projection mapping as before.

Let R  be the interior of a compact bordered Riemann surface (of genus g).
Suppose tha t the border OR consists o f h contours /31 , flu. With every
we associate a doubly connected subregion of R  which is conformally equivalent to
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a ring domain 1 < Iz i l < r1 (<cc). W e  assume that /3i corresponds to the circle
= 1 .  Note that z i gives a local parameter near
We denote by T h = F h(R) the (real) Hilbert space of square integrable real

harmonic differentials on R (cf. [3 ] ) .  The space T h  is naturally a subspace of A,.
Let Thse= 1" hse(R)={ ,1, e T h IA is semiexact} =A h s e  n rh  and Th in = T,,n (R) be the space of
real harmonic measures on R .  We know that Th=rhei0Ftse=FLCVhse V D .
If we set

AK = A K (R ) =  h „, + i h„,

A K  is a behavior space associated with the family .9 9  K= {iR }, where iR  denotes the
imaginary ax is . We also know that AK is dual to itself (see [5, 7], [13]). Mero-
morphic differentials on R  which have AK -behavior were first considered by
Kusunoki ([5-7]) and termed semiexact canonical dif f erentials. Cf. also Ahlfors'
distinguished differentials ([1-3]) and Ti -behavior in Yoshida [20].

For any mapping E of J into the set {0, 1) we set

   

Re 2 has a harmonic extension
across OR and vanishes along OR;

Aj Bj
A=_O mod L E ( ; ) , jeJ

A(s)= A(R, e)= e A hse

         

It can be shown that A(s) is a non-void closed subspace of Ahs e and is a behavior space
([13 ]). We set as usual A'(e)= A(8), the dual behavior space of A (s ). We note that
AK= A(e0 ), so = 0. While AKO A(e) in general, we have as a result of Propositions 9
and 10

Proposition 13. A meromorphic dif ferential on R  is  a semiexact canonical
dif ferential if and only  if it has A(c)-behavior. I n  other words, every A(s) defines
the same boundary behavior.

We set o-
i =c i dzi lz i on U i

6 ), i=1, 2,..., h, where ci is a complex number (maybe
= 0 ) .  If we set furthermore

(8) = cr, o n  U,,

a is an analytic differential defined

write ci a s  c; =p i +rq i , pi , qi e R.
h

=27Ci E (p i +Tq l), a  determines a
q, are all integers an d  E p i =1=1

h
on U=  J  U i , a neighborhood of O R . We may1=1

Since 1  a=27ri(p i +Tq i)  and 1  a= ±1
PR 1=1 Pi

17-admissible (I)A(B)-singularity if and only if
hE qi =0, s  being any mapping J—■{0, 1} (cf.

1= 1

Prop. 12).

We generally denote by d „ dO'B j , ,  the normalized A'(c)-Abelian differ-
entials of the first kind. The integrals O'A i . „ are considered single-valued

6) Cf. Sh ib a , M .: Notes on the existence of certain slit m appings. Proc. Jap. Acad. 51 (1975),
687-690.
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holomorphic functions on R —  (A i  U  B A  In particular, they can be expanded
JeJ +co

in a series on each U i , 1=1, 2,..., h. L e t  E  aWz? be the Laurant expansion of
11=—co

on U i . We set

(9) VA.,,e(fid= 47 ) .

Similarly for O'B i „(fi t ). Note that doesdoes not stand for the value of
assumed actually on the contour S i . They coincide only in their real parts.

As an immediate consequence of Theorem 3 (cf. Prop. 13), we have

Theorem 5 . Let R  be  the interior of a compact bordered Riemann surface,
h

aR= Pi . Let a be an analy tic dif ferential def ined by  (8), where c i =p i -Ftq i , pi ,
i= 1

h h
qi e Z, p i = E q,=0.

i=1 1=1
Then there ex ists an analy tic m apping f : R — )T  such that i) f  is of  null type

and ii) Re(d(p - lof)— cr) has a harm onic extension across OR and vanishes along
8R, if  and only  if

h
(10) Re E c i vA  .0 0 .-  Re E c i o'B i ,e oda-- 0  mod Z ,  j  e J

i =1 i =1

for some mapping 8: J— (0, 1).

According to Theorem 3' we would be able to replace (10) by another condition
which is described in terms of the periods of d0'13i.e0 (the normalized semi-
exact canonical differentials of the first kind).

12. In case that R  be a surface of finite type, the above argument remains
valid if a few modifications are made. In fact, let Ro be a compact Riemann surface,
P i (i =1, 2,..., h) distinct points on Ro . Let (U i , z i)  be a  (fixed) parametric disk
about P i , z i (Pi)= O. W e  a lso  set R = R 0 — (P,} 1 . We know that every holomor-
phic function on a punctured disk LI, —  {Pi }  which has a  finite Dirichlet integral
is  holomorphic on the whole U,. Particularly, the integrals O ,  and
(considered single-valued holomorphic functions on the planar surface R —  (A i

jeJ
u B A  can be expanded on U, as follows:

(9 ') 0:4,,e(zi)= E o'B;,c(zi)= E
n=0 n=0

Then we can prove the following theorem without difficulty.

Theorem 6 . Let R, z i) be as above, i= 1, 2,..., h. Suppose that there is
given an analy tic singularity  a such that

cr= ( E  c(o/z9dz io n  U , ,  i = 1 ,  2,..., h.
n=i "

Then the following two statements are equivalent.
( I )  There exists an analy tic m apping f: R --+T such that f  is of null type and
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d ( r 'o f ) - 17 is holomorphic on each (11, i =1, 2,..., h.
h h

(II) There are 2h integers pi , gi su c h  th at E p i = E g1 =0 and c 1 ) = p i + tg i ,1=1 1=1
i = 1, 2,..., h. Furtherm ore, for some mapping E: J-4{0, 1)

h 00 h 00

Re E E clos(.
g

.-1)_=Re E  E  C " ) 1(•n - 1 ) 0J,E,, mod Z ,  j  e J.
1=1 n=1 1=1 n=1
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