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Introduction

The purpose of the present paper is to characterize explicitly the image of the
Fourier transform of Coe-functions with compact support on an n-fold covering
group G of SU(1, 1) ,- SL(2, R), that is, to establish an analogue of the classical
Paley-Wiener theorem.

The classical Paley-Wiener theorem can be stated as fo llow s. Let f  be a Cœ
function on R vanishing for I ti T, and define its ordinary Fourier transform by

(0.1) F(s)=5G oe,f (t)e - istcit (s e C) .

Then, F is an entire function with the property that for every non-negative integer
r, there exists a constant C, such that

(0.2) IF(s)I _<C,(1+ Isl) - reTI 1m si.

We topologize the vector space ie r  of all entire functions satisfying (0.2) by means
of seminorms

= sup 11„, si m (1 + IsprIF(s)I (r, M =0, 1, ...) .

Then the ordinary Fourier transform gives a  topological isomorphism between
g T (R) and .rer, where .9r (R) stands for the topological vector space of C-functions
on R vanishing for It! T equipped with the usual topology.

Our method basically follows Ehrenpreis and Mautner [3] in which they treated
the group SU(1, 1)/{ + 1}. I n  the present case, however, there arise some difficulties
when we follow their method directly. Let us explain this point in more detail.

In Part I of [3], they dealt with K 0 -bi-invariant functions, where Ko is a maximal
compact subgroup of SU(1, 1)/{ + O .  But there they failed to derive the exact cor-
respondence between "support" and "type of exponential" mainly due to rough
estimates. On the other hand, in Part II of [3], they succeeded in deriving the above
correspondence, using the result on the Abel transform corresponding to the trivial
one-dimensional representation of Ko . In other words, they established the Paley-
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Wiener type theorem for K0 -bi-invariant C"-functions w ith compact support.
Next, shifting "1( 0 -type" of functions by means of certain differential operators,
they deduced the Paley-Wiener type theorem for arbitrary 1( 0 -type from that for the
trivial 1(0 -type . In our case, however, it is difficult to study at first the Abel transform
corresponding to the non-trivial representation of a maximal compact subgroup K
of G .  Therefore we proceed in  another way, that is , we improve the method
of estimation in Part I of [3], and then prove the Paley-Wiener type theorem for
G for any n. After that, we are able to study the Abel transform.

We can treat any finite covering group of SU(1, 1) in a unified way. The only
exception is the case of odd functions on SU(1, 1). This case requires careful treat-
ment because we must take account of some validity problem concerning the integral
expression of hypergeometric functions (cf. (4.17) and Lemma 4.3).

The present paper consists of six sections. We introduce a parametrization on
G in 1.1 and construct its representations in 1.3. In 1.4 we give intertwining oper-
ators which are important in characterizing the explicit image of the Fourier
transform. Sally constructed in  [1 3 ] intertwining operators for the universal
covering group of SU(1, 1) by a  different method. In 1.6 we give the list of all
irreducible unitary representations of G .  Section 2 is devoted to the study of matrix
elements of representations. In section 3 we derive the inversion formula (Plancherel
formula) by an elementary method. In sections 4  and 5 we establish the Paley-
Wiener type theorem for arbitrarily fixed K-type (Theorems 4.1 and 5.1). Let us
outline these theorems. Denote by pi' (—  n +1< k < n, p, qEZ,  T > 0) th e
space of C"-functions with compact support satisfying

(0.3) f (u g v) = x 1;,(u)f(g)x(v) (u, y e R I4nnZ ),

(0.4) f (uatv )= 0 fo r  u, v E K,

k   \ \where x (u 0 ) = e x p  — i
( P  ±  2 n  ) o )  

(as for zi t) ,  a ,  see 1 .1 ). In section 4  we treat
the case p= q = 0, and in section 5 the case of arbitrary p , q .  The image of g q , 7-
under the Fourier transform is the space dil q ,T  o f  all entire functions with the
property analogous as (0.2) (we replace Tm s by Re s in (0.2)) and satisfying certain
functional equation and the condition of zeros. As a consequence of Theorem 5.1,
we can investigate the Abel transform mentioned above (Theorem 5.3). In section
6 we finally establish the Paley-Wiener type theorem for C"-functions with compact
support (Theorem 6.3). The image of a function f  which fulfills (0.4) under the
Fourier transform is given as an operator-valued entire function with the properties
analogous as those for a n d  satisfying certain "rapidly decreasing" con-
ditions.

The author wishes to express his heartfelt thanks to Professor N. Tatsuuma and
Professor T. Hirai for their kind advices.

Notations

Here we give notations frequently used in the sequel. As usual C, R , Z , N
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stand for the sets of complex numbers, real numbers, integers, positive integers
respectively. We denote by T the set of complex numbers with absolute value one.
Im s (resp. Re s) denotes the  imaginary (resp. real) p a rt o f  a  complex number s.
Let G be a  real L ie  g roup . Then C (G )  (resp. C (G )) denotes the space o f  Coe-
functions (resp. Coe-functions with compact support) on G .  When we topologize
C (G ) as usual, we denote it by 9 (G ) .  Let g be the Lie algebra of G .  For X E g
we define a right invariant differential operator on G, denoted again by X, in such a
way that

X f(g)= d
d

t f(exp(— tX)g)1 (g e G).
r=o

Similarly we define for _Keg a  left invariant differential operator on G, denoted by
X', in such a way that

d
- f  (g)=

( g  e x p  t X )

t=0
(g E G).

Let U(gc) be the universal enveloping algebra of the complexification gc of g. Then
any element X e U(gc) can be considered canonically as a right (resp. left) invariant
differential operator on G .  We denote it by X  (resp. X ' ) .  For a Hilbert space 5,
we denote by B (5 ) and U(5) the sets of bounded operators defined everywhere on
5 and unitary operators on 5 respectively. For a linear operator T on 5, we denote
by T* its a d jo in t. Dom (T ) and Ran (T ) stand for the domain and the range of T
respectively.

§  L  Preliminaries

1 . 1 .  Let G, be the group SU(1, 1) consisting of all 2 x 2 complex matrices of
the form

(
OE

with
5 )  

la V-  1)612 = I.

As in Bargmann [1, p. 594] put /3/a =y, arg a = co e RIZitZ , then G , is parametrized
as

{(Y, (0); II <1, w e RI2nZ).

In this system of coordinates group operation is written as follows: let (y, co)(y', co')
=(y", w"), then y" and w" are given by

(1.2) y"= (ye - 2 im' + y') (1 +yy'e - 2 1 °') - 1 ,

(1.3) w+ w' +(2i) 1 log (1 + yi7c 2 ) (1 +

where the latter is understood by congruence mod 27r. Here we take the principal
branch of logarithm and this is possible because Re (1 + yy'e - 2 "0 ")> 0.

Let n be a positive integer and consider a manifold
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G=G„={(y, co ); lyi <1, co eR12nnZ} .

We introduce an operation in  G by (1.2) and (1.3) with congruence mod 2nn, then
G becomes a Lie group as is easily seen. The unit element e is (0, 0) and (y, (0 - 1

=(—ye21w, — co). G is actually an n-fold covering group of G 1 . T h e  natural cover-
ing map 0 of G onto G, is given as

0(y, w(mod 2nir))= (y, w(mod 2n)).

We identify under 0 the Lie algebra of G, with that of G, which is denoted by g.
Put

( — i 0) v o v 1 (

)

—I
) , ir=-2-

o o
and

exp OX0 = (0, — 012), a 1 = exp tX  = (th (t/2), O),

b1 = exp iX 2 = i th (t/2), 0), n4 = exp Y,

where exp denotes the exponential mapping from g into G .  We use the following
subgroups:

K = {ice ; E R ), A =  { a t ; te R },

B= {b ,; t e R }, N  {n 4 ; e  R }

Each element g in G can be expressed uniquely by

g=u 0 a1N (0<0 <4nn, t E R ,  e R ).

Also g can be expressed by

g =u 9,a,u,k ( 0 9 < 4 1 2 7 r , 0 /<21i).

For g O K  this expression is unique.

1 .2 . Haar integral. We normalize Haar measure on K  in such a way that the
total mass is equal to one, and that on G as

f.(g)dg Sa3
f(ua,n)etdu dt

K -  CO

=27r5x5:5xf(uarv)sh t du dt dv

54 1 1 fo ,  co)  i dy 2dco 
I n c  (:) <ly i 1 — IY12 ) 2

We know that G is unimodular.

(y = vi + 4 2 )

1.3. For a fixed integer k such that — n+1<k<n  we put

(1.4) ./(9, 0= (! — 1712)11 +g1 - 2 ,
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vk(g, ()= e -2iwAk[  1+  g  
1+ yC J '
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where

g =(y , w)e G, ei° e T, =  kl2n,

and as before we take the principal branch of the fractional power in the right hand
side of (1.5). We make G act on T  by

g •C =0 (g )-(= 
ŒC+,6 

PO-a-

where 0(g) is given by (1.1).
Let d ig )  be the ordinary normalized Haar measure on  T , and denote by b

the Hilbert space L2 (T ; d p ( ) ) .  F or any fixed s e C , we define operators Uk(g, s)
(g e G) by

Uk(g, s)f(C)=vk(g - i, C)j(g - ', ) ' 12 +kf(g - 1 .C)

= c 2i.A.„F  1+  
i + y c  j (1 IY12)1/2+511+.ni —1-2s i e ( 6.2iwC 

 1 + VC 
1 +0 '

where g - 1 =(y, co), f E b .  I t  is c lear that {Uk( • , s), 6} is  a  strongly continuous
bounded representation o f  G  f o r  any fixed s e C .  W e  p u t  ep (C)=C - P (peZ ).
Then, {ep ; pEZ }  forms a  complete orthonormal system in b.

Proposition 1.1.
du (g•C ) .

(1) —j(9, C).
(2) For veK , Uk(v , s) is independent of s, and Uk(v , s)e U(b) for all y  E K.
(3) II Uk(g, s)I1 . efiResI fo r g =u,p atuy

(4) Uk(g, s)*=Uk(g - 1 , —g).
(5) {Uk(., s), 55} is unitary  if  and only  if  se iR .
(6) For any  s e C , C (T ) is contained in 5 00(Uk(., s)), the totality  of C°-vectors

for {Uk(., s), Sj} .

Proofs are all elementary, so we omit the details.

Remark 1. For k= 0 o r n, s) gives actually a  representation of G,.

We define for f e  5 ,o (Uk( • , s)), X  e g,

Uk,c (X , s)f= d
d

t  Uk(exp tX , s)f l ,  0

Then the mapping X i-L1k,(X , s) gives rise to a representation of g , and is uniquely
extended to that of the universal enveloping algebra U(gc) of the complexification
g c o f g .

Proposition 1.2.
(1) U ( X 0 , s)ep =  — i(Ak+p)ep.
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(2) U (X ± , s)e p = (Ak +
1U ( X  s ) e p = — (4+ p— where X  ± =X  i ± iX 2 .

(3) Let Q be the Casim ir element in U(g c ), that is, Q=(X 0 )2  — (X1) 2  — (X2)2 , then

U (Q , s)e ,=(4 -4 -- s 2)e p .

Proofs are given by simple calculations.

1 .4 .  Intertwining operators. We define for any integer p . a rational function
(s) as

1 1 0 5 jS p -1 (4  ± i +s)-12 f o r  p >1

(1.6) ce;(s)= 1 f o r  p =0

; 1
n O 5 j5 lp  I-  1( ilk +J for P  — 1 .

Note that oc;,(0)=- —1 for p < — 1 . We see easily that la(s)1< 1 for Re s> 0, and then
we can define for Re s> 0, bounded operators Ak(s) E B(5) by  Ak(s)e,=-4,(s)e p .

Proposition 1.3.
(1) A k(s)* A k(Ts) (Re s O ).
(2) Ak(s) E  1 / ( )  if  and only  if  s E iR.
(3) T he operator A k(s) intertw ines th e  representations U"(., s) and Uk(• , — s)

as follows:

Ak(s)Uk(g, s)=Uk(g, — s)Ak(s) (g e G) .

The assertions (1) and (2) are immediately verified. We shall prove (3) after
the next two lemmas.

Since Uk(exp tX J , it) is a  one-parameter subgroup in t of unitary operators for
fixed T E R , there exists by Stone's theorem a  selfadjoint operator H (t)  such that

Uk(exp tX .1, iT )=ex p (— itH'I(t)).

We denote by lillerr the restriction of 1/1(t) to I% where Zi is the  totality o f  all
finite linear combinations o f  ep 's. Note that I') c Dom (111(t)) b y  Proposition 1.1
(6).

Lemma 1.4. iU ( X j ,  it) is essentially selfadjoint.

This lemma is well-known although its proof is not so trivial (cf. e.g. [19]).

Lemma 1 .5 .  1/1(-c) is essentially  selfadjoint.

P ro o f . F or simplicity we drop superscript k  and parameter T , fixing them.
Since Flo is "diagonal" (cf. Proposition 1.2 (1)), the lemma holds at least for j= 0
as is seen without difficulty. Thus there exists for each x e Dom (H o)  a  sequence
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x„, e 11) such that x„,—*x, H o x n,—)110 x .  On the other hand, we have

1
—(1/02x.+0102x.,+(112)2x.--= ( + (cf. Proposition 1.2 (3)).

Since ((I-1 ) 2 y , Y)=1111iY11 2 (y  e ), w e  se e  th a t  {Ili x„,} ( j =1 , 2 )  are convergent.
Since R i x „,=H i x„, and H i  is closed, we get

Dom (H 0 )OE Dom ( H ;) ,  Dom (HO c Dom (H i ), H i x =H ;x
f o r  x E Dom (Ho ) ,

where H; denotes the closure of R .  On the other hand, by Lemma 1.4 there exists
for each y e Dom (H i )  a  sequence y„, e Sj o,(Uk(• , it)) such that y m —>y,
By the discussion above we have H i y o ,=H ;y „„ (Note that 5,o (Uk( • , it)) c Dom (HO
a s  is seen from  th e  definition o f  C '-vecto rs.) Thus w e obtain  H i c H 'i . The
converse inclusion is clear. Q. E. D.

Proof  of  Proposition 1.3 (3). First of all we shall prove it for s= it  e iR .  By
a simple calculation we obtain

if lit)H ,(t)e p =11 1
.1( — 'OA k(it)ep( j = 0 ,  1 ,  2 ) .

T h is  im plies Ak(it)11,(t) =1-Pif(— t) A k (it). T h en  b y  lim itin g  p ro ced u re  and
Lemma 1.5 and noting that Ak(it)e U(), A k(it)Z  = I% we obtain

(1.7) A k(it)Hl(r)=Hki(— T)A k(i-r).

By a familiar argument, (1.7) gives us

Ak(pouk(
g ,

 i t ) =  uk o , _ poi4k(pr) f o r  g =u o ,  a ,  o r  b„

Since G is generated by the one-parameter subgroups 140 , a, and b , the above equality
leads us to the assertion (3) for Re s =O.

Now, consider an operator T(s) e B(5) defined by

T(s)= A k(s)Uk(g, s)—  Uk( g ,  s )A k ( s )

As is seen above, T(it)= 0 for T e R .  On the other hand, it is clear that T ( .)  is an
operator-valued holomorphic function fo r  Re s> 0  a n d  continuous fo r  Re s>0.
Hence by the reflection principle of Schwarz we can continue T(s) analytically across
the imaginary axis, because T (it)= O is a  symmetric operator. By the theorem of
identity, we get T (s)= O for all s with Re s >O. Q .  E .  D .

Proposition 1 .6 .  Suppose that there ex ists a non-zero closed linear operator
L  w ith the follow ing properties (i) ( i i i ) ,

( i) Dom (L) C "(T ).
(ii) L leaves C"°(T) invariant.
(iii) For a pair (s, s '), L U k (g, s)f =U k (g, s')L f  (g  G G, Je C ( T ) ) .

T hen s' is equal to s or — s.

Remark 2. It is readily  verified  that Uk (g, s) leaves C ( T )  invariant for
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every g e G, s e C .  Hence the above condition (iii) makes sense.

Proof  o f P rop o s it ion  1.6. Taking account of Proposition 1.1 (6) and the
closedness of L, we deduce easily that for f eCœ (T ), X  e g,

Ulcco(X , s)f  eDom(L) a n d  LU(X , s)f= Uff ,,(X , s')L f .

1Thus ( -4-. - s 2 )L f  = L U (Q , s)f=LEcco (g2, s')L f=( -,-41 - s' 2) L f .  Since L is non-zero,

the assertion follows. Q. E. D.

1 .5 . Invariant subspaces. Here we investigate Uk( • , s)-invariant subspaces.
When k = 0 or n, g'-4Uk(g, s) defines a representation of G, as was noted in Remark 1,
so we shall omit here these well-known cases. Of course the following discussion
also holds in the case k =0 o r  n after slight modifications.

Consider Ran (Ak(),k + j- 1 -))1 a n d  Ran (Ak( - -  -
1

- ) ) 1 fo r  j E N .  It2 2
is easily seen that they are respectively equal to

= E it ;  Cep , b i

Proposition 1.7.
(1) .51- is invariant under U'((., /1k + j - 1 ) (j E N ).

(2) bi is invariant under Uk(• , i l k +j -  -1
2- ) (j e N ).

Proof . (1) Let f e b ï, h  e Ran (A k(il k +j - We have h-=Ak(1,k +

for some h' e b . Then

(Uk(g , h)=(L Ik(g , '1k+  —  ÷ ) f ,  A k(), +j

= (f , Uk (g -1 ,  -
k
 - j + 1 )A k ( l k +

= ( i  Ak(A k + j Ak+

Thus bl is invariant under u k( . ,  4 + 1  1 )  •

(2 ) The proof is completely similar to that of (1). Q. E. D.

We denote by Alp ±(s) the restriction of Ak(s) to Note that Ak(s) is "diago-
nal". D efine an operator Bp+ e 13(.57) by

A".+(2k + j - ÷ + s )
=  lim (in norm) .

ce, ( 2,k + i _  21 + s )

Then

I + I (1.8) B k •+e -P OSISp-j-1 1 + 2(i +
e

P for j.
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Here we understand = 1 . Define a hermitian form on b;i- by

hYP + =( 1 3,•+ f1,f2) f2 E

We see easily that (• , • )",+' is  L1k(., j ----)-invariant. It is c lear from  (1.8)
that (• , • )1,-1- is  positive definite. W e  d e n o te  b y b it+  the completion of the pre-

Hilbert space (51, ( • , • ) 11, ). T hus w e see  tha t Uk(g, j is uniquely2
extended to a unitary operator on v i , ± which we again denote by Uk(g, -

Hence iUk( • ,)k + j is  a  unitary representation of G .  Furthermore2  ' '
it is irreducible. We denote by Dik + j  this irreducible unitary representation of G.

By the same reasoning as above, we get another irreducible unitary represen-

tation {Uk( • , 61 ,i of G .  In this case we use the operator

(1.9) B ' e,,=- ep = n ,e,, p  — j .
o s ts lp i - J - 1 -

W e denote by Di k _i  this irreducible unitary representation of G.

Proposition 1 . 8 .  For Res>0, there is no Uk(- , s)-invariant subspace other
than those stated above.

Proof can be given by the analogous method for Theorem 2.1 in [15, p. 218].

1 . 6 .  Classification of the irreducible unitary representations of G . There are
other irreducible unitary representations of G .  Concerning this point we give two
propositions whose proofs are elementary and omitted here.

Proposition 1 . 9 .  (A k(o-)• , • ) is a positive definite Uk(., u)-invariant hermitian
1form  o n  f or 0 < a < T - 141.

This proposition assures the existence of supplementary series, which we denote
by Ek(a).

Proposition 1.10.

(1) Ran (Ak( + j — is inv ariant under Uk (., ) .k — j +1 )  ( j  E N ).

(2) Ran (Ak(2k + j — +)) is invariant under Uk(., —j + j f )  (j E N).

When 1 < k<n — 1, it is readily verified that 4(1— AO> 0 for all p  O. H e n c e

1 1 -1
for O. Thus w e can define for every such k  an

unbounded positive definite selfadjoint operator A t in 5j+=E 6p3
z 0 cep in such a way

th a t  /1e p =c1(1.k — ÷)e p  f o r  p  O. Note t h a t  Dom ("414_)= Ran (24.q  —  4 )).

(4 • , • ) is a positive definite U4 ( • , -71--)-invariant hermitian form. The closed-
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ness of A  assures the completeness of (Dom (A 1 ), , • )). Thus we obtain a
unitary representation of G, which is seen to be irreducible. We denote it by DI- k .

When —n +1<k < —1, we have ( —
 0  for all p< 0. By a similar

reasoning as above we also get an irreducible unitary representation of G for every
such k. We denote it by Djk .

It can be shown that except for the trivial one-dimensional representation there
is no irreducible unitary representation of G  other than those stated above. Here
we give the list of all irreducible unitary representations of G.

J.C k ( T ) e It) (excluding (k, -c)=(n, 0)).
2. (1 )  D-kk + i( —  n + 1 < k <n, j  E N ) and Dt/2;

(2 ) D i k _ ( — n +1 < k< n, N).
3. (1 )  Di v, (1 < k< n —1);

(2 )  Dj, ( — n+1<k<—  I).
4. PO-) ( — n +1 _ k _ n - 1 ,0 <c r<i- 1 4 1 ) .2
5. Trivial one-dimensional representation.

For 1 <k < n — 1 the locations of the irreducible unitary representations in s-
plane corresponding to 4  are illustrated in the following figure. F o r — n + 1 < k
< —1 the reader can easily draw the similar figure. The case k =0 or n is well-known.

In the following we do not need explicitly the representations in 3, 4 and 5.

§ 2. Matrix elements

For the later uses, we prepare the matrix elements 4, q (g, s) of the representation
Uk( • , s) as follows:
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ul;q (g,  )=(Uk(g, s)e q , (p ,g e Z ,

Also we prepare the matrix elements of Dt k ± ;  and as

k,+
j) = (Uk (g, --,)y14'±(j)eq, y ' + (j)e p ) s i

114- ( g ,  j) =( U k (g, —  A k+ yip-We p

where

i +2(j+4)1q2
1+1(2.1) Yr ( D =

283

(p, je N ) ,

(p , q<  — j,jeN ),

(2.2) 11,'-(./)= H FI -F 2(j — 1 1/2
.

L 1+ t

By an easy calculation we obtain

(2.3) viA +(g, j)=a44+ ( j)4 , q (g , k  +,i

(2.4) v 4 - ( g ,  j ) = 0 ( j ) 4 , ( g ,  — + )

where we put
044 ± 0 ) = 4 ' ± (0 4 ; ± (i) •

In the following we extend this definition of 4,4±(j) by putting them equal to zero
for any triplet (p, g, j)  not appearing in the definitions of upk4±(g, j).

Proposition 2.1.
(1) 4 q (u,pgu,k , s)=x (u o )u q (g, s))((u),
where

(2.5) xpkoo=e-i(Ak+p)(p.

The same relation holds fo r v (g, j).
(2) 14, q (g, s)l ezikes1f o r  g=u v at u,i,
(3) X o upkg (g, s)= i(p+) k )upkg (g, s),

X 'o upk,(g, s)= — i(g + A k )u 4 (g, s),
1X + 4 ,7(g , s )=(4 + p +T — s)4 + ,, q (g, s),

1X _u q (g , s)= — (4+ p — 1,,(g , s).

Pro o f . The assertion (I) follows directly from the  definition, (2) from Propo-
sition 1.1 (3), and (3) from (1) and Proposition 1.2. Q.E.D .

Proposition 2 .2 .  Put M q (s)=4(s)1c4(s). Then, as meromorphic functions in
s, we have the following identity.

(2.6) k s) = Ak (s)u k (q s)
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P ro o f . For Re s > 0 with cx (s) 0 we have

ulic,g (g , — s)=(Uk(g , — s)eq , ep ) =4(s) - 1 (Uk(g , — s)Ak(s)e e )q, P

= a f p rio k ( s )uk , -,k g  s)e,, ed= All, q (s)4, q (g , s).

On the other hand, 4, q (g, — s) on the left hand side is an entire function in s. There-
fore by the uniqueness of analytic continuation, the equality in the proposition holds
for all s e C. Q .  E .  D.

Remark 3. /1 (s)=1 for all s e C.

We define the hypergeometric function as follows:

T (a + j) 1 (b+ j) F ( c )  
1(a) 1 ( b )  F  ( c  +  j )  j !

where 1(z ) stands for the gamma function . In the sequel we consider F(a, b, c; •)
as a meromorphic function on CV 1 < z < co) obtained by the analytic continuation
of the right hand side of (2.7).

Proposition 2.3.

s) = (1 — th 2 (i12)) 112 +5F(s —  — p + s + /1.k + p + ÷ ,  I ;  6 2 (t/2)) .

Pro o f . By definition

1 —  th(t/2) iÂk+P (1 — th2 012)) 112+ s — Ct13012)1 - 1 - 2 s dP(C)s )  =

r[ 1 —  Cth(t/2) j

=  ( 1  x 2)1/2+s C x )A k + p -1 / 2 — s (I  Cx yAk — p- 112— sd it (C) ,

w here w e p u t  x = th (t/2). Expanding (1 — (x)4 +P-  ' /2 - s, (1 — CX) A k - P- 1 / 2 - 5  in to
binomial series, we get

Since

F(s + j)
_ ( x )Ak +p-112-, =  E  

./ () i!F (s  — p—  +  
-1
2
-

)

F(s +p +) . 1 + 1
2 - + j )

(1 —C x) - 2 k- P- 1 1 2 - s= E
j 2 0  j ! F ( s +p +) ,k +i- )

IxI < 1, t = 1, we can integrate them term by te r m . Noting that

Ci d g0 =

1
+ 5 a  = s — p — Ak +we get the right hand side of (2.7) multiplied by (1 — x 2 ) 112 w i t h

(2.7) F(a, b, c; for izi <1,

b =s +p +) .k +-
1  

' c=1 , z =x 2 .2 
Q. E. D.



The Paley-W iener type theorem 285

We define a function ril; by

npko, 0=4,00 e -0+1/2)r f o r  g = u oa,n 4 .

Proposition 2 .4 .  ti ( g ,  s ) = s)du.

P ro o f . Denote by (g, s) the right hand s id e . Then we see that

1311,(u,gu 4„ s )=1  n ( t t - 449,gu o u, s)du

nigu - 'u v,+(p g u , s )d u =x (u , + 0 ))6 (g , s ) .

Therefore it suffices to prove the equality only for g =a, by Proposition 2.1 (1). It
is readily seen that u „a,u _ „=a_ „ and so  u 1;,p (a_ „ s).--u1;,p(a„ s). N ote th a t u„ is
a  generator of the normalizer of A  in K .  Thus what we must prove is upkp(a,, s)
=-131

1;(a _„ s). Write a _,u e =u w at .nr . Then we have

e- i°1 2  =  (I —  th (02)) — th (t/2)I- le-i0/25

et' =j(a_„ ( = ei° ).

Hence by (2.5), we get

1 4nn
n (a_ „ = e i(p+Aoee-i(p+Akpre-(s+1/2)e

d t 94nn 

= 17.[  —  tthh(ot/i22))  lkk+p .,a „C) 1/2 ±sdpG) = u';,p (a„ s) .

Q. E. D.

§ 3 .  Inversion formula

In this section we derive the inversion formula which serves to prove the injec-
tiveness of the Fourier transform. Here we do not appeal to the general results of
Harish-Chandra [7] but to the direct calculations because the structure of the group
is not complicated and so it would be exaggerated to apply the profound theory to
the present case, and because the constant factor appearing in the inversion formula
is automatically calculated.

We denote by 2 ,, q the totality of functions f  e  q°(G ) satisfying

(3.1) f(u4,gu4,)=--ei(.k+P)9f(g)ei"k+a)'=4,(u,p).1.(9)2(t(uo) •

We do not consider any topology on g p
k

g in  this section.

3 . 1 .  Put

(3.2) Fi;,q(s)=1f(g)u1;q(g, s)dg f o r  fe21,q9
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(3.3) (pf(t)= e r / 2f ( a t n)c/ f o r  fe.9',,,p .

Then for fE g ,  we have

(3.4) f l,(s)=1f (g)K ,1(u-'gu, s)du dg =f  (g)ri(g, s)dg

=1  Ç °  1 oe f (u a r n)4(u)e - ( s+'/ 2 >retdu di
K —oo —co

=1 (pf (t)e - lt di.

In the following we use the method in Takahashi [16].

Lemma 3 . 1 .  P u t  Z (s)=s tan rr(s-) k )Fpkp (s). T h e n  i t  i s  a  merornorphic
function in s and

1im i,„ s1 D p(s)=0 uniformly in each strip a < R es<  b.

P ro o f . Note that cpf  is  a  C'-function with compact support on R .  Then by
(3.4) the assertion is a direct consequence of the Riemann-Lebesgue's lemma for the
ordinary Fourier transform. Q. E. D.

Now we integrate Z (s)  along the rectangle T  having vertices + iT , p+).,+iT
(T >0) counterclockwise. In the interior of r ,  P ic, has poles at

1s=.1k + j - -
2

i f  p>0,

5 k- i + -( 1i f  P<O.

Note that Zt; has no poles in the interior of T .  The residues at these poles are

-7E- 1 (), k + j - ) F „ ( ) . k + j - - )

Ak+.1 — 4 )

From this we have for p>0,

j-.121.)

= 1  Z ( p  Ak+ i t )  CIT —
—T

Z o - cri g  + iT ) d

—11 Z k (1T)CIT 4 ,(o --iT )d a .
—T

OD

Letting T-oo, we see by Lemma 3.1 that the second and the fourth terms tend to
z e r o . Then we obtain
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co

(3,5) (P + )-k + ir )F (p +  2k + it)th irr dr

= 25
o  

F,,(ir)r Re th n(r + bik)dr

+ 2 E + — .- 1,—)F 1;,p (Ak j — 2
1 .

In the same way we obtain for p <0

(3.6) (P+ Ak+ iX)P; p (P + Ak+ ir)th Ter dr

=  2  F ( t r ) r  Re th rc(r + blk )d r

+ 2 E  i , ; , 1„ 1(  -  k+j+ ,-- )F i;v (+ A k + j+ + ).

In case p = 0  and 0< k < n , we obtain (3.5) without the last sum -part. In case p = 0
and — n+1<k<—  1, we have (3.6) without the last sum-part.

Lemma 3.2.

47rf(e)= — (p+ Ak+ iX)F p (P + Ak + i-oth Tit dx.—00

P ro o f . Let I be the right hand side member. Then by (3.4),

I= — 6  (p +  Ak+ ix) th rr.r (pf (t)e - ( P+Ak+iotdt dr-co

= — i5 th TC't (p'f (t)e - ( P+4 ) te - Indt dr

oo
=  1 5 O f ( t ) th itt d t ,

where tlif (t)= cp'f (t)e - (P+Aot and 1,t/f  i s  the ordinary Fourier transform o f Of  (cf.
(0.1)).

We need the following lemma (cf. [15, p. 341]).

Lemma 3.3. Suppose that cp e Cis°, (R ) satisfies ( p (0 )= 0 . Then

coo dt 
sh (t/2) _15C0  co0 ( r ) t h i r r  d r .

For fE  9 ,  p f  is an even function, and so ço'f (0)=0. Hence applying Lemma
3.3 to O f , we get

co ch (p -I-) k )t I = — ( c c   ( P i-r ( t )   e - ( P+Aotdt =
o  

yo'f (t)
s h  ( t I 2 )

d t
'sh (t/2)

Since fE  .V1  we have f  ( a )= f (a _f ). Thus we can put f ( a ) = f  [ch t]. Write an
=u 9 a,,u,k (t' 0), then we get

00 co
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1(3.7) ch t'=ch t + -
2

et
'

(3.8) 6.1(9+012= (ch (t/2)—  (i/2)eii 2 )(ch 2 (t/2 )+  ,.+1-et 2 ) - 1 / 2 .

Hence

= en/2
Çœ

 f[cht + e t  2 1r ch (t/2) — (i/2)ef / 2  - 2(p+Ak)
f  (t)

(ch 2 (t/ 2 ) +  et2)1/2
d .

Putting x=sh(t/2), y f r / 2 , we get

i +x 2  

(Pf(t)= ''q
o 

f [ 2 ( x 2  + y 2 ) +  l]T  2 (p+ .1,)1_ +  X 2 + y2  
T/2 )C1Y,

where T„(z) denotes the Tschebyscheff's function of the first kind defined by  T (z )
= F(— a, oc, 1/2; (1— z)/2) (cf. [1 0 ]) . The function TŒ satisfies that Vcos 0)=cos a0.
Express (x, y) as ( jc o s  0 ,  j s in  0 ) ,  then we get for Œ=2(p+

d 1+ r cos2  0  111 2 )  d x
d t  f (t) = 41 oe 2 f [1 + 2r] T ,c([ 2xw d y1+ r

a+  r cos 2  01 112
X

2 x  
dx 

d y+ 4  f [1 + 2r]i T 1+rd t

+ 4 5  f [1 + 2r] T 1+ r'a([ 1+ r c0s2  -11/2\ x sin2 19 d x
) (1+ r) 1 1 2 (1+ r cos2 0) 112 dt "Y

On the other hand, we have ch (p+ AO( = 7oe(ch(t/2))= TOE([1+ r cos2 0]112). Hence
Poe

I = (p'1(t)x-1T([1+r cos 2 0]112)dt

= — 81 S
n / 2 2 f  [1 + 2r]T OE([1+ r cos2  0  11 /2 ) T( [1 + r cos2 0] 112 )dr dO

O 0 1 r

ooçrl 2
—8 aO  7,4 1 +  c ors2  0  1112)}5 f [1 + 2r] r +  i T ([1+ r cos 2 0] 112 )dr dO

O 0

—45
œ

1
i r l 2 f  [1 + 2r]T ([1  + r cos 2  0  11/2 TOE([1 + r cos2 0] 112 )

O 0 1 r

sin2 0 dr dO 
(1 + 0 1 /2 (1+rcos 2  O)'/ 2  •

Denote by / i , 12, 1 3 the first, the second and the third term respectively in the last
expression. Integrating by parts with respect to  r, we obtain i 1 =4/cf(e)—I2 +./ 3,
where

J 3 = 4 5

c o  ic/2 +r c0s2 0 cos2 0 dr dO f [1 + 2r] T ,c([ 1
 1 + r ]

1/2 )T ([1+ r cos 2 Or 12)
O o (1 +r cos2

)

1 / 2  •
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Let us prove 1 3 +J 3 = 0 .  It suffices to show that for all r> 0,

sin2 0 dû 
(40

f lo / 2

T
( [  

1 +  r
1 +  r  c o s 2  0   1 1 / 2 )

T c,([ 1 +r cos2 0 ] 1 1 2 1

(1+r) 112 (1+r cos 2 0 ) 1 / 2

( n / 2
7 , 

Œ

r  1 + r cos 2 01 112 )  , cos2 0 dO T ([1+ r cos 2  Or 1 2 )= .10 V__ I + r (1+ r cos2 0 ) 1 1 2  •

It follows from the definition of TOE that

Ta (z)= zF01+ a)/2, (1 —cc)/2, 1/2; 1 — z2 ),

289

r cc(z)=a 2 F((l+a)/2, (1— a)/2, 3/2; 1— z 2 ).

Notice that both sides of (*) are real analytic in r>0, so we have only to show (*)
for 0<r <1 . After a simple calculation our problem is reduced to show the equality:

( 1 0 2
F (  1 +a

2  '  
1—a 3

' 2 '
. _s sin2 61)F (   1 +22  '  2

1  1 — c t  1 r  COS2  19) sin2 dOJo 2 '

= (1 + a
'

 1— a
'

s sin2 O)F(  1 +  a 
'  

3  • r c o s 2  0) cos 2  dO ,2 2 2 ' 2 '  2  2 '

where s= —  r1(1+r). Since 0<r <1, — 1<s< 0, we can expand the hypergeometric
functions in  th e  above integrals into the  hypergeometric series, which converge
absolutely and uniformly in  0. Hence we can integrate them term by term, then
simple calculations show us that the both sides are expressed by the same sum of a
certain kind of infinite series. This completes the proof of Lemma 3.2. Q. E. D.

For an entire function F we formally define I(F) by

P(F)=1 0 F(i*  Re th n(t +

E i p(Ak+j— i-)F(Ak +i— j2- )

E Is.wp1( — Ak +i +i — -12— )

f o r  p >0

for p < 0 ,

0 f o r  p =O.

Combining Lemma 3.2 with the foregoing discussion, we obtain the following
theorem.

Theorem 3.4. L e t k  b e  a n  in teger such  that — n +1< k 5n, f e 9 pk,„ and
put A k = k 1 2 n . Then the operation I is w ell-def ined for Fli,p  in  (3.2) and

21z f (e)= I(F1;p ) .

Remark 4 .  For k---0 o r n, the above formula has been given by Takahashi
[16].

3 .2 .  For f e C (G )  we define
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(3.9) PiNf(9)=KSKX i(u)f(ugv)xt(v)du dv.

Then P g f e  2 , , .  Put

(3.10) FL (s)= 1f (g)4, q (g, s)dg,

then we have

Fq (s)=II,f (g )u q (g , s )d g .

Theorem 3 .5 .  L e t  f e q ( G ) . T h e n  the operation 4 is w ell-def ined f o r Fli,p

in (3.10) for any  possible k , p and

27rf (e )=E k ,p I pk(Fpkp ).

P ro o f . Applying Theorem 3.4 t o  Ppkp f  e 2 pkr  w e  f ir s t  s e e  th a t  / ( F pkp )  is
well-defined and 27tP pk p f (e)=4,(F;, p ). On the other hand, we deduce easily

P 9 f  (e)= K f (u)4(u)du.

Noting that {xpk; p e Z , — n +1 <k <n }  forms a  complete orthonormal system in
L 2 (K), and that the function ul-*f (u) is smooth, we get for each u E K,

f (u )=E k ,p llp f (e )X gu).

In particular, putting u =e, we get the equality in the theorem. Q. E. D.

By a familiar argument we obtain the following inversion formula for 9 11,q .

Theorem 3 .6 .  For any f  e

(3.11) 27r f (g) = 0
°3i t ) T  Re th net + iA k )ch

.

E (A k + J - - ) w k .+ ( . F k  ( ) • 1
2 p q  . 1 )  p q  - .k  + J - -y)1) /1,4+ 0 ,

15 jS m in (p ,q )

fo r  p, g >0,

E — + j— .1)(44 -  ( DF';, q (— Ak + f j )215jSmin(—p,--q)

fo r  p, g <0,

0
otherwise.

§ 4 .  Analogue of the Paley-Wiener theorem for gt, 0

We defined the function space 2 11,,, by (3.1). Denote by 9 1;,,T  the subspace of
2 k

9
 consisting of functions f  such thatP
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f(ua,v)=  0 f o r  t> T, u, v e K.

We denote by D plc q . 2, when we topologize q ,T  by means of seminorms

(4.1) if I, = suP,EGI4 f (g)I (r=0, 1,...),

where z1 is the Casimir operator on G normalized in such a way that

(4.2) z1uq(g, s)=(_4-- - s 2 )4 , q (g, s) (cf. Proposition 1.2 (3)).

Let Q be the Casimir element in U(gc), then the normalization above is equivalent
to identifying A with —Q. It is not clear at this stage whether or not Dpkg ,T  is
complete. But Theorems 4.1 and 5.1 answer this in the affirmative. We introduce
another topology in b yby means of seminorms

(4.3) If Ix= suP,EGIx f (g)I u(gc))

This topological vector space, denoted again by is a Fréchet space.

4 . 1 .  Let 6 ' 0 0 ,T  be the totality of all functions F on C which satisfy the follow-
ing conditions (i) —(iii).

( j )
 

F is an entire function.
(ii) For every non-negative integer r, there exists a constant C, depending

on F such that

(4.4) IF(s)I C,.(1+ Isp'eTIRe si.

(iii) F(s)=F(—s).
We topologize .Yfo o ,T  by means of seminorms

(4.5) IFI, , M = supp l e  s i "(1+ IsprIF(s)1 (r, M =0, 1,...).

The classical Paley-Wiener theorem mentioned in Introduction assures that •Ye' 00,T
is a Fréchet space.

Theorem 4.1. The linear m apping

f (g)ut,o(g , .)dg

gives a topological isomorphism between D IGS0, T and .reoo . T.

Corollary 4 .2 .  D i60, T  i s  a  F réch et space, and it coincides w ith the F réchet
space

Proof of  Corollary  4 .2 .  The second assertion is a direct consequence of the
open mapping theorem. Q. E. D.

4 .2 .  Proof of Theorem 4.1.

Step 1. Let f€Dt,co , T. Here we show that - -  —  00,T• We see easily
that F  is an entire function. By Proposition 2.2 and Remark 3, we have F(s)=
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F(—s).
Now let us prove (4.4). Since A is bi-invariant, we have dr f e DIS,, T  fo r each

non-negative integer r .  Noting (4.2), we obtain

f)(s) ---- 2 n .
o
A r  f(ar)u lôo(ai , s)sh t dt

=27r
o
f(addrutSo(a„ s)sht d t = (-

1 

s2
)

r

F(s).4

Therefore we get by Proposition 2.1 (2)

(4.6)

For 151_ 314, we have

(4.7)

1(1— s
2 ) P F(s)1 const.IfIreT11e si.

4

1
IF (s)1 const.1-

4  
— 52 1 1  f 1 r eT1Re sl

con5t,(1+Isp'lf 1 r eT1R e

because 151 2 _ i  ( 5/28) (1 +151). Here const, stands for constant depending only

on r. For Isl 3/4, we get by (4.6)

[1 + — (s) const. (1f10 + i f  id e rta..1 .

Since 11 + (-14- —.511 1 — (41-. +  i s3 / 1 6 (r 1 ), we get

IR O 'S  const. (If 10+ I f  Wen R e  s i .

It is obvious from this inequality that

(4.8) IR O 'S  const„ (1 + 1 o + ifloe rtRe st f o r  Isl 3/4.

By (4.7) and (4.8), we see that F satisfies (4.4) and the mapping .F is continuous.

Step 2. Theorem 3.6 assures that 9• is injective.

Step 3. Let F e i e 0 0 . 7- be given. We define a function f  on G by

(4.9) (g )= 2
1
7r o

c °  F(iT)/4 160 (g, iT )T  Re th iv (t

This f  is well-defined, because F e 0 0 , T ,  14 0 (g, /O S  1 and

IT Re th rc(T +  k)15 const. (1 +1T1)

In order to prove that f  is a  Coe-function, it is sufficient to show that the differential
operators X 0 , X 1 and X2 are applicable indefinitely many times. This can be done
by virtue of Proposition 2.1 (3). Thus we have f e Coe(G). Moreover it is clear from
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(4.9) and Proposition 2.1 (1) that

f (ug itTu)f(g);( 16(v) •

Step 4. In this step we show that f (a,)= 0 for t > T.
Noting that

u'60 (a„  it)=  (U k (a„ it)e o , e 0) = (U k(a_„ it)e o , e 0 )

=u6 0 (a_ „  it)=  uh (a„  i t ) (by a_ t = u na t u_„),

we have

(4.10) f ( a , )= 2
1
7c 1 :F  (it)u oko (a„ iT)T Re th n(or +1.14 ) d t

i  F (s)14 0 (a „  s )s  tan tr(s — Ak )d s .= 4ir

Putting y = sh2 (tI2) in Proposition 2.3, we get

1 1ufl o (a„ s)=  (1+  y) - 1 2 + s )F (s  —  + T , s+Ak + T , 1; y 1 ( 1  y ) )

= (1+ y) - 4 F(s — Ak + + , —  A k + + , 1 ; — y )

(by Kummer's formula)

= 49 1(Y, s)+ (PAY, s) (by Gauss' formula),

1
(PI (Y, s ) =T ( — 2s)T (— 1 

)  1  F(— s +-2-) 
1
 x

(1 y)_Aky-(5-Ak+112)F 1 1(s—A kS  — 21+T , 1+ 2 s ,  1lY),

and tp2 (y, s)= go,(y, — s).
In  case "kO n, Re s> 0" or "k= n, Re s b"  (6  is a positive number), we can

apply the Eider's integral expression to the hypergeometric function in (4.11). Hence
in these cases we get for y >1,

troi(Y, s)=

F( —  2s) T (1 +  2 s )  (I +W A '  y-(s-4+1/2)

r(—s—A k -1- 1) F(s — 4+ -D l(— s+ A k +-D r(s+.1.1-F
s),

T

where

(4.12) (y, xs-4-1/20 _ x ) s+4 _ 1/2 (  ,  y + A k - i i 2
—

0
dx.

Y

where

(4.11)

(It should be noticed here that the integral in (4.12) does not converge absolutely for
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Re s=0 when k = n .  This is the reason why we make s apart from the imaginary
axis when k = n . )  Using the well-known formula

T(z)F(1—z)=7r/sin nz,

we have the following expression of 9 1(y, s):

(4.13) 9 ,(y , s)=

cos n(s +) k ) cos n(s (1+ y )-A k y -cs-Ak+112) tif (y ,  s ) .
n sin 27rs

On the other hand, since 9 2 ( y , s )= i (y, — s), (4.10) is rewritten as

jc fJ

(4.14) f ( a ,)= F (s)( p (y, s)s[tan n(s  — 2 k )  + tan n (s  +4 )]d s .
-too

Then using (4.13), we obtain

(4.15) f ( a i)= — (l +y) i:: F(s)y "s - lk+ii 2 h/t(y , s)s ds.

Now we estimate y - ( s — A k 4 - 1 /  2 ) s) in (4.15). Since

-(s--4+1/2) tp(y5  s )_ 1 [  x(1 — x) 1s-l/2 _ 4 4 ( yY 0 Y ± x

we have

I y—(s-4+ 1/2)k y ,  s ) i < x(1 —x 1 ,1 / 2

—  0  y  +xx - A k  ( 1  —  x)Akdx,

where c7= R es . (Note that we assume y >  1.) By a straightforward calculation we
obtain

x(1—x) 0< S e '  f o r  0  x  1 (y=sh2(t/2)).— y + x

Thus we have for cr> —
1

— 2 '

(4.16) IY 1/2)tk(Y, OSconst. cat e( 1 1 2 )t.

On the other hand, we have for "k On, 0 < a - 4
2- "  o r  "k =n ,

s) I 13(0-+  Ak + 2  )Sconst.,

where B (., • )  stands for the beta function. It is clear that

1ly- (5 - 4 ±1/2 )1<const. f o r  O Sas-f.

Since F e .Woo , T , we can shift the path o f integration in (4.15) in case k o  n.
Hence for a>0,
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ce-Vico
f  (a,)= F(s)y - ( + 1 / 2 ) / (y ,  s)s ds.

For a> —
1 

we get by (4.16)
2 '

f (a,)i const. (1+ sh2 (t12)) - 4 e- ate( 112 )i1œ + ic c ISF(S)1 IdSi
a—ico

const. (1 + sh2 (t12))-4 e (r-ome (1/2 )t,

where const. does not depend on a. Making a-4 co, we see that  f (a)=O  for t> T.
By continuity we finally obtain the desired result so long as k n.

It remains in this step to prove that in case k =n  we can shift the path of inte-
gration in (4.14) from the line Re s= 0 to the line Re s = 6 .  For this purpose we must
evaluate the function cp,(y, s). To do so we need another integral expression for the
hypergeometric function . B y the form ula in [4, p. 114, 2.12 (3)] , w e  have for 0
<Re s < (3<1  the following expression:

ie s r (1  + 2 s ) (11 ys F ( s , s ,1 + 2 s ; — 1 -IY)=-- -  2 sin g s r ( s ) F ( l + s ) 1 ,  s ) ,

(y , s)=1 c xs -  ( I  — x)s(1+-y  Y d x .

The path C of integration can be taken as follow s. It starts from  1 and goes to s
(0<e < 1) along th e  real axis, rounds 0 counterclockwise along th e  circle with
radius E, and returns to 1 along the real a x is .  We take the branch arg x=0 at the
starting p o in t .  Concerning other factors in (4.18) we take the principal branch.
Here we assume y >1 for simplicity. W e have the following lemma.

Lemma 4.3.

It (Y• s)1 21e""I{isin Trsllog 2(1+ IsI)+41s - 1  sin ns1}.

P r o o f .  We decompose C into three parts C 1 , C 2 , C 3  a t the point s according
to the order explained above. Denote by I  the integration along the path CI of the
integrand in  (4.18). W e p u t fo r  each fixed s , 8=2 - '0  +1s1 r. By simple cal-
culations we get

+ /3 1_<_21exisl Isin7rs111x6 - 1 dx (o- = Re s)

< nsl log 2(1+ Isl) •

Concerning 12, we first expand the integrand into power series on C2:

Xs - 1 (1 — X) s (1 + x/y) — s =

s m+n+s— l e i(m + n + s-1 )0 ( n ( S X  —  S )
i n m Y (x =seie).

(4.17)

where

(4.18)
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We integrate it term by term and evaluate each term by using

y > l, IC J  
- ( 1 + I s 1 ) " ,

then we get

I e2 x i s  —1 I
11 21 I s 186 [E  ril;1 8 n  (1 ± 1 ,5 1)1 2 8 I 5 ' I S - 1  sin n s i .

This completes the proof of Lemma 4.3. Q. E. D.

The integrand in (4.14) is estimated as follows. First by Lemma 4.3 and (4.17)
we get

F (1 +  2 s ) I sF(s, s, 1+2s; — 1/y)1 { Isllo g  2(1+1.0+411 F (s)F (1 + s) I'

and therefore from (4.11) the final estimate

Is91(y, s)cot ivsj __(2rc) - 1 {Isilog 2(1 + Isp+ 4} ( 1 +3) - " 2Y- ".

Using this estimate and taking account of (4.4), we can shift the path of inte-
gration in (4.14) from the line Re s= 0 to the line Res=5 a s  desired (in case k=11,
2.= —1

2 ). Once the path of integration is shifted to the line Re s = (5> 0, the previous
discussion applies to the case k-=n and we get the desired result.

Step 5. It remains to show the continuity of S .  Let F E i t
°

00 , T  and put
f= .9" - T .  Then by (4.9) we get

A r f (g) 2
1
7r 1 a  + F ( i T ) 1 4 0 ( g  i t ) t  Re th nee. +0.,)d.r.

Hence we have I fl,r —constr  I FI2r+ 3,0. This proves the desired continuity.
Step 1 to Step 5 complete the proof of Theorem 4.1. Q. E. D.

§ 5 . Analogue of the Paley-Wiener theorem for 1 q

5 .1 .  First of all we define

1N q,i .= ---Ï ;  j e N  such that p< j< g}

{ j; jeN u  { 0 }  such that p<  j_g} ,

• 1 •N I;, q , 2 = F J ; J E N  such that g_— j<pF

N ; q ,2 = { i ; i eN U  { 0 }  such that g<_— j-1<p}.

By Proposition 1.7 we have

f o r  kOn,

f o r  kOn,

(5.1) Uk
9
 (•' S )=0P for all s e 1,2— p q , j•
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Remark 5 .  N _—çbf o r  j = l ,  2.

Let G r q . r  be the totality of all functions F on C which satisfy the following
conditions (i) '  (iv).

( j )  F  is an entire function.
(ii) For every non-negative integer r, there exists a constant C  depending on

F such that

(5.2)I F ( s )  ^ C r (1 + IsI)_reTI s i

(iii) F( -  s) =  A 4(s)F(s)( c f .  Proposition 2.2).
(iv) F (s )=O f o r  a l l  s e 'J i ,2 N q ,j .

Remark 6 .  By Remarks 3 and 5 we see that for any p eZ .

We topologize 1' q T by means of seminorms in (4.5), then it becomes a Fréchet
space as is easily seen from the classical Paley-Wiener theorem.

Theorem 5.1. The linear mapping

Y : f 5f (g)uq(g, .)dg

gives a topological isomorphism between  D q ,T and

Corollary 5.2. D q ,r is  a  Fréchet space , and  i t  coincides w ith the Fréchet
space ÇI P

k
q , T.

5 .2 .  Proof of Theorem 5.1.
[I] F o r f e D q , r  we put F =Y f .  In a completely similar way as in the proof

of Theorem 4.1, we can prove that F satisfies (i), (ii) and that Y is continuous and
injective. So we omit the details. The equalities in (iii) and (iv) follow from the
analogous ones (2.6) and (5.1) for  u q(g, s). Therefore the image of D q ,r  under
Y  is contained inq , T

[II] We show that Y is surjective. L e t  F e . e ' q r  be given. W e assum e at
first p ^ q ^ O .  Moreover we assume that F satisfies

(5.3)F ( 2 k + J - - - ) =O  ( l ^ j ^ q ) i f  q ^ l .

This assumption (5.3) means that the discrete parts in the formula for Y 1 vanish.
Put

=  flo^ i^ -  1 ( k  +i + s ) • f l o j q  l (A k  +1 + 4
Here we understand that fl0^j^-  1 =  1. It is easily verified that

(5.4) 'k ( _ s = A k  (S )E q (S ) .pq / pq

Notice that for p ^ q ^ O , A q (S) takes the form
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A ;_i_k (s) —pq 1(4 + j -  S

)@
. k + + + .

P u t  H(s)=F(s)I4, q (s). T h e  assum ption (5.3) together w ith the condition (iii)
makes H  entire . B y (5.4) and the condition (iii) we have H(— s)---11(s). Hence
H  belongs to ,Ye00 , T. (The inequality (4.4) is obviously satisfied.) Thus by Theo-
rem 4.1 there exists uniquely a function h e D 0 , •, satisfying

h(g)4(g, s)dg=H (s).

Let X_, X '_ be as in Proposition 2.1 (3) and set

(5.5) .f0=(XL)P(X _)Ph.

We have f 0 (ua r v )=0 for T, u, v E K , because so does h. An easy calculation and
Proposition 1.2 (2) lead us to the following: let Ppkg be as in (3.9), then

(5.6) 1/1b.f o(g)uh(g, s)dg=f o (g)uh(g, s)dg

=5 a p 6,,q 4 q(s)5h(g)4 0 (g, s)dg=b a p bb q F(s).

Since we already know the injectiveness of g", this together with Lemma 6.2 in the
succeeding section implies that f o  E D q ,T  and g - f o  F .

Now we eliminate th e  assumption (5.3). Since u g ( • , +  j—  , T ) ( I  j<q )
are eigenfunctions of the Casimir operator d corresponding to distinct eigenvalues
(4 + D (I  f ) ,  they a re  linearly independent each other. Moreover they are
real analytic. Thus by the uniqueness of analytic continuation, they are  linearly
independent each other even if we consider them as functions on an arbitrarily small
non-empty open subset of G .  Hence we can find for arbitrarily small v >O, func-
tions hi E D q . t  (I <  <  q ) such that

(5.7) hi(g)4,q(g, .1k +j— =Si;

Put H i =Y h i and

F o (s) = F (s) —

Since we already know that H i e .X'pkg,T, we have F o e T . Moreover
by (5.7), F ,  satisfies the previous assumption (5.3). Therefore by the discussion
above, we can find f o e Dpkg ,T  such that F0 =..67- f 0 . Put

f =f 0 +E i S iS q F @ k +  - 2
1 )hi•

It is readily verified that [ ED q T  and ..9".f= F .  This proves the surjectiveness of g"
in case p > q > O.



1IEigisisipi-1(./ — s)(.i+ s r{
A A (s)=

f o r  q  0,

fo r  q = 0 and p  O.1115151p1— s ) ( j+ s ) - '
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The case q> p> 0 can be treated in a similar way.
The case — p> — q> 0 and k# n can be handled as the above two cases except

that we must put

q(s)=Tiosisini-i(—Ak ±  ±  S )FIOS,151q1 - 1( — 111 +  j  + 1  s )2

and in (5.5), (X'1.)1q1(X)IP1h instead of (XL)q(X_)Ph.
On the other hand, for the case —p> —q> 0 and k = n , some remarks should

be added . In this case we put

Epng (s) = 110 p I -  j  +  S ) q I- ,

The differences consist in the point that when q0 0 , E p" q has a two-fold zero at s=0,
and when q =0 and p 0  0, E p" q has a simple zero a t s = 0 .  But in case q  0, by
differentiating the functional equation in (iii), we get F'(0)= 0 if F (0 )= 0 . Hence
F has a two-fold zero a t  s=0 provided F (0 )= 0 . Thus the preceding discussion
h o ld s . In case q =0 and p# 0 , noting that 0 e N q , i , we can also apply the preceding
discussion.

The case —q> — p>  0 can be handled in the same way as the case --- p> —q> O.
Now we consider the case p > 0 >  q .  In this case no assumption such as (5.3)

is necessary thanks to (iv). We put

,,, (s )=  nO. p-1(Ak +j + S). Ak+ j + 21  s ),

and in (5.5), 
( X ) I I ( X ) P h  instead of (X L )q(X _)Ph. We omit the details.

The case q> 0>  p can be treated in the same way as the case above.

[H I] It rem ains to prove the continuity of Since we already know the
bijectiveness of 3 ,  the inverse transform 5 - 1  is written in the form (3.11). Note
tha t the point evaluation :F1-+F(s) is continuous in .rel, q , T ,  and tha t the discrete
part in the above inverse transform for F e d r  p

k , , T contains at most ql-terms. Then
the continuity of 2.7 - 1  can be proved as in the proof of Theorem 4.1.

Thus Theorem 5.1 is completely proved. Q. E. D.

5 .3 .  Using Theorem 5.1, we can investigate the linear m apping  a ': fl-* (p f

defined by (3.3).
Let De ,,,T (R ) be the totality of even functions (p e C(R) vanishing for t  >  T.

-  ev,T.The topology of D  (R ) is that induced by g (R ) which we topologize as usual,
then De v ,T (R ) is a Fréchet space.

Theorem 5.3. The lin ear m app ing  d  giv es a  topological isomorphism
between andand De „,T (R).

P ro o f . Let JeB y  (3.3) and (3.7) we easily deduce that (pf (t)=0 for
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It! T .  I t  is  also easily verified that go.,-( -0 = 9 f (t) and that go f  e Cc°(R ). Hence
(Pf 6  D ev ,•(R )•

Conversely, let e D e v , T ( R )  be  g iven . D eno te  by  0  its o rd inary  Fourier
transform in  (0.1). Since to( —  = ço(t), w e have 0(s)=0(— s). B y the  classical
Paley-Wiener theorem we conclude that 0  is an entire function with the property

10(s)I IsirreTihnsl.

Put F(s)= 0( — is). W e see from the  above that F e .re 0 0 ,T = p , T  (see Remark
6). Hence by Theorem 5.1 there exists uniquely a  function fe  Vic T  such  that
F  =  f .  Constructing f  from this f , we obtain by (3.4)

0( — is) = F(s)=1f(g)u,,(g, s)dg f(t)e-sr dt = f (— is) .

Therefore we have p  = 9 1  b y  the injectiveness of the ordinary Fourier transform.
This proves that the mapping .2/ is bijective.

It remains to prove th e  bi-continuity. Let 0 i - 0 in  De„,r (R ) .  Putting Fi (s)
=0 .1( — is), we have i n  ,Ye p ,T b y  the  classical Paley-Wiener theorem. Let

,fi = d - 1 0 j . As is seen above, h  coincides with 9 - - 1 Fi . Hence by Theorem 5.1
we see thatfr -40 in D p

k
p , T. This proves the continuity of ,s1 - 1 . Since both De „,T (R)

and D p
k

p , T  are Fréchet spaces (Corollary 5.2), the continuity of d  follows from the
open mapping theorem.

Now Theorem 5.3 is completely proved. Q. E. D.

In the course of the above discussion, we get explicitly the inverse transform of
d .  We do not write it down here.

§ 6 .  Analogue of the Paley-Wiener theorem for 2' (G)

6 .1 .  Let g  T  be the space of functions f  e C (G ) satisfying

(6.1) f 0 for T, u, v e K.

The topology of 1 T
 is introduced by means of seminorms in (4.3). This topology

of .9  T  coincides with the usual ones when we consider G as a  C 4 -manifold. We
denote by 9!1, the closed subspace of g  T  consisting of functions such that

(6.2) f (u 2 „g)= e i k n i  f (g) (— n + 1 < k < .

Notice that u2 „ is a  generator of the center of G, and that 4(u 2 „)=e - 1 " 1" for any
p E Z.

Remark 7. Uk(u 2 ,. s)=

Lemma 6.1. 9 =  E (13 n+15k5n 9 i f •

Let .11 ,  be the projection defined by (3.9). It is clear that if f  satisfies (6.1).
so does P i f  too. It should be remarked here that Ppk, is also applicable to those
functions whose supports are not necessarily compact.
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Lemma 6 .2 .  Suppose fe Coe(G) satisfies (6.2). Then

f (g) = f ( g ) (pointwise absolute convergence).

P ro o f . Since f satisfies (6.2), we have

113 K x(u) f (ug v)x7(v) du dv = (5,0 „,,P q f (g) .

Note that {x1,x7; p, g e Z , — n +1 ni n} forms a complete orthonormal system
in L 2 (K x K) and that KxKD (u, f (ug v) is smooth. Then the assertion follows.

Q. E. D.

Let .Ye§. be the totality of operator-valued functions

C n S 1- 4  .F(S ) E B( g.))

which satisfy the following conditions (i) —(v).
( i ) g  is an entire function.
(ii) For every non-negative integer r, there exists a constant C, depending on

F such that

(6.3) C,(1 + Isl)_reriftesi.

(iii) (g(—s)e q , e p ) = A q (s)(„F(s)eq , ep ) (p, g E Z ).
( iv )  (.5r(s)eq , e p )= 0 for all S E
( N )  For every quintet of non-negative integers a, b, c, r, M define 1_.g",1„.„,c ,,,m

as below . Then  iF I a b c r M  < 0 0 :

(6.4) iF  I a ,b ,c .r,M = SU Pp ,qe .Z O EN (  I I P I ) a ( 1 +  lqI)b

X [ I  ( F ( • ) e q ,  e
p ) I r , M ± i c Ee=+,–C44(i)1(g-(8 1 11+j e p )11 .

Remark 8 .  Conditions (i)— (iv ) im p ly  th a t  fo r  all p, g e Z, (.F(•)e q , ep )
e.rel,1 ,7 , for T > 0 in (ii).

We topologize A l, by means of seminorms

Theorem 6.3. The linear mapping

fi--4Sf(g)Uk(g, •)dg

gives a topological isomorphism between g'4. and .e§..

6 .2 .  Proof of Theorem 6.3.

Step 1. Let Je 2'4, and put g = . r f .  Clearly .F(s)e B(5) and g  is entire.
Let us show (ii). Put g r = 5 - ( A ' f ) .  Then we have

g r(s )= ( .1— s2)tg (s).
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Once this relation is obtained, (6.3) can be proved in a completely similar way as
in the proof of Theorem 4.1 by using Proposition 1.1 (3).

Since PL fe1301,q ,T  and

(6.5) (.F(s)eq, e p )=.1 ''in i f (g)uipcq (g, s)dg,

we have (iii) and (iv) by Theorem 5.1. To verify (y) we first note that

(6.6) (_oaib(p+ AO a /14 )  b ( j4— S 2 ) r (.0 e q ,  e p )

= ( X 0 )°(X )bz Irf (g)-4,,(g, s)dg.

Next, putting s= + /1.k +j — -12— in (6.6) and noting (2.3) and (2.4), we have

(6.7) (-0aib (p+4)°(q+ A k ) b ( ±  ± i) r (I -T —  4 4 ±  ( i )  X

1x (9( ±  k + .  - - 2—)eq , e p ) = ( X 0 )a(X )bL irf  (g)-v ± (g, j)dg.

Since f e gil• and 1 v (g,1)1< I, we obtain (y) from (6.6) and (6.7).
In the course of the discussion above we also get the continuity of

Step 2. We verify that 5 - is injective. Let fe .9'4, be a function such that g -

= 9 -  f= O. Then we have

(..F( • )eq , e )= 0f o r  all p, g e Z.

Consider P g f . Taking into account (6.5), Remark 8  and Theorem 5.1, we have
13

4 f = 0 for all p, q e Z .  By Lemma 6.2 we have f =0 .

Step 3. Let F  e Atl• be given. Define a function f  on G by
(6 .8 ) f(g)—

1 
E ( F a - 0 e  ep )u pkg (g , iT ) T  Re th 7r(T + blk )oit

p ,q e Z  0

1
e=-F,— ;jelY ;p.qeZ

(silk + j - -1 )(o Pq
k •g (i)( (6 2 k —  2 )  q, ep) 1148 (g ,2zn 

Condition (y) assures that the right hand side of (6.8) is absolutely convergent. To
show that f  is a  Cx-function, it is sufficient to verify that the differential operators
X 0 , X ± are applicable indefinitely many times. This can be done in view of Propo-
sition 2.1 (3) and the assumption .F E .Yeq .  It is clear that f  satisfies (6.2) (cf. Remark
7).

Step 4. We show that f  in (6.8) satisfies (6.1). We can apply PL  to the right
hand side of (6.8) term by term because it is absolutely convergent. Hence we
obtain

(6.9) (g)= the right hand side of (3.11),
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where we p u t F pkg (s)=(..F(s)e,, e p )  in  (3.11). By Remark 8, (6.9) a n d  Theorem
5.1, we have P q f D q T

 fo r T>0 in (ii). Since we already know that f  is a
function, wewe have by Lemma 6.2

f  (g)= E p . e c z f  ( g )  .

Thus we have (6.1) because so do all P g f .

Step 5. It remains to prove the continuity of Let .F J -40 in  A l  and
put f i = e g';-. It is sufficient to show that

(X o )a(X + )b(X _)c f i (g) 0

uniformly o n  G for every triplet of non-negative integers a , b, c, because X 0 , X,
and X2 form a basis of g. This is clear by virtue of Proposition 2.1 (3).

Step 1 to Step 5 complete the proof of Theorem 6.3. Q. E. D.

6 .3 .  We summarize here some direct consequences of Theorem 6.3.

Corollary 6 .4 .  A l. is a Fréchet space.

Corollary 6.5. The topology of g 'f  is also def ined by  another fam ily  of semi-
norms If given by

(6.10) f la,b,r= suP,EGIC 0)a(x 'or f  (01

P ro o f . We denote by DI. the topological vector space with the same underlying
space as that of g§, and with seminorms in (6.10). In the same way as in the proof
of Theorem 6.3, we can prove that Dif is topologically isomorphic to " e l f .  Since
yeti. is complete by Corollary 6.4, so is DI4, to o . B y  the open mapping theorem Vi-
and g'1, are canonically isomorphic.  Q .  E .  D.

Corollary 6 .6 .  Let f  e g§.. Then we have

f  = Ep, q .z n q f ( in  g i )•

P ro o f . Note that

(_02i2( p +  4)2(q 4 )2 (X °) a (X0 b Ar

K K 
Xign)((X 0)a + 2 (X 0 b + 2 z 1rf )(ugv )4(v )du dv .

Then by Corollary 6.5 5 —,p,y eZ P q f  is  convergent in .9§-. Since g'4, is complete,
the assertion follows from Lemma 6.2. Q. E. D.

6 .4 .  Analogue of the Paley-Wiener theorem for g  ( G ) .  The space g (G ) is
the inductive limit of g r  as T—>.co, and by Lemma 6.1, .9  T  is a direct sum of g
over — n +1<k < n. In Theorem 6.3 we have established an analogue of the Paley-
Wiener theorem for the "Fourier transform" Y. Therefore extending Y  to  g(G )
naturally, we have an analogue of the Paley-Wiener theorem for Y  on g(G).
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