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Introduction

In this paper we shall discuss the problem of linear stochastic control.
In  th e  stochastic control, contrary to  th e  deterministic one, there a re  few

examples in which the optimal controls can be simply calculated even in the linear
c a se . R. S. Liptser [4] showed a n  interesting example o f  partially  observable
stochastic control in which an optimal control exists and furthermore it is written
in an explicit fo rm . In  his paper he treated a simple one-dimensional linear system
with bounded measurable control functions and simple cost function.

We shall extend his result to the multidimensional case and obtain an optimal
trajectory corresponding to the optimal control. The method we use relies on the
theory o f  filtering d u e  to Fujisaki-Kallianpur-Kunita [I]  a n d  o n  a  comparison
theorem for solutions of stochastic differential equations due to Ikeda-Watanabe
[3]. S ince  the latter is essentially one-dimensional, we must necessarily restrict the
control system to be o f a  sim ple  fo rm . Nevertheless our result has remarkable
features such that an optimal control exists in very wide class in which the control
function is bounded measurable but not necessarily continuous (indeed, in our case
an optimal control is not continuous) and the cost function is not continuous, while
in the majority of the results which are already obtained both functions are smooth
(cf. W . M. W onham [6]). We shall mention this point concretely in the section 2.

The author expresses his hearty thanks to Prof. S. Watanabe for his valuable
advices and to Prof. T. Komatsu and Prof. H. Kunita for informative discussions.

§ 1 .  Formulations

Let T be a positive n u m b e r. Let W (W,) and w = (we), 0 < t < T, be m-dimen-
sional Wiener process with W0 —O and n-dimensional one with w 0  =O respectively.
L e t  0 = (0 ,)  a n d  C = ( ) ,  0  t T ,  be m -dim ensional stochastic  process and
n-dimensional one respectively, which are given by the following linear stochastic
differential equation with initial value (On, 0);
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f  d0,=u,dt+B,dW ,

a,0,+b,dw„ Co = 0,

where the coefficients B„ b„ and a, are all non-random matrix-valued functions of t,
which are bounded measurable. B, and b, are an (m, m)-orthogonal matrix and an
(n, n)-orthogonal matrix respectively, and a, is  an (n, m)-matrix such that a7a,
= c i /,,, where c l  is  positive constant and /,„ is (m, m)-identity matrix, r e p r e s e n t s
the transposed matrix of a, and from now on it is assumed that every vector is column
one and transposed matrix or vector is written with *. u =(u,) is the control which
depends upon the apriori distribution of 0, and the informations being obtained by

s < t} .  So we call m-vector (0) the state of channel, n-vector ((,) the output.
Now we consider the following problem.

Problem . Find a  control u in suitable class, which minimizes the following
cost function J(u);

(1.2) J(u)=Eu[oT co(0,)dtl,

where (B,) is the solution of the stochastic equation (1.1), and function co(x), x eRni,
is defined by

(1.3) co(x) - -
for 11,4 5H

where 11x11= ( 4 ) 1/2  for x

1 for 114  >H,

x2,..., x„) and H  is  a  given positive constant.
Since the control does not depend upon (0) the problem is called partially observable
one.

Now we shall formulate the problem precisely. Let C" be the Banach space of
all R"-valued continuous functions over [0, T ] with uniform norm and for each t,

t < T, denote by M;' the sub-a-field of the topological Borel field M " on C",
which is generated by the cylinder sets up to the time t. Let be the class of 111"-

valued functions t/f(t, w) over [0, T] x C" which satisfy the following three con-
ditions;

( F A )  t/i(t, w) is measurable in (t, w),

( F .2 )  for each t, w) is measurable with respect to  a ,

(v.3) 110(t w)11_<k, where II • II is the Euclidian norm in Rin and k is a given positive
constant.

The notion of a solution of the equation (1.1) with zi t = tk(t, C), 0 < t < T, gr,
is defined in a usual way as follows.

Definition 1.1. (0, C) is a solution of the equation (1.1) with the initial dis-
tribution n corresponding to ifi e if it is  a family of stochastic processes (0, C),
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0 being m-dimensional and C being n-dimensional with C 0 =0, defined on a probability
space on which there exist mutually independent m-dimensional Wiener process W
with W0 =0 and n-dimensional one w with 14,0 =0 such that

(1) o- { Wi — We, wt —  we; (, s} is independent of o- {W„ w,, 0,, Ct; -C S }  and (0, ()
satisfies

t
(2) 0t = 0 ,+  u sds+ t  13,d WS

JO o

( s = t as0sds +S t bsdw s ,
o o

( 3 )  the distribution of 0 , is tt.

By Girsanov's theorem, we have the following proposition which assures us that
ti-ere always exists a solution.

Proposition 1.1. For any  ill e gr, and any  probability  law  it  o n  R'n , there
exists a unique (in the sense of law) solution of the equation (1.1) corresponding to

and with the initial distribution p.

Definition 1.2. A solution (0, C) of the equation (1.1) corresponding to some
E ?P' and with some probability measure p  on Rm as its initial distribution is called

an admissible sy s tem . Moreover we call ti t= 0(t, C) an admissible control.

Let oit be  the class o f  a ll admissible controls determined a s  above from all
possible admissible systems. Therefore our problem should be to obtain u 0  in  qi
such that

(1.4) J(u ,)=  min J (u ).
u e r

Definition 1.3. Control u 0  c QI is called optim al if (1.4) holds.

F o r a  given e  V .  we consider the stochastic differential equation (1.1) with
u t = O. A  s o lu t io n  (0, C) of the  equation is called a  strong solution if  it is
expressed as a  causal function of (0 0 , W , w). As is well known the existence of a
strong solution is clearly related to the pathwise uniqueness of solutions (see Yamada-
Watanabe 17 ] ) .  H e r e  are two examples of the cases where strong solutions exist.

Example 1.1. (W. M. W onham [6]) i//(t, w) satisfies the conditions (gr.1),
(F.2) and it is uniformly Lipshitz continuous w.r.t. the variable w in the sense of the
norm of Banach space. Moreover it is Holder continuous in  t  for each w and it
takes its value in a compact convex subset of Rm.

Example 1.2. (Fujisaki-Kallianpur-Kunita [1]) IP(t, w) satisfies th e  condi-
tions (F.1), (F.2) and the following conditions;

(1.5) 110(t, w) —  tP(t, Ço w(s) —  w'(s)11,d/"(s), 0 < ( T ,
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(1.6) fr(t, K(1 + w(s)1I 2 d/(s)), C11<t T,

where F(dt) is a bounded positive measure on [0, T ], K  is a positive constant, II 11,,,
and II 11„ are Euclidian norms in Rm  and R" respectively.

§ 2 .  Completely observable problem

Let (C2, F ,  P, W , w, 0, C, u) b e  a solution corresponding to 1,// e F . By .5r i

we mean the u-field generated by g „ t}  and put .9" = v F .  m-vector m, and
0 5 t5 T

(m, m)-symmetric matrix cr a re  defined by the following formulas;

(2.1) ml =EMI...VA, 1 i <m,

(2.2) (q)1i=E[(01—  m) (O( — m hi.Fti,

Then A. N. Shirjaev and others (see [5]) proved the following lemma.

Lemma 2 .1 .  If  the initial distribution pt o f  00  i s  m- dim, norm al one N(m,
o-2 ) , w here m  is a  vector in  I t"  an d  o- 2 =c 2 1„,(c 2  i s  positive constant and I n, is
(m , m )-identity  m atrix ), then f or each t , e-conditional distribution P(O, e • IF ,)
of  0, is also norm al one N (m „ c?). Furtherm ore m , an d  cy? satisfy  the following
equations;

dm ,=u,dt+qa;'dv „

do? =I — c (a2 )2

"dt 

where R"-valued stochastic process v=(v,), t is given by

(2.5) dvi=dC,—a,m,dt, v0 =0.

Remark 2.1. It is well known (see [1]) tha t y of (2.5) is (F ,) -adapted n-dim.
standard Wiener process such that for t >s v , — v, and .9", are independent. y is often
called the innovation process.

Remark 2.2. Ordinary differential equation (2.4) i s  Ricatti's equation and
then it has an unique solution for given initial condition. Since cq,=c2 /„„ we can
easily calculate the solution of (2.4). It is shown that

(2.6) o- =c3(t)I„,

(2.7) c3(t)—  (1+ c1/ 2 c 2 )e 2 c112 f —(1 — c1/ 2 c 2 )  

(Ie l /  2c 2 )e2Ci f  2t (1. C1/2C2)

Therefore the conditional variance a- ?' defined by (2.2) actually does not depend
upon (u,) and is indeed non-random. Since all ci ( i=1 , 2) are positive constants,
c3 (t) is also positive and bounded function of t.

(2.3)

(2.4)
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By using these results we have the following.

Lemma 2.2. The cost function J(u) of (1.2) is represented as follows;

(2.8) f ( u )=E " T o f ( t ,  II t r i t l i )d t l ,

where f  is a bounded positive function over [0, T ] x R 1 and it is m onotonely  increas-

ing in R 1 f or any f ixed t E  [ 0 ,  T ] and m ( in n2) 1/ 2
i=1

P ro o f . By the formula (1.2),

J(u )=E " T co(0 ,)d t1=E "[S T
0 E"[(4001.F,]dti

=Eu[ 1. duc o ( x ) p ( t ,  x ) d x  i dx 2 •••dx„,1,
0 W"

where p(t, x ) is m-dim. density of the normal distribution with mean m, and variance
ol which are defined by (2.1) and (2.2) respectively. Since co(x)=O fo r  dx11,H
and co(x)= 1 for lxii> H , we have

J(u )=E u [ 7 . dt ( 2 n c 3 ( t ) ) -
mi2e-(x-mr).(x-mtu2c3u

) d x ]
0 iixil>41

= Eu[Y -
o dt >  (2nc30))-mize-c.F+xi+•••+x40/2c3(t)

dx i dx 2' • • dXm l ,

where c3 (t) is given by (2.7) and x =(x,, x 2 ,..., x„).
But the integral ( 2 7 r c 3 ( t ) ) -

mi2e-(x1+•••+.4,)/2c3(t)dx is clearly bounded and
iix+mt II>ff

positive function over [0, T] x R1 a n d  it increases monotonely a s  II mt li increases
because this integral is rotation invariant w.r.t. ii m . Q. E. D.

By Lemma 2.1 and Lemma 2.2 our first problem is transferred into the following
problem, which is completely observable. We call this the second p ro b lem . Let
P, be an (m , n)-matrix such that PrP r =c ,1   where c, is a bounded and measurable
function of t. Let (13,) be n-dim. standard Wiener process with P o = 0. Moreover
suppose that (ut) is a  process taking its values in Rm such that o- {u s ; s t }  v a{fis ;
s _ t }  is independent of c. {/- — fir ; t t '  < t" T } and  Ilud k.

Now we consider the following m-dim. state equation and cost function;

(2.9) dx ,=u,dt-FP,df i, x 0 = x,

(2.10) .1(u)=Eu[or g(t, 1141)dtl,

where x is a constant m-vector and g  is a function over [0, T] x R 1 having the same
properties as f  o f Lemma 2.2. Then the second problem  is to find a  process u
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(called control) which minimizes f ( u ) .  To this problem next theorem is well known.

Theorem 2.3. (Ikeda-W atanabe [3]) T o the second problem  there ex ist an
optimal control (u,) and n-dim. standard W iener process (13,) such that (u,) minimizes
1(u), and moreover u, is written as follows;

(2.11) ut= U(x,), 0 < t < T,

(2.12) U(x)= k  11) cx11 =  k (ilxxir lx1;11)
f o r  x * 0

for x  =  0 ,

where (x,) is a unique solution (in the sense of law) of (2.13).

(2.13) dx,=U(xi)dt+ P,43,, x 0 = x.

By this fact it is natural to expect that u,= U(m,), where m, is given by (2.3),
is optimal in the first problem. From now on we shall show that this function is
actually optimal in our sense; namely we shall show that a  solution (Q, P, W,
w, 0, u) of the equation (1.1) corresponding to some qi c T. exists such that u,
=t/1(t, C) coincides with U(n),) and this u is op tim al. This is discussed in the next
section and the rest of this section is devoted to a preparation for it.

Let (13,) be n-dim. standard Wiener process and  le t U(x) be given in (2.12).
Assume th a t Q, is a non-negative definite (m, m)-matrix and R , is an ( in ,  n)-matrix
such that R ,R 7 >0 . B oth Q, a n d  R , depend o n  t. Let's consider the following
m-dim. stochastic differential equation with initial value x (x is a given constant);

(2.14) dx,=U(x,)dt—Qtx,dt+ R t d fir, x o = x.

Then we obtain the lemma which assures the existence of a strong solution in the sense
of the section 1.

Lemma 2.4. S tochastic dif ferential equation (2.14) h as  a  u n iq u e  strong
solution.

Pro o f . The existence of a solution in the sense of law is easily proved by the
routine method of G irsanov. Then it is sufficient to show that any two solutions of
the equation (2.14) corresponding to the same Wiener process and the same initial
value are equal with probability 1. So let X , and Y, be any two solutions having
common Wiener process and initial v a lu e . Since both X , and Y, satisfy the equation
(2.14), by taking the difference of them,

r
(2.15) X,— Y, = 1' {U(X s )— U(Y5)} ds—  Q s (X s — YOds.o o

Put d, = X,— Y, or d =_X. — Y;, 1 < i < m, and let's show d; =0 for any i and t.
By differentiating both sides of (2.15) we have for any i,

[P(Xt) —0 j 4 1 ,dt j=1
il 0,



Al{uipro Lui(yo} so.
i=t

Clearly this is equal to say that d  "±  (40 2 } O.dt

1=1

ddz1) 

Since( A t ) 2 > O  a n d  .61!, =0
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where Ui(x)= — (x4 0), U 1(x )=0 (x=0). Multiply 4 to  both  sides and sum

up from 1 to  m with respect to  i, then

—  imui(xo—ui(Y,)} — Oit1 W .
ot 1=1 i=1

Since matrix Q, is non-negative definite by the assumption, the second term of
the right side is negative. Next it is shown that the first term is also negative. In
fact,

tqfUi(X ,)— Ui(Y ,)} = k
I I

_ k (x0 2  A117.A117.- 11Yf (/ 7 02

i=1 II XII 11Xtii YtIl Ytli

=ki-11Xt11-11Yr11±(11L11+1017t11):=i1X1Y11

But by Schwarz's inequality it is shown that

A lY n (X
) 2 } 1 / 2 { ( y

)
2

}
1 / 2 =

MI1.1117,11,i=1 i=1 i=1

therefore we have

for all i, thus we obtain 41=0 for all i and t. Q. E. D.

Remark 2 .3 .  By this theorem it is clear that the stochastic differential equation
(2.13) has a unique solution in the sense of pathwise.

§ 3 .  Main theorem

Theorem 3 . 1 .  I f  th e  in it iu l d is trib u tio n  o f  0 , is  n o rm al N (m ,a 2 ) then
there exist some e and a solution (0, 0 of  the equation (1.1) corresponding to

such that 14,=111(t, ()=U(m ,) is optim al, w here U(x), xe It", is given by  (2.12)
and

(3.1)

f or each t, is a-f ield generated by g„ s<

Remark 3 . 1 .  M ost essential difference between W. M. Wonham a n d  u s  is
in the admissible class of the control variables. In  fact he treated functions which
are continuous in w and Holder continuous in t  as the element o f  47  (see Remark
2.1). Then it is possible to say that for any Wiener process he obtained an optimal
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control minimizing the given (smooth) cost function, while we find it in the widest
class whose element is bounded measurable and the cost function is not continuous.
In our case naturally Wiener process depends on the control u.

P ro o f  Since the proof of theorem is long, we shall divide it into four parts.

1. Let's consider the following m-dim, stochastic differential equation with
initial condition x o = m;

(3.2) dx,=U(x,)dt—  c 1 c3 (t)x,dt+ c 3 (t)4 d („ xo = m,

where ((,) is n-dim. Wiener process, c3 (t) is given by (2.7) and U(x) is the same as
(2 .12). Since c 1 c3 (t)> 0  and  R t =c 3 (t)4  satisfies R,R;'=c,1„, b y  th e  assumption
(c, is a positive constant depending o n  t), then by Lemma 2.4 the  equation (3.2)
has a  unique strong so lu tio n . T ha t is  to  say, there exists a  unique Rm-valued
function F(t, w ) over [0, T] x  C" which satisfies the following three conditions;
(F.1) it is measurable w.r.t.(t, w),
(F.2) for fixed t (0 t w-4F(t, w) is . -measurable,
( F .3 )  for n-dim. Wiener process (, if we set x ,=F(t, C) then this is a unique solution
of (3.2).

2. Let (Q , F , Q) be a  probability space on which n-dim. Wiener process ((,)
is defined. Let (0,) be m-dim. Wiener process which is independent of (CO, and we
can assume that Oo has a given normal distribution N(m, a 2 ). Let g', be the a-field
such that {(0, „  Q }  is (ni+ n)-dim. W iener process. Now if we put

( 1 3 ,  0
(3.3) A ,=

b, )

then A , is an (m+ n, m+n)-matrix such that A ,4 = 1 , , ,„ .  Here let's define (m+ n)-
vectors i i , , S „ and )7, as follows.

0, ( U ( x ,)  
= ) 5 SI = =

\ Ç , )

where PV, and V*, are given by the formula

(3.4) d =d0,— U(x,)dt, W0=0,

cif* = dC, — a,0,dt, 0=0,

or equivalently

(3.5) ci)7, = Stdt, i-ro = 0.

Since ( )  is (m+ n)-dim. Wiener process w.r.t. (g„ Q) and both a, and  U(x)
are bounded in t, we can show by using Girsanov's theorem that ()7,) of (3.5) is also
(m +n)-dim . Wiener process with )7 0 =0 w.r.t. probability measure dP=cp,I.,c1Q,
where tp, is uniformly integrable martingale (i„ Q ) defined by
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(3.6) (Pt = exP {1
0 
S :ch h ----t

o

.

Let y, = )b e defined by

(3.7) dy,=A;k4",, yo = 0.

Then (y,) is also On + n)-dim. Wiener process ( i , ,  P ) because A , is  an orthogonal
matrix,and this is equivalent to say that (W,) is  m-dim. Wiener process with W0 =0
and (w,) is n-dim. one with 14, 0 = 0 .  As it holds that d5)",=A,dy„ (3.5) is

(3.8)

or in the component wise,

At dyi =dth —  St dt,V o  O ,

d0,=U(x,)dt+B,dW,
(3.9)

1 d ,  = a,0,dt+b,dw„

where the distribution of Oo  is normal N(m, a2 ) and L =O.

3. Next by the filtering equation we obtain the following equation of (in ,)
which is defined in (3.1);

(3.10) dm,=U(x,)dt + c 3 (t)aNv„ mo=m,

where (v,) is given by (2.5). Then (3.10) is

(3.11) dm,=. U(x,)dt+c3(t)atdC r
— cle3(t)mtdt, mo= M .

But (x,) is a unique solution of the equation (3.2) for the same (e,) and ni as those in
(3.11), then by taking the difference between x, and m„

x, — m, = — o c i c3 (s)(x,—m s )ds.

Since x0 =m 0 = m and c1 c3 (t) is bounded, it is easy to show that x, = m, for all t with
probability 1. Therefore we can write (3.9) as follows;

(3.12) dOt=U(m,)dt+B,dW,

dCi = a,0,dt+b,dw„

4. Now it is easy to show that u,= U(m,) is an admissible optimal control and
(0, C) given by (3.12) is an optimal solution in our sense. In fact, first of all u E
is clear because u,= U(m r)=  U(x,)= U(F(t, C)) w.p.1 and 4/(t, w)= U(F(t, w)) belongs
to  th e  class a s  a  function over [0, T ] x C .  Next let (v.", ty , Ç, ,  m ') be
arbitrary admissible system. Then by Lemma 2.2,

Eu5 0
7 . co(COdt1=EuTf(t, Ilm,11)dti

w,
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Eu'T co(0;)dtl= Eu'[ f (t, Ilm;11)dtl.

But by Theorem 2.3 we have

EuTf(t, Ilin,11)dti_Eut1 0
7 . f(t, 11171;11)dt],

therefore E"5
o
w(0,)dti < E" . 5

o
o)(0t)dtl. Q. E. D.

Corollary 3 .2 .  Whenever there exists a  function F(t, w) such that in1 =F(t,
(), where F(t, w) satisfies (F.1)—(F.3) in  the  proof of Theorem 3.1, ut = U(m i ) is
optimal.
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