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Introduction

The idea of co-limiting sets borrowed from the theory of dynamical systems has
been employed in many authors' works including [1] and [5 ] to investigate the
asymptotic properties of solutions of autonomous parabolic initial-boundary value
problem s. In the case of parabolic systems, it is well-known that the w-limiting set
of a solution often contains plural elements (in fact infinitely many elements). But,
to  the best of our knowledge, it has not yet been made clear in the case of single
equations whether there exists such a solution as has plural co-limiting points. The
present paper forms part of the answer to this question. That is, we show that the
co-limiting set of any solution contains at most one element providing that the space
dimension is one. This result leads to the conclusion that in the case of single one-
dimensional equations any solution that neither blows up in a finite time nor grows
up as t—*oo should converge to some equilibrium solution as t tends to infinity.

§1 . Notation and Theorems

Let us consider initial-boundary value problems of the form

(1.1a) u,= {a(x)u.}.+ f (x, u), < x  <  0  < t< s),

(1.1b) u(x, 0)= uo(x), (0  x

(1.1c0 ) cc0u(0, —ao)ux(0, 0=fi0, (0< t < s),
(1.1c 1) 0+(1—oc1)ux(L, 0=131, (0< t<s ),

where the coefficient a(x) is positive and sufficiently smooth in the compact interval
[0, L ]  and ai , f l i (1=0, 1) are rea l constants satisfying 0 1  (i = 0 , 1 ) .  The
nonlinear term f  is also assumed to be a smooth function, say of class C2 , mapping
[0, L] x R into R .  We choose initial data from  the space C[0, L] and consider
real-valued classical solutions. A function y E C 1 [0, L] n c2(O , L) is said to be an
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equilibrium solution of (1.1) if it satisfies the boundary value problem

(1.2a) { a(x)vT  + f(x , v )=0, (0 <x <L),

(1.2b0 ) oc0v(0)— (1 — cco)v10) =So,

(I.2b 1 ) a1v(L)+(1 —a i )v'(L)=fli.

For any function 1// e C[0, L], the solution of (1.1) with initial data u 0 =1/, can
always be constructed near t =0  by means of the usual successive approximation in
the integral equation that is equivalent to (1.1). Here, as in N . Chafee [1], we
denote by (0, s(0)) the largest time interval where the solution of (1.1) with initial
data u 0 =tfr exists. T h a t is  to  say, we define s(1i) E (0, C O ] by

s(i//) = sup {s; u(x, t, is continuable to I= s} ,

where u(x, t, is the solution of (1.1) with initial data i. B y  se tting  Q(t)tfr =u( • , r,
to f o r  0  t <s(0), we can naturally define an operator Q(t): C[0, L ]-4C[0, L ] with
p a ram e te r  t  O . A function ik e C[0, L ] belongs to the domain of Q(t) if and only
i f  0  t < s ( 0 ) .  It is obvious that Q(t)ii/ belongs to CIO, L] n C2 (0, L) when 0<t
<s(0) and that

Q(t)LP = Q(t — t')Q(e)11/

for any t' t  <5(0).

Definition. L et it/ e C[0, L] and suppose  s(i)=  cc . T he  co-lim iting se t of
is a subset of C 1 [0, L] n C2 (0, L) defined as follows:

S2(1//)= r  closure {Q(00 ; t) ,t l  

where the  closure is w ith respect t o  th e  topology o f C 1 [0, L] n C2 (0, L). We
understand that 52(t//) = 0  if s(t//)< co.

(It should be noted that the co-limiting set defined above coincides with the one
considered in  the  topology o f  C '[0 , L ] o r  C [0 , L ]. See the  author's paper [5 ;

Theorem 2.8].)
Now we are ready to formulate our theorems:

Theorem A • T h e  co-limiting set of  any  function ip e C[0, L] contains at most
one element.

Theorem B • For any  initial data 11/ e C[0, L], one and only  one of  the follow-
ing three holds:

1) s(11/)< co and

lim II Q(00 II L - 0 ,14 =
—Ps(t//)

that is, the solution blows up in a f inite time;
2) s(t//) = oo and
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lim  Q(t)iii L-(o,L) = 0 0 ,
- .C O

that is, the solution grows up as t -o o  ;
3 )  s(t/J) = oo and there exists a solution y of (1.2) such that

lirn Q(i)l' -= y
-PCO

in the topology of CIO, L] n c2 (0 , L).

§2. Derivation of Theorem B from Theorem A

The following propositions help us to understand that Theorem A  implies
Theorem B.

Proposition 1 .  L et çli belong to C [0, L ] and suppose that there ex ist a  se-
quence 0<t 1 <t 2 <•••--s(0) and a constant M >0 such that

II Q(1,0011 L-(O .1 .)< Iti

f or m =1, 2,.... Then s(P)=cc.

(See [1; Proposition 2.4] and [5; Theorem 2.4i)].)

Proposition 2 .  L et the  sam e assum ption as  in  Pro p o s it io n  1  h o ld . Then
S2(0) is not empty and any element of  Q(0) is a solution of (1.2).

(See [1; Theorem 3.3] and [5; Theorem 2 .8 ] .)  It is just a trivial fact that the
condition in Proposition 1 is satisfied conversely if has a nonempty w-limiting set.

Proposition 3 .  L et so) be nonempty and suppose that it contains an  iso-
lated point y  w ith respect to the topology of C 1 [0, L ] n c2(O, L). Then S2(i//)= {y}
and

limQ(t)t1/ = y in  C'[0, L] n c2(O, L).

(See [5; Corollary 2.11].)
It is now easy to establish Theorem B with the aid of Theorem A. In fact, due

to Proposition 3 and Theorem A, the nonemptiness of f2(0) implies the convergence
of Q (00 to some function as t—>oo. So the assertion of Theorem B  follows im-
mediately if Proposition 1 and 2 are also taken into account.

§3. Proof of Theorem A

Take an arbitrary function E CEO, L] that has a nonempty co-limiting set QM
(so necessarily s(0)=  cc) and fix it. What we have to show is that 52(0) has just one
element. Hereafter, for simplicity, we write u (., t)  instead of writing Q(t)fr. Let
us begin with a few lemmas.

Lemma 1 .  Suppose that Q M  contains plural elements an d  le t  y , be one of
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them . Then there ex ists a  to >0 such that the zeroes o f  u(x, t 0) —v1 (x) in [0, L]
are finite in number.

Proo f . Let v2 be another element of S2(0). As v, and v2 are distinct solutions
of the ordinary differential equation

{a(x)v'}' + f(x, v )= 0, (0<x <L),

the nonnegative function Iv', — vI + Iv, — v2 I never vanishes in the compact interval
[0 , L ]. So there exists a (5>0 such that

Iv(x) —1/2(x)1+ I v (x) — v2 (x)I

for On the other hand, since v2 belongs to 0(0) and since the w-limiting
set here is with respect to  the topology stronger than that of C1 [0, L], there exists
a to >0 satisfying

sup Ilux (x, to) — v;(x)I +14x, to) — v2(x)I} <6.
05x5L

Combining these inequalities, we get

(3.1) lux(x, tc,) — + Iu(x, 1. 0 ) —  vi (x)i> 0

for 0 Therefore, u(x, to )— vi (x) cannot have infinitely many zeroes in [0,
L], for otherwise the left-hand side of (3.1) must vanish at each accumulation point
of these zeroes. Q. E. D.

The following lemmas need some notation: For each element v E S2(0) we set

A+(v)= {(x, t) e [0, L] x (0, co); u(x, t) > v(x)} ,

(v) = {(x, e [0, L] x (0, co); u(x, t)<v(x)} ,

and for each t >0 we put

Et= [0, L] x [t, cc),

/,= [0, L] x {t} .

Lemma 2 .  L et y  e f2(1k) and le t C  be any  connected com ponent o f  A+(v)
n Et° in the xt-plane, where t o > 0. Then C n 40 00 • T h e  same assertion holds for
any connected component of A(v) n

Proof . W e shall prove only the former half, for the latter can be shown just
likewise.

First, note that w= u —  v satisfies the equation

(3.2) w,={aw,,}x+ f i,(x, t))w

in (0, L) x (0, co), where v(x)...ç. t) _u(x, t), and also the boundary conditions
( ) (_4.)

mow — (1 — ao )wx  = 0, (x = 0, t> 0) ,
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a1w+(1—a l )wx =0, (x=L, t>0).

Now suppose C n 1,0 = 0 .  Then the function w vanishes along the boundary OC
of C except on the half lines {0} x (to , co) and {L} x (to ,  co). S o ,  dividing ac into
three parts F o = C n ({0} x (to , cc)), F 1 =C  n ({L} x (to , oo)) and r 2 = acvro u F,),
we have

mow + (I — oto)t -  =0 on F 0 ,

owact w — ai )--671-=0 o n  r 1 ,

w  0 o n  F2,

where a/an denotes the outer normal derivative to Fc.3C (i=0,1). In the interior
of C the equation (3.2) is satisfied. C om bin ing  (3.2) and (3.3), and then applying
the maximum principle in the usual manner (after a suitable change of the unknown),
we obtain

w =0 i n  C

(cf. [6; the proof of Theorem 8 in Chap. 3]), which, however, clearly contradicts the
relation C c A +(v ). Thus our supposition C n 1, = 0  has turned out false.

Q. E. D.

Lem m a 3. Suppose that S2010 contains plural elements and let v  be one of
them . T hen there ex ists a t* >0 such that u(0, 0— v(0) never changes sign in [t*,
oo) (that is, u(0, t)— v(0):0 f o r t* co or u(0, t)— 0 f or t * _ t < o o ) .  The
same assertion holds for u(0, v'(0).

P ro o f . First we prove the former part. Let to be as in Lemma 1. In order to
verify the assertion, it is sufficient to show that u(0, t)— v(0) does not change sign
infinitely many times in the interval [t o , co).

Suppose that u(0, t) — v(0) changes sign infinitely many times in [t o , co). Then
there exists a sequence to < t, < t2 < • • • such that

u(0, t2 k  _,)— v(0)>

u(0, t2 k )— v(0)< 0,

for k = 1, 2,.... It follows from Lemma 2 tha t each  point P2 k _1 = (0 , t2 k _1 ) is
connected with some point Q2k_i e A+(v) n /to by a curve C 2 k _  1  A+(v) n Et i, and that
each point P 2 k =(0, t2k)  with some point Q2 k  e /1- (v) n b y  a  curve C2 k 24 - (v)
n I to . Since the curves C 2 k _ l  and C2k,  (k , k ' e N) cannot intersect each other, the

points Q „ Q 2, Q 3 ,... are lined on the segment 10 in  th is  o rd e r . This means that
u(x, to )— v(x) changes sign infinitely many times in [0, L], a contradiction to the fact
that u(x, to )—v(x) has at most finitely many zeroes in [0, L].

Secondly, the proof of the latter part. We only consider the case where ao =1,

(3.3a)

(3.3b)

(3.3c)
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for otherwise the latter follows directly from the former by virtue of the boundary
condition for w =u — v. Let to be as above and suppose that there exists a sequence
to <7 1 <7 2 < • •• such that

U x(
0

, 2 k -  1 )  V '  (0 ) >  0 ,

t  x ( 0 ,  1 2 0 -  UV» GO,

for k = 1, 2,.... Since u — v vanishes on the half-line {0} x (0, co), there exist numbers
x l , x 2 , x 3 ,• • • e(0, L )  such that each segment (0, x 2 k _ x  {7

2 k  - 1 }  is contained ink  

A+(v) and that (0, x 2 k ] x {72 k } is contained in A - (v). Now connect each of the points
(x2k- 19

 7
2k

- 1) (k = 1 , 2 ,...)  with some point 2 k 1 E  A±(v) n 4 0 b y  a  curve wholly
contained in  A+(v) n E .  Combining this curve and the segment [0, x 2 ,_ 1] x
02,k- i), and denoting it by 0-  2 k -1 , we see that  C 2 k _ 1  connects the point 2 k - 1
= ( ) , 1 2 k -1 )  with 0 2 k _. and is contained in A±(v) n E.1.  except for the end point
P 2 k -  l •  Similarly, each point P 2 k  = (0, 1 2 0  can be connected with some point 0 2 k

E A (v ) n i 0
 by a curve C2 k  which is contained in A (v) n Et . except for the end point

-P2k• As C 2 k _ 1  and C2 k , (k , k ' EN ) cannot intersect each other, the points 0 ,,  0 2 ,
,• • • must be lined on Ir. in this order, and so we get a contradiction just as above.

Q. E. D.

Proof of Theorem A .  By virtue of Proposition 3, what we have to show is that
Q ( i )  contains an isolated point. Suppose that it contains no isolated point. As
QM is assumed to be nonempty, it must contain infinitely many elements. Let
v„ v 2  and v3 be distinct elements of it. Here we have two cases, the case where

oco  <1  and the case where cto  = 1.

Case 1. Let 0 oc o  < 1 .  Since v1 , v2 and v3 are distinct solutions of the ordinary
differential equation

{a(x)v'}'+ f (x, v)=-. 0, (0 <x <L) ,

—  
 O E ° v(0),

ao

the values v1 (0), v2 (0) and v3 (0) are different from one another. Without loss of
generality we can assume v1 (0)< v 2 (0)< v 3 (0). Well, from Lemma 3 it follows that
there exists a  t*> 0 such that u(0, t)— v2 (0) does not change sign in [t*, co). But
it obviously contradicts the fact that both v, and v3 are elements of S2(1//).

Case 2. Let a o  = 1 .  In this case v(0), v(0) and e3 (0) are different from one
another. So, using the latter part of Lemma 3 and arguing as above, we easily get
a contradiction.

Thus, in either case, our supposition that fl(tfr) contains no isolated point has
turned out false. Q. E. D.
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