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§ 0 .  Introduction

The notion of regularly varying functions, which was introduced by Karamata,
extended greatly the Hardy-Littlewood Tauberian theorem and simplified its proof.
According to Karamata's Tauberian theorem, a  nondecreasing function a(t),
varies regularly at 0, if and only if its Laplace transform F()) varies regularly at co
(see [2] or [ 9 ] ) .  However, his method provides us with little information in a case
where a(t) or F (A) varies in an exponential order (cf. [3]). Such a case is of interest
in  some problems in  probability theory and studied by Varadhan [10] and by
Fukushima [3] etc. Similar problems have been studied by many authors. L.
Davies [1 ] and Nagai [7 ]  (or [4 ]) studied the relation between the asymptotic
behaviour of a(t) as co and that of F()) a s  —> — co. D avies [1 ] and Kôno [5]
treated the case where the Laplace transform is replaced by the moments.

The aim of this paper is to give a Tauberian theorem in a most general form.
In section 1 the main theorem is stated with its proof. In section 2, we apply it
to various cases and see that the Tauberian theorems mentioned above are obtained
as special cases of our theorem.

§ 1 .  Main theorem

Throughout this section we assume a to  be a  fixed positive number and
f(x) (#const.) to be a  real valued nondecreasing function defined on the interval
(0, co) such that f (V ) i s  concave for some fl(> a). Note that f ( )  is also
concave. Therefore without difficulty we see that

g(x)= sup { M 1 )-1- x <0,

is a  nondecreasing convex function and that g (x )> f(0+ ). In fact g (x ) is strictly
increasing in x e (— cc, 0). For convenience we define g(0)=f(+ co) and g( — co)
=f(0+). S o  g(x) ( — oo _)c...Ç_O) is a continuous function with values in [— co, op].
Notice that for each A E ( -  0 0 ,  0), there exists a positive solution of f( ) + g(A)
and that this solution is unique. Indeed the first assertion is clear because



210 Y uji Kasahara

lim Mc') + )c = — co,
— .co

and lim  f() +  x  =f(0 +) < g(A).“o

So we prove the uniqueness. Assume there exist two solutions A, <12 . Then since
f ( ) + A  is  concave, f ( )+A --=g (A )  holds in the interval [11, 1 2 ] .

 B u t  this
contradicts the concavity of f ( V ) .  Using a  similar argument, we see that f ( ")
+ has two positive solutions for each A e(— co, 0), B e(f(0+), g(A)).

Now we state our main theorem:

Theorem 1. Suppose g(dx ) be a f inite B orel measure o n  (0, co) an d  L(x)
be a slowly varying function. Set

F(2)= exp {2f(x10(2))}a(dx)

w here 00)= PL (1).
Then;

(i) oo lim -
I
—  log p.(4)(x), co)x

lim I log p(4)(x), oo) A2
x...co X

implies

1 1(4') g(A1)
A

lim — log F(A) 1 1 m  log F(2) =
-5 g(A2) •

A—ooc, 

(ii) Conversely, if A 2 00, then (*) implies

A
2.

1
—  log p(0(x), co)Ai   —

- - — log ti(4)(x), co).. A2
X

where 2 1[12] is the least [largest] solution of

fgc9+ A 2 = g (A 1 ) .

( 71 ?-1  A , is to be read —  co if A ,= _ cc ).

(iii) If f(+ cc)< co and if log F(2). B >f(0+), then,

lim  log 11(0(x), oo)>.(B—f(+oo))IA,x

w here A ,= sup {A: f(Aœ)<B}.

A2 Remark. The constant A 2  which appeared in (ii) depends not only on2,
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A, but also on A , .  We easily see that 2 1 = d 1 2  holds if and only if A 1 =A 2 . Fur-
thermore if A 1 > —oo,

lim f A  =A
A24A, A l 2 1 '

Jimlim 4, -7
2-A 2  = (g(A,) —f(+ co))/A .

A2 to

So we can regard (iii) as an extreme case of (ii).

Corollary.
 1(j) l im  —  log kt(4)(x), a)) =A ( —oo 2=1- 0)x

if  and only if

Em 1
1 log F(A )=g(A ).

1(ii) lira — log u(4)(x), co)= A  (<0)x
if  and only if

+ log F(A )=g(A ).

In case f (+co )<co , the assumption A < 0 can be removed.

Proof of  Corollary. Since g(x) is strictly increasing, (i) follows from (i) and
(ii) of Theorem 1. For the proof of (ii), we have only to bear in mind that =,1.2

if A, =A 2 . In the case where A= O and f(+ oo)< oo , we can make use of (iii) of
Theorem 1. Q. E. D.

For the proof of Theorem 1, we prepare some lemmas.

Lemma 1.

(i) lim 1—  log F(A )>g(lim  - - p(4)(x), co)),x

(ii) lim 1-  log F(A) g ( lim  
1

log u(0(x), cc )).
A - . 00  A x - 4 C 0  X

P roo f. We need nothing but Chebyshef's inequality . Let A =lira -
1

log 1.1(4(x),x
co). In case A= —oo,(i) is trivial because g( — o o )=f (0 +) . So we assume AO — co.
Then for e a c h  > 0 ,

eAf ( x /0 ( 1 ) ) p(dx)

e'l f ( # ( 4 A ) 1 1 6 ( 1 ) ) ,4 (4) ( ) ), °O).

Hence
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A

 log F(2)_>_. fgŒ)+

which proves (i). Similarly we have (ii).

The following lemma plays a key role in this paper.

Lemma 2 .  I f  lim  log p(4)(x), co)S A (— co <A<O), then,
X -.0 3  X

Q. E. D.

( i ) eAf(x/d)(A))12(dx)L5_ f(12)+Allœ
A..00 A S43042)

for each p> o,

" l o g  ( " ) e Af (40( A))1,1(dx ) f(12 )+ Akt for e ac h  0 < p <
JO

where Ao (>0) is the unique solution of

(1.1) f(11.1)+ itl.=g(A ).

Pro o f . Set
hi(x, (5)=f((1+6)x 2 (1 +( - 1 )"))+ A(1 — (5)x. Then, clearly, hi (x, (5), i = 1, 2, are

continuous i n  e [0, 1) and are concave in x provided 0 5(55(f —  1)A 1. Since

hi(y, < hi(20 , 0) ( 20). 0 ), there exist positive constants c and (50 ( < ( 1 — 1) A 1) sucha
that

thi(p, (5)—h, 0 , (5)}I(p— 2o ) c> 0 for e(0, (5e ), 1=1,2.

On the other hand, the concavity of hi provides us with

hi(x, hi(P, (5)+hi(P' 
(5

)
 — 11 ' ( 2 ° ,
— Ao

Hence, if we set h(x, (5)= max {hi(x, 6), i=1 , 2}, then

h(x, h(p, S)+c(x—p), 0 < x < p, 0 <6 <S o .

that
Next we remark that for each (5>0, there exists a positive constant N a such

95(Y) <
(1+ (5)(y1x)2 (1 +4 )

{

for y Na

1 ) ( x ) = ( 1 + 6 )(34x)oe( 1 - 4 ) for x y.INT,

and p((k(x), oo)Se 4 (1 -6 ) for x./s/a .

The first inequality can be verified if we make use of the canonical representation
of (/) (cf. [2], p. 282). Now fix a positive number e and set

Pk P ek, k =1, 2,....

0<x<p.

Then if Ilk+



y
, ( i ik 4)

#011.+14)

y.014)
4,(N4+e)
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ecf (x10 (4 ) ) //(dx)

5 exp gf(0040/49(0)}11(004+ l a  co )

.{f((1 +(5)14 (1 ±6 ) )+ A(1 — b)lik+ i}

(5)—A(1 —(5)2)

exp  {h(/.2, (5) — ksc— A(1 — (5)6) .

Therefore, if

e U(x14,(4))11(dx)

cpk4)
s E

ic;t4+14.N i4)(1 1 k + i 4)

5(exp{h(p, (5)— A(1— 6)0)1(1— e — C g 4 )

which implies

T[ii log1 410.4) e4 f (x I <6 ( ))p (d x )—x 
4-.00 ( 7 54/(N6+e)

h(p, (5)— A(1— (5)s,

Hdnce, lim Is log 5 eu(x/ 0 (4))/./(dx)
4—co o

max {f(0 + ), h(y, (5)— A(1 — (5)6} .

Letting s 0 ,  (54 0, we obtain (ii). Similarly we can prove (i).

1Lemma 3 .  I f  lim — log 12(4)(x), co) SA (— oo<A<O), then,
x-.00 x

1lim  log F(A)Sg(A).
A, .  A

Q. E. D.

P ro o f. Let ).0  be as in Lemma 2. We choose A, and 22 so that 0 <A, <A0 <■12

< x .  T h e n ,

1i- di - log \ (x10(4))14.(dx)
.̀ .1 00114)

log {e4f(4, (A241/4, (41)p(00, coil1 ,

Sf(4)+AA.,.

Therefore, by Lemma 2,

liTtn -1-)  log F(2) max {f(1.1)+ AA, , f(21)+ A2 1 , f()1)+ A2 2 ) .
A-4co
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Letting Ai  t 20, 22 .1. 20, we see

hm —,
1

log F(A)5 f(,.g)+A,1,0 =g(A).
A . 0 0

Q. E. D.

Lemma 4 .  Suppose that

(1.2) lim — log p(4)(x), oo) 5 A (— oo < A <0)x

and that

(1.3) lim l o g  F(A) . B> f(0 +) .
Â-poo

Then,

lirn 1  log p(4)(x), oo).>. - -A2 Ax

where A 1 5_ A2 are the solutions of

(1.4) f(.11+ , >Q.

Pro o f . Since Lemma 3, (1.2) and (1.3) imply B 5g(A ), we see that (1.4) has
two solutions which coincide if and only if B =g(A ). Now choose n i  and 12 so that
0 <ry ...1 .2< ;/2< co. Then by Lemma 2,

1 o(41.1)eAf(x/#0,»p(dX) fOln + A 1(1 .5) lim —I log
A.00 50

<f(4)+A A 1 =B,

(1.6) lim log f e f  (x i  d' ( 1 ) ) 11(dX ) f(n) + Aq2

- 0072A)

<f(4)+ A A 2 = B.

(1.3), (1.5) and (1.6) imply

. 541(42A)
lim 17-  log (40(A))14(dx)> B.
A -0  co 000.)

On the other hand we have

cn2.0
11m

)

 log 
0 1

lo g  
0 .0

e l f ( x /o(A nti(dx)
A-4GO

.f(n1)+ j 1 lirn +  log p(4)(A ), co), (see the proof of Lemma 3).

Thus we see
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1lirn —,  log / 4 0 ( 4  c o )  —
1

(B—f(111)).
C O  A

Hence, letting i 1 . Ai , and q 2 A 2 , we obtain the assertion since

B -ND = A2A.

Q.E.D .

L em m a 5. If  —  co A then each of the conditions

(1.7) —
1  

log ti(0(x), oo)5 Ax

and

(1.8) illn log F(A) g(A)
A—• co

implies the other.

P ro o f . Since g(x) is monotone, it is easy to see that (1.8) implies (1.7) by
Lemma 1. So we prove the converse. Since g(0)=f(co), (1.8) is trivial if A =O.
In case — oo <A  < 0 , the assertion is proved in  Lemma 3. Therefore, if  A =— oo,
(1.8) is also valid replacing A  by any A'(> A ) .  Hence

1 log F(A) infg(A ')=g(A )

which completes our proof.

Now it is easy to prove Theorem 1. (i) follows from Lemmas 1 and 5, while
(ii) is an  easy consequence of Lemmas 5 a n d  4 .  To prove (iii), we have only to
notice an inequality

(1.9) F(0.e4v(0(Â )/0(4))/1.(0, 4)(g))+eu(')12(ck(g), co), 0.

(see, for instance, p. 448 of [10])
Indeed (1.9) shows that

1lirn — log (4)(x ), oo)>. —f(oo)+B
x -.co

provided f()Œ)< B.

§2. A pplications

Set f (x )= x  and 0<x< I. T h e n  the assumptions in section 1 are clearly satisfied,
and we see g(x)=(1— a)(al — x) 2 /(' - Œ). L et 49(x) b e  a positive function varying
regularly at oo with exponent a and t/i(x) be the asymptotic inverse of x/(x) (cf.
Seneta [9]). Apparently tP(x) varies regularly at op with exponent 1/(1—a). Now
we have the following as a special case of Theorem I.
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Theorem 2.

(i) -  co - A 1 5 lim —

1  
log /./(0(x), oo)5 lim —

1  
log/40(x), co )5  -A 2 50x-.co x x-co x

implies

1 (2.1) (1- a)(alA i )a/( 1 - 2) l i m log exp(dx)
tk GO 0

^Tfi 1 Poe log e x p i(d x )5 (1 -a )(0 2 )2/( 1 -a ).

tfr (A) 0

(ii) Conversely if (2.1) holds with O<A 2 5 A i <cc, then

5 lirn -1 - log ti(0(x), a ) )  lim -I- log pt(4)(x), c o )  -  A,
/1.1 X x..co X

where A i  [ 2 ]  is the least [largest] solution of

.-=, (1-a)(ocA 2 1A1 )OE/( 1 - a) ,i )

The latter half of this theorem is a  generalization of the result o f  Davies [1],
and the following corollary includes Nagai's Tauberian theorem which was derived
from Minlos-Povzner's theorem (cf. [7], [6]).

Corollary 1.

(i) l i m  —

1  
log/ (0(x), co )=  - A < 0  holds if  and only  if

x-oco x

urn 1
tp (A ) log exj,i(dX )= (1  —  a) (11A)4 ( 1 - 1 ) .

Jo

(ii) l c- log p(0(x), co)=  - A  (05 A 5 o o ) holds if  and only  if

 1 lim log 1  exp(dx)=(1-a)(a1A)OE/ 0 - 1).
(A ) 0

As an easy consequence of the preceding corollary, we also have the following;

Corollary 2 .  L et vi (dx), i= 1, 2, be two Radon measures on the line such that
co

eav (dx)< co f or all suf f iciently  large A . Suppose

op op
log eAxv i (dx)= log S elxv,(dx)+ 0(A), as  A  r  co.-op -op

Then, f or each slowly varying L(x) and constant p > l ,  we have the following;

( i )  l i m 1x P L (x )  -loe v
1
 (x

'
 co) - xPL(x)Tim 1l o g  v2 (x, cc).

1 ) It is easy to see that the ratio of the two solutions of this equation equals that of

e '-4 2 e= (l— a )(a/ 2 1 ,)./ (1-e).
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(ii) l im 1l o g y  ( x  o 5o)=A (—co..A<O)
X— .00 X I ' L (X ) 1

if  and only  if

1 lim log v2(x, Œ )_ A.
x _,,, xPL(x)

For an application of this corollary, see [4], for instance.
We next show that our theorem includes Fukushima's Tauberian theorem in

[3 ].  L et a(x), x.>_0, b e  a  nondecreasing right-continuous function with a(0)=0

such that 1
0 

e- "da(x) is finite for sufficiently large A. Assume xo b e  a continuity

point of a (x ).  Then b(x)=a(1/x 0 )—a(1/x+0) fo r x>x o a n d  =0 for
defines a  finite Stieltjes measure d b (x ). Now set f(x)= —11x, a>0 in  Theorem 1.
Then we see g(x)= —(1 + a)(— xla) 2/

(Œ
+ 1 ) .  Hence we obtain, for example,

lim x - ' /Œ log (b(co)— b(x))= A  (— c o  / 4 _5_0) is equivalent to
CO

CO

ltm /1- 1 /( ' -' 2 )  log e- 1 /xdb(x)= —(1 +a)( — Ala)cc/(1 -1 -1 1 .
A—.co

After a change of notation we see that lim x 1/7 log a(x)= A  is equivalent to
x O

lim ) - 1 /0 +1 ) log 1
°  

e- "da(x)=  —(1 +) ( — A/a)2 /( 1 ) .

Thus, similarly, we obtain the following;

Theorem 3.

(i) —  co — lim x1 /2  log a (x )  lim xl// log a(x):5_ 0 (a > 0)
Frui — 71- 6

implies
oe

(**) —(1+ a)(A i la)P/('+a )  l i m  )1.- 1 /( 1 + a )  log 1
°  
e- "da(x)

A—.co

1-'/
CO

lira . ( 1 +2 ) log 1
0 
e- "d a (x ). —(1 + a)(A2/0 1 /(1 +a ) .

(ii) Conversely, if A 2 0 0 ,  then (**) implies

— A ,  lim x 1/1 log a(x).. lim  xl/a log a(x) :5_ —A,
— xo

where Ai [A2 ]  is the least [largest] solution of

x - P+x=(1+1)(a24 2 1A,) - 71( 1+1).

(iii) lim k- l/( t+a) log 1
0 

e- " ._da(x) —B ( 0 B <  c c )

implies lim x1 12  log a(x) > —B(1-1-2)/2.

CO

Finally we give an application which is o f  interest in  th e  probabilistic point
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of v ie w . Set .f(x)= log x, a >0, and 4)(x)----xOEL(x). Then g(—x)—alog(a/ex). Let
us denote by a„ th e  n-th m om ent of p(dx). Rem ark that lim 'Va n 10(n)=e - A is
equivalent to

iiii -if log f  e l f ( x /O ( ) ) / / ( d X ) = — A , etc.
A-'

2J O

Thus, from Theorem I, we obtain the following:

Theorem 4.

(i) — —A1 - -
1  

log jt(cP(x), co)x

lim - 1- log p(d)(x), co) — A2
x-•co X

implies

(2.2) (aleA lim \/ä „ 145(n) lim "\,/ a„ 10(n) (ct/eA 2 )2 .
n  OD n

(ii) Conversely, if A 2 00, then (2.2) implies

_112  A2 < h. =   • M  - - p(0(x), co)x

.  1hm — log p(4)(x), cc)- — A 2

where [.12 ] is the least [largest] solution of

log n— = log  12 —1.

Using Stirling's form ula, we easily see that Theorem 4 includes Corollary of
Davies [1] and Theorem 2 of Kôno [5].
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