Tauberian theorems of exponential type

By
Yuji Kasahara

(Received May 9, 1977)

§0. Introduction

The notion of regularly varying functions, which was introduced by Karamata, extended greatly the Hardy-Littlewood Tauberian theorem and simplified its proof. According to Karamata's Tauberian theorem, a nondecreasing function $a(t), t \geqq 0$ varies regularly at 0 , if and only if its Laplace transform $F(\lambda)$ varies regularly at ∞ (see [2] or [9]). However, his method provides us with little information in a case where $a(t)$ or $F(\lambda)$ varies in an exponential order (cf. [3]). Such a case is of interest in some problems in probability theory and studied by Varadhan [10] and by Fukushima [3] etc. Similar problems have been studied by many authors. L. Davies [1] and Nagai [7] (or [4]) studied the relation between the asymptotic behaviour of $a(t)$ as $t \rightarrow \infty$ and that of $F(\lambda)$ as $\lambda \rightarrow-\infty$. Davies [1] and Kôno [5] treated the case where the Laplace transform is replaced by the moments.

The aim of this paper is to give a Tauberian theorem in a most general form. In section 1 the main theorem is stated with its proof. In section 2 , we apply it to various cases and see that the Tauberian theorems mentioned above are obtained as special cases of our theorem.

§1. Main theorem

Throughout this section we assume α to be a fixed positive number and $f(x)$ ($\not \equiv$ const.) to be a real valued nondecreasing function defined on the interval $(0, \infty)$ such that $f\left(\xi^{\beta}\right)$ is concave for some $\beta(>\alpha)$. Note that $f\left(\xi^{\alpha}\right)$ is also concave. Therefore without difficulty we see that

$$
g(x)=\sup _{\xi>0}\left\{f\left(\xi^{\alpha}\right)+x \xi\right\}, \quad x<0,
$$

is a nondecreasing convex function and that $g(x)>f(0+)$. In fact $g(x)$ is strictly increasing in $x \in(-\infty, 0)$. For convenience we define $g(0)=f(+\infty)$ and $g(-\infty)$ $=f(0+)$. So $g(x)(-\infty \leqq x \leqq 0)$ is a continuous function with values in $[-\infty, \infty]$. Notice that for each $A \in(-\infty, 0)$, there exists a positive solution of $f\left(\xi^{\alpha}\right)+A \xi=g(A)$ and that this solution is unique. Indeed the first assertion is clear because

$$
\lim _{\xi \rightarrow \infty} f\left(\xi^{\alpha}\right)+x \xi=-\infty
$$

and

$$
\lim _{\xi+0} f\left(\zeta^{\alpha}\right)+x \xi=f(0+)<g(A) .
$$

So we prove the uniqueness. Assume there exist two solutions $\lambda_{1}<\lambda_{2}$. Then since $f\left(\xi^{\alpha}\right)+A \xi$ is concave, $f\left(\xi^{\alpha}\right)+A \xi=g(A)$ holds in the interval $\left[\lambda_{1}, \lambda_{2}\right]$. But this contradicts the concavity of $f\left(\xi^{\beta}\right)$. Using a similar argument, we see that $f\left(\xi^{\alpha}\right)$ $+A \xi=B$ has two positive solutions for each $A \in(-\infty, 0), B \in(f(0+), g(A))$.

Now we state our main theorem:
Theorem 1. Suppose $\mu(d x)$ be a finite Borel measure on $(0, \infty)$ and $L(x)$ be a slowly varying function. Set

$$
F(\lambda)=\int_{0}^{\infty} \exp \{\lambda f(x / \phi(\lambda))\} \mu(d x)
$$

where $\quad \phi(\lambda)=\lambda^{\alpha} L(\lambda)$.
Then;
(i) $-\infty \leqq A_{1} \leqq \lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)$

$$
\leqq \varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq A_{2} \leqq 0
$$

implies

$$
\begin{equation*}
g\left(A_{1}\right) \leqq \lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \leqq \varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \leqq g\left(A_{2}\right) . \tag{*}
\end{equation*}
$$

(ii) Conversely, if $A_{2} \neq 0$, then (*) implies

$$
\begin{aligned}
\frac{\lambda_{2}}{\lambda_{1}} A_{2} & \leqq \lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \\
& \leqq \varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq A_{2}
\end{aligned}
$$

where $\lambda_{1}\left[\lambda_{2}\right]$ is the least [largest $]$ solution of

$$
f\left(\xi^{\alpha}\right)+A_{2} \xi=g\left(A_{1}\right) .
$$

($\frac{\lambda_{2}}{\lambda_{1}} A_{2}$ is to be read $-\infty$ if $A_{1}=-\infty$).
(iii) If $f(+\infty)<\infty$ and if $\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \geqq B>f(0+)$, then,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \geqq(B-f(+\infty)) / \lambda_{3}
$$

where $\lambda_{3}=\sup \left\{\lambda: f\left(\lambda^{\alpha}\right)<B\right\}$.
Remark. The constant $\frac{\lambda_{2}}{\lambda_{1}} A_{2}$ which appeared in (ii) depends not only on
A_{1} but also on A_{2}. We easily see that $\lambda_{1}=\lambda_{2}$ holds if and only if $A_{1}=A_{2}$. Furthermore if $A_{1}>-\infty$,

$$
\begin{aligned}
& \lim _{A_{2} \downarrow A_{1}} \uparrow \frac{\lambda_{2}}{\lambda_{1}} A_{2}=A_{1} \\
& \lim _{A_{2} \uparrow 0} \downarrow \frac{\lambda_{2}}{\lambda_{1}} A_{2}=\left(g\left(A_{1}\right)-f(+\infty)\right) / \lambda_{3} .
\end{aligned}
$$

So we can regard (iii) as an extreme case of (ii).

Corollary.

(i) $\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)=A \quad(-\infty \leqq A \leqq 0)$
if and only if

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda)=g(A)
$$

(ii) $\lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)=A(<0)$
if and only if

$$
\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda)=g(A) .
$$

In case $f(+\infty)<\infty$, the assumption $A<0$ can be removed.
Proof of Corollary. Since $g(x)$ is strictly increasing, (i) follows from (i) and (ii) of Theorem 1. For the proof of (ii), we have only to bear in mind that $\lambda_{1}=\lambda_{2}$ if $A_{1}=A_{2}$. In the case where $A=0$ and $f(+\infty)<\infty$, we can make use of (iii) of Theorem 1.
Q.E.D.

For the proof of Theorem 1, we prepare some lemmas.

Lemma 1.

(i) $\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \geqq g\left(\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)\right)$,
(ii) $\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \geqq g\left(\lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)\right)$.

Proof. We need nothing but Chebyshef's inequality. Let $A=\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x)$, ∞). In case $A=-\infty$, (i) is trivial because $g(-\infty)=f(0+)$. So we assume $A \neq-\infty$. Then for each $\xi>0$,

$$
\begin{aligned}
F(\lambda) & \geqq \int_{\phi(\xi \lambda)}^{\infty} \mathrm{e}^{\lambda f(x / \phi(\lambda))} \mu(d x) \\
& \geqq \mathrm{e}^{\lambda f(\phi(\xi \lambda) / \phi(\lambda))} \mu(\phi(\xi \lambda), \infty)
\end{aligned}
$$

Hence

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \geqq f\left(\xi^{\alpha}\right)+A \xi
$$

which proves (i). Similarly we have (ii).
Q.E.D.

The following lemma plays a key role in this paper.
Lemma 2. If $\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq A(-\infty<A<0)$, then,
(i) $\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \int_{\phi(\mu \lambda)}^{\infty} \mathrm{e}^{\lambda f(x / \phi(\lambda))} \mu(d x) \leqq f\left(\mu^{\alpha}\right)+A \mu$ for each $\mu>\lambda_{0}$,
(ii) $\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \int_{0}^{\phi(\mu \lambda)} \mathrm{e}^{\lambda f(x / \phi(\lambda))} \mu(d x) \leqq f\left(\mu^{\alpha}\right)+A \mu \quad$ for each $\quad 0<\mu<\lambda_{0}$,
where $\lambda_{0}(>0)$ is the unique solution of

$$
\begin{equation*}
f\left(\lambda^{\alpha}\right)+A \lambda=g(A) . \tag{1.1}
\end{equation*}
$$

Proof. Set
$h_{i}(x, \delta)=f\left((1+\delta) x^{\alpha\left(1+(-1)^{\prime} \delta\right\}}\right)+A(1-\delta) x . \quad$ Then, clearly, $h_{i}(x, \delta), i=1,2$, are continuous in $\delta \in[0,1)$ and are concave in x provided $0 \leqq \delta \leqq\left(\frac{\beta}{\alpha}-1\right) \wedge 1$. Since $h_{i}(\mu, 0)<h_{i}\left(\lambda_{0}, 0\right)\left(\mu \neq \lambda_{0}\right)$, there exist positive constants c and $\delta_{0}\left(\left\langle\left(\frac{\beta}{\alpha}-1\right) \wedge 1\right)\right.$ such that

$$
\left\{h_{i}(\mu, \delta)-h_{i}\left(\lambda_{0}, \delta\right)\right\} /\left(\mu-\lambda_{0}\right) \geqq c>0 \quad \text { for } \quad \delta \in\left(0, \delta_{0}\right), \quad i=1,2 .
$$

On the other hand, the concavity of h_{i} provides us with

$$
h_{i}(x, \delta) \leqq h_{i}(\mu, \delta)+\frac{h_{i}(\mu, \delta)-h_{i}\left(\lambda_{0}, \delta\right)}{\mu-\lambda_{0}}(x-\mu), \quad 0<x<\mu .
$$

Hence, if we set $h(x, \delta)=\max \left\{h_{i}(x, \delta), i=1,2\right\}$, then

$$
h(x, \delta) \leqq h(\mu, \delta)+c(x-\mu), \quad 0<x<\mu, 0<\delta<\delta_{0} .
$$

Next we remark that for each $\delta>0$, there exists a positive constant N_{d} such that

$$
\frac{\phi(y)}{\phi(x)} \leqq\left\{\begin{array}{lll}
(1+\delta)(y / x)^{\alpha(1+\delta)} & \text { for } & y \geqq x \geqq N_{\delta} \\
(1+\delta)(y / x)^{\alpha(1-\delta)} & \text { for } & x \geqq y \geqq N_{\delta}
\end{array}\right.
$$

and

$$
\mu(\phi(x), \infty) \leqq \mathrm{e}^{A(1-\delta) x} \quad \text { for } \quad x \geqq N_{\delta} .
$$

The first inequality can be verified if we make use of the canonical representation of ϕ (cf. [2], p. 282). Now fix a positive number ε and set

$$
\mu_{k}=\mu-\varepsilon k, \quad k=1,2, \ldots
$$

Then if $\mu_{k+1} \xi, \xi \geqq N_{\delta}$,

$$
\begin{aligned}
& \int_{\phi\left(\mu_{k+1} \xi\right)}^{\phi\left(\mu_{\mu^{\prime}} \xi\right)} \mathrm{e}^{\xi \delta(x / \phi(\xi))} \mu(d x) \\
& \quad \leqq \exp \left\{\xi f\left(\phi\left(\mu_{k} \xi\right) / \phi(\xi)\right)\right\} \mu\left(\phi\left(\mu_{k+1} \xi\right), \infty\right) \\
& \quad \leqq \exp \xi\left\{f\left((1+\delta) \mu_{k}^{\alpha(1 \pm \delta)}\right)+A(1-\delta) \mu_{k+1}\right\} \\
& \quad \leqq \exp \xi\left\{h\left(\mu_{k}, \delta\right)-A(1-\delta) \varepsilon\right\} \\
& \quad \leqq \exp \xi\{h(\mu, \delta)-k \varepsilon c-A(1-\delta) \varepsilon\} .
\end{aligned}
$$

Therefore, if $\xi \geqq N_{\delta}$,

$$
\begin{aligned}
& \int_{\phi\left(N_{d}+\varepsilon\right)}^{\phi(\mu \xi)} \mathrm{e}^{\xi \xi(x / \phi(\xi))} \mu(d x) \\
& \quad \leqq \sum_{k ; \mu_{k+1} \xi \geqq N_{o}} \int_{\phi\left(\mu^{k+}\right.}^{\phi\left(\mu_{k} \xi\right)} \\
& \quad \leqq(\exp \xi\{h(\mu, \delta)-A(1-\delta) \varepsilon\}) /\left(1-\mathrm{e}^{-c \varepsilon \xi}\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \varlimsup_{\xi \rightarrow \infty} \frac{1}{\xi} \log \int_{\phi\left(N_{\mathrm{o}}+\varepsilon\right)}^{\phi(\mu \xi)} \mathrm{e}^{\xi \delta(x / \phi(\xi))} \mu(d x) \\
& \quad \leqq h(\mu, \delta)-A(1-\delta) \varepsilon
\end{aligned}
$$

Hènce,

$$
\begin{aligned}
& \varlimsup_{\xi \rightarrow \infty} \frac{1}{\xi} \log \int_{0}^{\phi(\mu \xi)} \mathrm{e}^{\xi f(x / \phi(\xi))} \mu(d x) \\
& \quad \leqq \max \{f(0+), h(\mu, \delta)-A(1-\delta) \varepsilon\} .
\end{aligned}
$$

Letting $\varepsilon \downarrow 0, \delta \downarrow 0$, we obtain (ii). Similarly we can prove (i).
Q.E.D.

Lemma 3. If $\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq A(-\infty<A<0)$, then,

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \leqq g(A)
$$

Proof. Let λ_{0} be as in Lemma 2. We choose λ_{1} and λ_{2} so that $0<\lambda_{1}<\lambda_{0}<\lambda_{2}$ $<\infty$. Then,

$$
\begin{aligned}
\varlimsup_{\xi \rightarrow \infty} & \frac{1}{\xi} \log \int_{\phi\left(\lambda_{1} \xi\right)}^{\phi\left(\lambda_{2} \xi\right)} \mathrm{e}^{\xi f(x / \phi(\xi))} \mu(d x) \\
& \leqq \varlimsup_{\xi \rightarrow \infty} \frac{1}{\xi} \log \left\{\mathrm{e}^{\xi f\left(\phi\left(\lambda_{2} \xi\right) / \phi(\xi)\right)} \mu\left(\phi\left(\lambda_{1} \xi\right), \infty\right)\right\} \\
& \leqq f\left(\lambda_{2}^{\alpha}\right)+A \lambda_{1} .
\end{aligned}
$$

Therefore, by Lemma 2,

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \leqq \max \left\{f\left(\lambda_{1}^{\alpha}\right)+A \lambda_{1}, f\left(\lambda_{2}^{\alpha}\right)+A \lambda_{1}, f\left(\lambda_{2}^{\alpha}\right)+A \lambda_{2}\right\}
$$

Letting $\lambda_{1} \uparrow \lambda_{0}, \lambda_{2} \downarrow \lambda_{0}$, we see

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \leqq f\left(\lambda_{0}^{\alpha}\right)+A \lambda_{0}=g(A) .
$$

Q.E.D.

Lemma 4. Suppose that

$$
\begin{equation*}
\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq A \quad(-\infty<A<0) \tag{1.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \geqq B>f(0+) \tag{1.3}
\end{equation*}
$$

Then,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \geqq \frac{\lambda_{2}}{\lambda_{1}} A
$$

where $\lambda_{1} \leqq \lambda_{2}$ are the solutions of

$$
\begin{equation*}
f\left(\lambda^{\alpha}\right)+A \lambda=B, \quad \lambda>0 . \tag{1.4}
\end{equation*}
$$

Proof. Since Lemma 3, (1.2) and (1.3) imply $B \leqq g(A)$, we see that (1.4) has two solutions which coincide if and only if $B=g(A)$. Now choose η_{1} and η_{2} so that $0<\eta_{1}<\lambda_{1} \leqq \lambda_{2}<\eta_{2}<\infty$. Then by Lemma 2,

$$
\begin{align*}
& \varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \int_{0}^{\phi\left(\eta_{1} \lambda\right)} \mathrm{e}^{\lambda f(x / \phi(\lambda))} \mu(d x) \leqq f\left(\eta_{1}^{\alpha}\right)+A \eta_{1} \tag{1.5}\\
& \quad<f\left(\lambda_{1}^{\alpha}\right)+A \lambda_{1}=B, \\
& \varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \int_{\phi\left(\eta_{2} \lambda\right)}^{\infty} \mathrm{e}^{\lambda f(x / \phi(\lambda))} \mu(d x) \leqq f\left(\eta_{2}^{\alpha}\right)+A \eta_{2} \\
& \quad<f\left(\lambda_{2}^{\alpha}\right)+A \lambda_{2}=B .
\end{align*}
$$

(1.3), (1.5) and (1.6) imply

$$
\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \int_{\phi\left(\eta_{1} \lambda\right)}^{\phi\left(\eta_{2} \lambda\right)} \mathrm{e}^{\lambda f(x / \phi(\lambda))} \mu(d x) \geqq B .
$$

On the other hand we have

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \int_{\phi\left(\eta_{1} \lambda\right)}^{\phi\left(\eta_{2} \lambda\right)} \mathrm{e}^{\lambda f(x / \phi(\lambda))} \mu(d x) \\
& \quad \leqq f\left(\eta_{2}^{\alpha}\right)+\eta_{1} \frac{\lim _{\lambda \rightarrow \infty}}{} \frac{1}{\lambda} \log \mu(\phi(\lambda), \infty), \quad \text { (see the proof of Lemma 3). }
\end{aligned}
$$

Thus we see

$$
\varliminf_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \mu(\phi(\lambda), \infty) \geqq \frac{1}{\eta_{1}}\left(B-f\left(\eta_{2}^{\alpha}\right)\right) .
$$

Hence, letting $\eta_{1} \uparrow \lambda_{1}$, and $\eta_{2} \downarrow \lambda_{2}$, we obtain the assertion since

$$
B-f\left(\lambda_{2}^{\alpha}\right)=\lambda_{2} A .
$$

Q.E.D.

Lemma 5. If $-\infty \leqq A \leqq 0$, then each of the conditions

$$
\begin{equation*}
\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq A \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \leqq g(A) \tag{1.8}
\end{equation*}
$$

implies the other.
Proof. Since $g(x)$ is monotone, it is easy to see that (1.8) implies (1.7) by Lemma 1. So we prove the converse. Since $g(0)=f(\infty)$, (1.8) is trivial if $A=0$. In case $-\infty<A<0$, the assertion is proved in Lemma 3. Therefore, if $A=-\infty$, (1.8) is also valid replacing A by any $A^{\prime}(>A)$. Hence

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log F(\lambda) \leqq \inf _{A^{\prime}} g\left(A^{\prime}\right)=g(A)
$$

which completes our proof.
Now it is easy to prove Theorem 1. (i) follows from Lemmas 1 and 5, while (ii) is an easy consequence of Lemmas 5 and 4 . To prove (iii), we have only to notice an inequality

$$
\begin{equation*}
F(\xi) \leqq \mathrm{e}^{\xi f(\phi(\lambda \xi) / \phi(\xi))} \mu(0, \phi(\lambda \xi))+\mathrm{e}^{\xi f(\infty)} \mu(\phi(\lambda \xi), \infty), \quad \xi, \lambda>0 . \tag{1.9}
\end{equation*}
$$

(see, for instance, p. 448 of [10])
Indeed (1.9) shows that

$$
\lambda \lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \geqq-f(\infty)+B
$$

provided $f\left(\lambda^{\alpha}\right)<B$.

§2. Applications

Set $f(x)=x$ and $0<\alpha<1$. Then the assumptions in section 1 are clearly satisfied, and we see $g(x)=(1-\alpha)(\alpha /-x)^{\alpha /(1-\alpha)}$. Let $\phi(x)$ be a positive function varying regularly at ∞ with exponent α and $\psi(x)$ be the asymptotic inverse of $x / \phi(x)$ (cf. Seneta [9]). Apparently $\psi(x)$ varies regularly at ∞ with exponent $1 /(1-\alpha)$. Now we have the following as a special case of Theorem 1.

Theorem 2.
(i) $-\infty \leqq-A_{1} \leqq \lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq \varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq-A_{2} \leqq 0$
implies

$$
\begin{align*}
& (1-\alpha)\left(\alpha / A_{1}\right)^{\alpha /(1-\alpha)} \leqq \prod_{\lambda \rightarrow \infty} \frac{1}{\psi(\lambda)} \log \int_{0}^{\infty} \mathrm{e}^{\lambda x} \mu(d x) \tag{2.1}\\
& \quad \leqq \varlimsup_{x \rightarrow \infty} \frac{1}{\psi(\lambda)} \log \int_{0}^{\infty} \mathrm{e}^{\lambda x} \mu(d x) \leqq(1-\alpha)\left(\alpha / A_{2}\right)^{\alpha /(1-\alpha)}
\end{align*}
$$

(ii) Conversely if (2.1) holds with $0<A_{2} \leqq A_{1}<\infty$, then

$$
-\frac{\lambda_{2}}{\lambda_{1}} A_{2} \leqq \lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq \varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq-A_{2}
$$

where $\lambda_{1}\left[\lambda_{2}\right]$ is the least [largest] solution of

$$
\xi^{\alpha}-\xi=(1-\alpha)\left(\alpha A_{2} / A_{1}\right)^{\alpha /(1-\alpha) .1)}
$$

The latter half of this theorem is a generalization of the result of Davies [1], and the following corollary includes Nagai's Tauberian theorem which was derived from Minlos-Povzner's theorem (cf. [7], [6]).

Corollary 1.

(i) $\lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)=-A<0$ holds if and only if

$$
\lim _{\lambda \rightarrow \infty} \frac{1}{\psi(\lambda)} \log \int_{0}^{\infty} \mathrm{e}^{\lambda x} \mu(d x)=(1-\alpha)(\alpha / A)^{\alpha /(1-\alpha)}
$$

(ii) $\varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)=-A(0 \leqq A \leqq \infty)$ holds if and only if

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\psi(\lambda)} \log \int_{0}^{\infty} \mathrm{e}^{\lambda x} \mu(d x)=(1-\alpha)(\alpha / A)^{\alpha /(1-\alpha)}
$$

As an easy consequence of the preceding corollary, we also have the following;
Corollary 2. Let $v_{i}(d x), i=1,2$, be two Radon measures on the line such that $\int_{-\infty}^{\infty} \mathrm{e}^{\lambda x v_{i}}(d x)<\infty$ for all sufficiently large λ. Suppose

$$
\log \int_{-\infty}^{\infty} \mathrm{e}^{\lambda x} v_{1}(d x)=\log \int_{-\infty}^{\infty} \mathrm{e}^{\lambda x} v_{2}(d x)+O(\lambda), \quad \text { as } \quad \lambda \uparrow \infty
$$

Then, for each slowly varying $L(x)$ and constant $\rho>1$, we have the following;
(i) $\varlimsup_{x \rightarrow \infty} \frac{1}{x^{\rho} L(x)} \log v_{1}(x, \infty)=\varlimsup_{x \rightarrow \infty} \frac{1}{x^{\rho} L(x)} \log v_{2}(x, \infty)$.

[^0]$$
\xi^{\alpha}-A_{2} \xi=(1-\alpha)\left(\alpha / A_{1}\right)^{\alpha /(1-\alpha)}
$$
(ii) $\lim _{x \rightarrow \infty} \frac{1}{x^{\rho} L(x)} \log v_{1}(x, \infty)=A \quad(-\infty \leqq A<0)$
if and only if
$$
\lim _{x \rightarrow \infty} \frac{1}{x^{\rho} L(x)} \log v_{2}(x, \infty)=A
$$

For an application of this corollary, see [4], for instance.
We next show that our theorem includes Fukushima's Tauberian theorem in [3]. Let $a(x), x \geqq 0$, be a nondecreasing right-continuous function with $a(0)=0$ such that $\int_{0}^{\infty} \mathrm{e}^{-\lambda x} d a(x)$ is finite for sufficiently large λ. Assume x_{0} be a continuity point of $a(x)$. Then $b(x)=a\left(1 / x_{0}\right)-a(1 / x+0)$ for $x>x_{0}$ and $=0$ for $0 \leqq x \leqq x_{0}$, defines a finite Stieltjes measure $d b(x)$. Now set $f(x)=-1 / x, \alpha>0$ in Theorem 1. Then we see $g(x)=-(1+\alpha)(-x / \alpha)^{\alpha /(\alpha+1)}$. Hence we obtain, for example, $\varlimsup_{x \rightarrow \infty} x^{-1 / \alpha} \log (b(\infty)-b(x))=A(-\infty \leqq A \leqq 0)$ is equivalent to

$$
\varlimsup_{\lambda \rightarrow \infty} \lambda^{-1 /(1+\alpha)} \log \int_{0}^{\infty} \mathrm{e}^{-\lambda / x} d b(x)=-(1+\alpha)(-A / \alpha)^{\alpha /(1+\alpha)}
$$

After a change of notation we see that $\varlimsup_{x \downarrow 0} x^{1 / \alpha} \log a(x)=A$ is equivalent to

$$
\varlimsup_{\lambda \rightarrow \infty} \lambda^{-1 /(1+\alpha)} \log \int_{0}^{\infty} \mathrm{e}^{-\lambda x} d a(x)=-(1+\alpha)(-A / \alpha)^{\alpha /(1+\alpha)} .
$$

Thus, similarly, we obtain the following;

Theorem 3.

(i) $-\infty \leqq-A_{1} \leqq \lim _{x+0} x^{1 / \alpha} \log a(x) \leqq \lim _{x+0} x^{1 / \alpha} \log a(x) \leqq-A_{2} \leqq 0 \quad(\alpha>0)$
implies

$$
\begin{align*}
- & (1+\alpha)\left(A_{1} / \alpha\right)^{\alpha /(1+\alpha)} \leqq \varliminf_{\lambda \rightarrow \infty} \lambda^{-1 /(1+\alpha)} \log \int_{0}^{\infty} \mathrm{e}^{-\lambda x} d a(x) \tag{**}\\
& \leqq \varlimsup_{\lambda \rightarrow \infty} \lambda^{-1 /(1+\alpha)} \log \int_{0}^{\infty} \mathrm{e}^{-\lambda x} d a(x) \leqq-(1+\alpha)\left(A_{2} / \alpha\right)^{\alpha /(1+\alpha)}
\end{align*}
$$

(ii) Conversely, if $A_{2} \neq 0$, then (**) implies

$$
-\frac{\lambda_{2}}{\lambda_{1}} A_{2} \leqq \lim _{x+0} x^{1 / \alpha} \log a(x) \leqq \varlimsup_{x+0} x^{1 / \alpha} \log a(x) \leqq-A_{2}
$$

where $\lambda_{1}\left[\lambda_{2}\right]$ is the least [largest] solution of

$$
x^{-\alpha}+x=(1+\alpha)\left(\alpha A_{2} / A_{1}\right)^{-\alpha /(1+\alpha)} .
$$

(iii) $\lim _{\lambda \rightarrow \infty} \lambda^{-1 /(1+\alpha)} \log \int_{0}^{\infty} \mathrm{e}^{-\lambda x} d a(x) \geqq-B \quad(0 \leqq B<\infty)$
implies $\lim _{x+0} x^{1 / \alpha} \log a(x) \geqq-B^{(1+\alpha) / \alpha}$.
Finally we give an application which is of interest in the probabilistic point
of view. Set $f(x)=\log x, \alpha>0$, and $\phi(x)=x^{\alpha} L(x)$. Then $g(-x)=\alpha \log (\alpha / \mathrm{e} x)$. Let us denote by a_{n} the n-th moment of $\mu(d x)$. Remark that $\overline{\lim }_{n \rightarrow \infty} n \sqrt{a_{n}} / \phi(n)=\mathrm{e}^{-A}$ is equivalent to

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \int_{0}^{\infty} e^{\lambda f(x / \phi(\lambda))} \mu(d x)=-A, \quad \text { etc. }
$$

Thus, from Theorem 1, we obtain the following;

Theorem 4.

(i) $-\infty \leqq-A_{1} \leqq \lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty)$

$$
\leqq \varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq-A_{2} \leqq 0
$$

implies

$$
\begin{equation*}
\left(\alpha / \mathrm{e} A_{1}\right)^{\alpha} \leqq \lim _{n \rightarrow \infty} n \sqrt{a_{n}} / \phi(n) \leqq \varlimsup_{n \rightarrow \infty} \sqrt[n]{ } \sqrt{a_{n}} / \phi(n) \leqq\left(\alpha / \mathrm{e} A_{2}\right)^{\alpha} . \tag{2.2}
\end{equation*}
$$

(ii) Conversely, if $A_{2} \neq 0$, then (2.2) implies

$$
\begin{aligned}
-\frac{\lambda_{2}}{\lambda_{1}} A_{2} & \leqq \lim _{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \\
& \leqq \varlimsup_{x \rightarrow \infty} \frac{1}{x} \log \mu(\phi(x), \infty) \leqq-A_{2}
\end{aligned}
$$

where $\lambda_{1}\left[\lambda_{2}\right]$ is the least [largest] solution of

$$
\log \eta-\eta=\log \frac{A_{2}}{A_{1}}-1
$$

Using Stirling's formula, we easily see that Theorem 4 includes Corollary of Davies [1] and Theorem 2 of Kôno [5].

Department of Mathematics Kyoto University

References

[1] L. Davies, Tail probabilities for positive random variables with entire characteristic functions of very regular growth, Z. Angew. Math. 56 (1976) 334-336.
[2] W. Feller, An introduction to probability theory and its applications vol. 2, 2nd Ed., Wiley, New York, 1971.
[3] M. Fukushima, On the spectral distribution of a disordered system and the range of a random walk, Osaka J. Math. 11 (1974) 73-85.
[4] -, H. Nagai \& S. Nakao, On an asymptotic property of a random difference operator, Proc. Japan Acad. 51 (1975) 100-102.
[5] N. Kôno, Tail probabilities for positive random variables satisfying some moment conditions, Proc. Japan Acad. 53 (1977) 64-67.
[6] R. A. Minlos \& A. Ja. Povzner, Thermodynamic limit for entropy, Trudy Moskov. Mat. Obšč. 17 (1968) 243-272.
[7] H. Nagai, A remark on the Minlos-Povzner Tauberian theorem, to appear.
[8] L. A. Pastur, Spectra of random self-adjoint operator, Russian Math. Surveys 28 (1973) 1-67.
[9] E. Seneta, Regularly varying functions, Lecture notes in Mathematics 508 (1976) SpringerVerlag.
[10] S. R.S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure and Appl. Math. 20 (1967) 431-455.

[^0]: ${ }^{1)}$ It is easy to see that the ratio of the two solutions of this equation equals that of

