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O. Introduction

The boundary-value problems for the Helmholtz equation du + k2 u = f  play an
important role in various problems of mathematical physics. In [2], [3], S. Mizo-
hata constructed the Green's function for d - A2 with Neumann or Dirichlet bound-
ary condition in the exterior domain of a bounded obstacle, establishing the theory
of integral equations with a holomorphic param eter. He showed the Green's func-
tion is meromorphic with respect to  A in the whole complex plane, and it is holo-
morphic in Re /1.,>..0. In this note, we discuss the Green's function for d — A2 w ith

authe boundary condition of the third kind +  (s)u = O. W e try  to  represent the
solution as the potential of a simple layer. In 1 . w e show the boundary-value
problem can be reduced to an integral equation for the density on the boundary, and
the methods in [2], [3] are applicable to our case. In 2. we see first the resolvent
kernel for the integral operator is holomorphic in Re A >0 except for the positive real
axis. I f  a  is sufficiently small, we can say the resolvent kernel is holomorphic
on the non-negative real axis. T h e  same thing holds, if o <

 (o  p
'

 n )
,  when thelop12

obstacle is star-shaped. In 3 . we construct the Green's function, and show it is
holomorphic on the positive and negative imaginary axis.

If we assume the above inequality, we can say the Green's function is holomor-
phic in Re A  O. As is well known, such analyticity leads to the local decay of the
solution of the exterior problem for the wave equation. W hen the boundary is a
sphere with radius p ,  the inequality reads a<  —

1  
(if we choose the origin as 0).

In 4. we construct the solution for the wave equation with the boundary condition

—
1au1

a r  +  p  u = 0  that never decays. W hen a <  ,  T. T okita  showed, in  [5 ] ,  the
solution decays exponentially. Finally, I w ish to thank Prof. M izohata for his
valuable advice and incessant encouragement.
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1. Preliminaries

Let S  be a compact C 2 -surface in  R3 , and ,f2+(52+) the exterior (the interior)
o f  S .  A C 2 -surface means there exists a  C2 +2 function 9 in R3 for every point on
S , such that grad 9  0 and S  is represented as the null-set of cp in a neighbourhood
of the point.

We consider the following problem.

Here, f  is a  bounded Holder continuous function in S2+, and cr is a real-valued
Wilder continuous function o n  S .  From now o n .  P, Q,... denote the points in
0± , p, q,... the points on S .  d P  denotes the volume element in R3 , dq the surface
element of S .  We say a  function 9 e Cm(M) (M is S, Cl± or R3 ), when 9 is
times continuously differentiable, and its  m-th derivatives are  Wilder continuous
with exponent a.

Difinition 1.1. W e say G(P, QIA ) is  th e  Green's function fo r  (1.1) when it
has the following properties.

i) If we fix a  po in t Q  in Q ,  G(P, OA ) is of class C2  w ith respect to P  in
0+\{Q}, and whose first derivatives are continuous up to the boundary of C2±.

ii) (4 ,-2 2 )G(P, Q, IA)=3(P — Q) P e S24- , where 6 is the Delta function.

iii) [ +o-(p )]G (p , Q )=0 p e S.

1 e - AIP ISince 4 n  p E ( P IA) is  a  fundamental solution for A — A2 ,  w e set

G(P, QIA)= — E(P—Q1A)+ K(P, O A ). So we have only to consider (1.2)

du- - ,12 u =0 in D+

Ou 
en +a(p)u =g(p) o n  S g E CŒ(S) .

Definition 1.3. L et 9, t/i be continuous function on S, th e n  V (P)=2E(P —

'21)09(q)dq is called the simple layer potential with density 9 ,  a n d  W (P)=2 a
a
n g

E(P—q1411(q)dq the double layer potential with density

The following properties for V, W are well known as "The jump relations".

Proposition 1.4.

i) an V(p)I±— -T 9  +  E(p— ql2)9(q)dqan p

ii) W(p)I ± = ±1// +25 a
a
nq  E(p—q1A)0(q)dq.

(1.2)
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Here Ap)1 ±  d en o te  lirn f(P).
P - . p
Peg+

We try to represent the solution of (1.2) in the form of u(P)=21E(P — giA)9

(q)dq. Then the density should satisfy the following integral equation.

(1.5) — ço(p) + a
(3
n p  E(p— q1,1)go(q)dq+2,c(p)1E(p— q1.1)9(q)dq ,----g(p)

Conversely if we obtain a  continuous function go as a solution for (1.5), u(P)=

— q1.1.)9(q)dg is obviously the solution of (1.2). Hereafter, K(p, ql),) denotes

a 2 E(p — ql),)+2o-(p)E(p — ql)). We notice a property of solution of the integralan p

equation with the transposed kernel K(q, p l ) ,  which can be proved easily.

Proposition 1.6. L e t  g  be a  continuous function o n  S, Ill a  so lu tion  o f the
integral equation w ith the transposed kernel Iqq, plA).

(1.7) —0(p)+1K(q, plA)0(q)dq=g(p)

a Then v(P)=2 E(P — q1A)11/(q)dq is  the solution of the following interior

Dirichlet problem. q

(1.8) f dv— A2 o=0

1 =9(P)

P ES-2-  v  e  C2 (52- ) n C( )

p e S

We are going to solve the integral equations (1.5), (1.7) following Mizohata's
argum ent. We briefly review the theory of integral equations with a  holomorphic
parameter.

i) The integral equations (1.5), (1.8j are solved by Neumann series in a domain
.9  in  C, and  the  resolvent kernel R(p, q1,1) i s  meromorphically continued with
respect to t o  the whole complex plane.

ii) I f  R(p, q) is  holomorphic in  a  neighbourhood o f  /10 e C, (1.5), (1.7) are
solved uniquely for any f, g. And the solutions are expressed as follows.

ItP(P)= — l(P) - 1R(P, (11).0)f(q)chl

tli(p)= —g(p)-1R(q, plA o )g(q)dq.

iii) If R has a pole a t Ao , there exist non-trivial eigenfunctions 9, V/ satisfying

9(p)=1K(p, ql4)9(q)dg

111(p)= K(q, p1,10 )0(q)dq.

iv) L e t  R(p, (11, 0=A 9)() — A O ' + ••• +Ao(P, clIA) be the Laurent expan-
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sion of R  at Ao , then A _,„ has a specific form, namely

A _„,(p, q)= 9 i (p)11/ i (q)+ • • • + 9 k(p)t1/ k(q)

where {9 i } ({ o . , } )  are a system o f linearly independent eigenfunctions for K(tK).
Those results are celebrated theorems of Fredholm when the kernel is conti-

nuous and has the form  K (p, qIA )=A K (p, q). The kernels introduced here may
have certain singularity, but counting the inequality IK(p, q1/1)1< C(1+ q I ) I P  —
q i--te -R ip-q I, we can confine ourselves to the case where K(p, qIA ) is continuous,
considering the  twicely iterated kernel K ( 2 )(p, giA ). Then we introduce another
complex parameter /1 artificially, and consider the following integral equation.

(1.9) — 9(p)+ 4K(p, q111)9(q)dg = f(p) 1111

As IK( 2 )(p, ql2)1<CIAle - R " IP - ql, we see easily the Neumann series converges
uniformly with respect to it and /I when Itti <1 and A in a sector in the complex plane.
Then we have only to repeat the course of Fredholm's theory, considering it as the
eigenvalue A as a parameter. Since the Fredholm determinant converges uniformly
with respect to the parameter A., Fredholm determinant is entire analytic with respect
not only to y  but also to A . Then we let t i  be 1. The exposition of the theory
is found in Mizohata [3].

We close this section noticing the regularity of the simple and double layer
potentials.

i) The eigenfunctions for K(p, q1A) are of class C4 (S).
ii) The eigenfunctions for K(q, plA) are of class C'+2 (S).

iii) The simple layer potential with a  Holder continuous density is o f class
C'D(52±) and CH - 1 (0±).

iv) The double layer potential with a  density of class C 1 +1 (S ) is Cœ(f2±) and
C1 +a'(12- ±).

Those facts are proved only for the Newtonian potentials in GUnter [1]. But
we need no essential modifications in proving them for our oscillating potentials.

2 .  Analytic continuation of the resolvent kernel

Now we discuss the properties of the resolvent kernel with respect to

Lemma 2 . 1 .  L e t  9  be  a 1-161der continuous function on S. We set u(P)=-

25E(P-0)9(q)dq. If  u(P)_=O in C2+ and A 2  is not an eigenvalue for the interior

Dirichlet problem for LI, then 9 must b e  0 on S.

Pro o f . As u is continuous in R3 , u  0 especially on S .  Therefore u  is a solu-
tion of the interior Dirichlet problem

Au —Au in f2-

u15 =0 o n  S u e C2 (Q- ) n C(0 )
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Since A2 is  n o t an  eigenvalue, u must b e  --m. 0 in  C2- - . So we have
au I au_

l  =0 by "The jump relation".en I en

— 2 ço ( =

To begin with, we study the resolvent kernel in the case where the real part of
A is positive.

Lemma 2.2.
i) The resolvent kernel R is holomorphic in { ileC I Re ).> 0, Im k 0}.

ii) There may be f initely  many poles on the positive real axis.

P ro o f . W e assume A, e C, Re Ao >0 is a  po le  o f R , and  se t u(P)=21E (P-

g1,10 )9(g)dg for a  non-trivial eigenfunction 9  corresponding to  A ,. Then u(P)
satisfies (d —A)u P  e  +  o -(p))u =0 p E S , and (-"F, 

)Œ

 u(P)= 0(e - ReA° I P I).

Applying the Green's identity to u and  5, we have 1
0 +

A uFtdP = — 1 IF ul 2 dP +

alul 2 d q . And we obtain
f2+

(2.3)
+ 
Iru l2dP+4 

f 2 +

1 l u l 2 dP=1
f2 

i) We set A, =  +  ik , (y 0 > 0, 1(0 k 0, I I ,  a n d  k ,  a re  real). C o m p a r in g  the
imaginary part of the both sides of (2.3), we have 2itok011u12 dP= O. T h e n  u, - 0 in
0+ which is, by Lemma 2.2, contrary to the assumption that 9  is non-trivial.

ii) W hen A0 = 0 ,  to  (2.3) w e apply an interpolation inequality lul2 dq

11714 12  d P  C el u l 2 dP (for any e> 0). Then we obtain
f2+ f2+

(1 - maxk71)1117  ul 2 d P + (f1.6 C E max1c1)11,112 dP<O,

which shows u 0  in  52+ when A,>(C cmax l0-1)1 1 2 . This is again contrary to our
assumption.

Next we impose a certain condition on the surface S.

Definition 2 .3 .  A n obstacle 0  is called star-shaped, when there exists an
interior point 0 e 0  such that (np , op)..- 0 for every point p  on 0 0 .  Here np denotes
the outward unit normal vector at p e S .  We may call "S  is star-shaped" when the
interior of S is star-shaped.

Proposition 2.4. W e assum e S  is star-shaped. If  o(p) satisfies o-(p)<I(n r op)I
lop1- 2 , w here  0  is  an  interior point mentioned above, R(p, gjA ) is holomorphic
is a neighborhood of the non-negative real ax is, containing the origin.

P ro o f . Let Ao (A, >0) be a pole of R , we set u(P)=2E(P g1.1. 0 )9(q)dg for a
non-trivial eigenfunction corresponding to Ao. Then u(P) satisfies the following.
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(t1—).8)1 = 0 in Q+

( 0
3
1---1 +  o-)u  =0o n  S u e C2 (Q ) n ci(n+)

(2.4)
( Mœu=0(e-ReAlPi) if /1.0 >0, I PI sufficiently large

u= 0 (IP1- 1 ), (M u = 0 ( I P I - 1 - 1.1) if
large

;10 = 0 , IP I  sufficiently

We introduce the polar coordinates with the centre a t 0, setting (o=opiopri,
0 op= lopIw =p(w ). As u(p((o))= u(r(o)dr, (The integral converges, ac-

au ip(0))1
cording to (2.4). -i -denotes the derivative along the radial direction.) we obtain
the following by applying the Schwartz's inequality to the right hand side.

(2.5) I u(P(0))) I 1
P(w) I 

1
ip()1 

I Vu I 2 r2 drI (t)

I f  (np , op

- )

0, dp is represented as IP( 6 ) ) 1 2

)1
 du.), where dco is  the surfaceI 0

element of the unit sphere, no,=n p ( W ) . At the point p where (ii,,, op▪ )=  0, the con-
dition reads i(p )< O .S o  i f  w e set co+ = {Icol =1; a(p(o))). 0 }  and co6 ={1col=
1; l(n„„ co)1_>..51, there exists a positive 5 such that w + c w .

Multiplying u(p(o))) to the both sides of (2.5) and integrating over co., we have

I u 12 dq..< (P( 0 ) ) )  P(a)) I 2 

ruI (nr„ op)I jipooil l2r2drdq

sup
pew

a(p)1 0 11 12 1 p u 12 dP..(np , op) IT '

If we denote e = sup
pew

u(01.9 P1▪  2  

(np , op) , we obtain

(2.6) crItil2dq<eS. IVul 2 dP.

i) In the case /10 >0, substituting (2.6) in (2.3), we find

luI 2 dP+(1.--8) ru I2 dP < 0 .
f 1 .

Since e<1, u -.7.-0  in 52+, which is contrary to the assumption.
ii) In the case 20 = 0 , we choose such a large sphere with radius R as to con-

tain S in its interior. Integrating A ui over the ball, we find

Iru l 2 d P —  au tldq— (3u  - - dq.n  u
Iri<R IPI<R s en IPI=R ur

As Au =0, au/ar u =0(R - 3 ), we obtain
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IFul 2c/P=
s
alul 2dq <8 5  I ru l 2 dP,

0+ 0 *

if R goes to co. Since e< 1 by the condition, Pit must be zero in t r .  Remember-
ing u= 0 (IPI -1 ), u =.0 in  Q, which is impossible.

We give two Lemmas to study the resolvent kernel on the imaginary axis.

Lemma 2 .5 .  i) Let q  b e  a  Holder continuous function o n  S .  We set u(P)=
a4E(P-glik)(p(q)dg (k  E R, k 0). Then if  (--3-n-+ o-)u =0 on S, u O in Q .

ii) L e t i  b e  a function of  class C ( S ) .  We s e t  v (P)=214 E(P -qiik )

tfr(q)clq+2 E(P-glik)0(q)o-(q )d q . Then the sam e thing as i) holds. q

Pro o f . The proof is reduced to the uniqueness theorem of Rellich (see Mizohata
[3]). In our case it is important that a  is real-valued.

Lemma 2.6. L et ik , be a pole on the im aginary  ax is (k 0 =0), then k6 is an
eigenvalue .for - d in the interior Dirichlet problem.

Pro o f . This Lemma is essentially the same one as Lemma 2.1.

Lemma 2 .7 .  Let 11(0 be  a pole of  R on the im aginary  ax is, {9.;} be the system
o f  linearly  independent eigenfuctions f o r  K(p, glik,), { tP i } b e  f o r  K(q, PA O

a corresponding to ik o , and we set Oi (P)=-E (P-q iik o )(pi (g)dq,IPi (P)=1 n .  E ( P -
vr'ci

glikoW /i(q)dq+E(P -  glik o )o-(q)0(q)dq = + T hen each o f  {(Pi }, { r i } i s  a

system  o f  linearly  independent eigenfunctions f o r  - d  in  th e  interior Dirichlet
problem.

aP ro o f . O n 0i : 0 i  satisfies 40 i + k60i =0 in  fr ,  ( - j-+a) 'P=O  o n  S .  By

Lemma 2.5. 0 in  S r and especially 0 i =-0 on S .  As 0 i  is continuous in  R3,
0i  is an eigenfunction for -d  in the interior Dirichlet problem. Now if we suppose
0= Za i 01 = 0 in 52-  for some ai , 0 is identically zero in 0+ u Q . Then  -2E cy p 1(p)

a= an 'P b - 01_ =0, which is impossible.
ii) On Wi satisfies, by Proposition 1.6. dri + kaWi = 0 in Q W I = 0  on

S .  We no te  Wi l+ = Wi l +  V i l+ =2(//i + _ + Vi l_ =20 i ,  and -S—nW J I  +

+ a n  Vi l+ = -2atfri+ a n  Vi l_ Wi l_ - a r i l+. B y  th e  w a y , we sup-

pose W = 0 in 0 -  fo r  some ai ,  Since a
a
na ô n WI +=

"
W satisfies AT + =0 in  g2+( a

a
n  + a)W =0 on S, again W 0 i n  f2+ by Lemma

2.5. Therefore - I ---2E « i lk;  = 0 ; which is impossible.

3. Construction of the Green's function

In this section we construct the Green's function, and study its properties. T o
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construct the compensating function K , we consider the integral equation

(3.1) — yo(p, Q12) + K(p, q12)9(q, Q)dg = ip E(P — Q12) + a(P)E(P — Q IA)

According to previous considerations, (3.1) is solved uniquely as the following, when
Re2> 0, Im 240.

(P(P, Q)= - aô
n p E(P — Q1),)+a(P)E(P — Q12) - 21Z(P, r12) ik r

- E(r — o-(r)E(r

— Q1,1)} dr. Thus the compensating function K(P, Q12) is expressed as K(P, QIA)=

2E (F q12 )9 (q , Q )dq . Then we have

Proposition 3.1. W h e n  Re.1.>0, Im /1.40, the  Green's function o f  (1.1) is
expressed as

(3.2) G(P, Q ) = —  E(P — Q I — P g I ),){4 E — Q I ■1.)+ o-(q)E(g — Q ),4 dri

+4E ( P—  glA )R (q, r1 ,1)I:n r E(r -Q1).)+ a(r)E(r — OA)} drdq.

A nd G(P, Q12) has the meromorphic continuation in 2  t o  the whole complex
plane.

Proposition 3.2. W e denote 0 (13 , QI 2 )=G (2 , P IA )  f o r P , Q e  f r.  T h e n  G
is the Green's function for /1--). 2 w ith Dirichlet boundary  condition in the interior
domain.

P ro o f . Changing the order of integration in (3.2), we find the proposition a
consequence of Proposition 1.6.

From now on, we carry out the same discussions as in Mizohata [3].

Proposition 3 .3 .  L e t  ik o b e  a  p o le  o f  R (p, giA ) o n  th e  im aginary  axis.
Then the pole is simple.

Proposition 3 .4 .  G(P, QI2) is holom orphic i n  a  neighbourhood o f  th e  im-
aginary  ax is w ithout the origin.

To prove Proposition 3.3. we need the fact the Green's operator for the interior
Dirichlet problem for A 

_ 2 2
 h a s  a simple pole at every eigenvalue fo r  — J. W e

substitute to (3.2) the Laurent expansion of the resolvent kernel at a pole on the
imaginary a x is .  Then we obtain Proposition 3.4 easily.

We summarize what we have obtained.

Theorem 3 .5 .  L et S  be a com pact C2 +1 su rf ac e  in  R 3 . T hen the Green's
function for (1.1) is m erom orphic w ith respect to  the param eter 2 in  the  whole
com plex  plane. Especially , if  the  obstacle is star-shaped, and the coefficient a

( 7 0 ) ) < (n, op) G o ) .  Q , , a  neighbourhood o f  {A Isatisfies k t )  I s  n0101710117 h i e  i n
lop12
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R em ark . i)  The spectral function for — d with the boundary condition of the
third kind in the exterior domain is real-analytic, if the conditions in Theorem 3.5.
are satisfied.

ii) By virtue of i), the solution of the following problem for the wave equation
decays when t goes to co.

u„ u =0 in (O. co) x C2+

u= f t , u,= f 2o n  {t=0} x (2+ fi • f2 C (O + )

( kt +17)11=° o n  (0, co) x S

iii) When the surface is a sphere with radius p, the condition on a becomes
1o i- ( p ) < - -  f we choose the origin as O .  This coinsides the Tokita's condition for

exponential decay of the solution.

4 .  An example

In this section we are going to construct the solution of an exterior problem for the
wave equation that never decays. The construction is based on Tokita's paper [5].

We consider the following problem.

u,,(x , t)— du(x, t)= f=j1/(x, 0=0 in x(O, cc) 52 = {xi P}

(4.1) u(x, 0)= fo(x), 14,(x, 0)=.f i(x) on x tt=01

(-ST  +a )u (x , 0=0 , a is const. o n  {x1 lx1 =P}  x (0, co)

As we assume the compatibility condition of infinite order, we have only to con-
sider the following.

Du(x, 0=0 in {xl lx1>P} x (0, co)

u(x, 0) =u,(x , 0) -= 0 on {xl lx1>P} X {1 = 0 }
(4.2)

t)=-g(x, t) on {x l I x l = } x 00)

supp {xl Ix' > x {1.>, 0}, supp g c {x i lx1 = x {0

We solve (4.2) by the method o f separation of variables. W e set formally
u(x, E Eu.„,(r, p, t)Y„„,(w) and f(x, t)= E Ef„„,(t, p)Y„,„(w), where Y„,,, is the

n  m n m

Ats,
spherical harmonics of order n. Then u,„„(r, p, t)— E eAf»('-of„,,(T, p)cir x

o

ReS 1),(r, PIX), O n —  p ) 1 / 2  /C / 2 •,,+1 (' P)+(Pu /2)(2P)K„+1/20.1))•
P(1119 / ( „ + 1 / 2 ( r H e r e  K  +  ( 21

)
17 / 2

t
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is the modified Bessel function of order n+1/2 and /1) are the poles of On in /1..
For the next Lem m a, w e note 0 0 = —p2 e - mr - P) (A—a+11p) - 'r - 1 -. W e can see
easily the formal solution converges uniformly in any  compact set, if f (x ,  t )  is
sufficiently smooth. On the location of the poles of On in ). we can say

Lemma 4 . 1 .  i) When a<11p, the poles of  On are  located only  in Re).<0 or
at O.

ii) When o- >0, all the poles of 11)„ are simple.
iii) 0 is not a pole of On (n..>-1).
iv) When a= l1p , 0 is the pole of 0 0 .

P ro o f . i), ii), and iii) are essentially proved in Tokita [5]. iv) is obvious, to
see the form of 0 0 .

Next Lemma shows the distribution of poles of 0„ for large n.

Lemma 4.2. Let ALN)(1 < s< n + 1) be the poles of  (1)„, then there ex ist a  posi-
tive integer n o and positive ;lumbers A , B. such that

i) Re.l.;, )< —An 1 /3f o r  n  no 1 < s< n  + 1

ii) IA ' ) 1<Bli f o r  11 1 1 0 I  <s< n +1

The proof of this lemma is found in Tokita's paper, where the profound results
on the distribution of zeros of Bessel functions obtained by Olver [4] are needed.
From now on, we confine ourselves to the case a=  1/p. We separate the first term
of the formal solution from the others. Then we have a proposition.

Proposition 4.3.

i-r+p
ii(x, I)= — (4nr) -  1  p5 f o (p , t)clt + 0 (e - ml)

o

The estim ate of  the rem ainder term s is valid uniform ly  w ith respect to x  in
any  compact set.

P ro o f  S ince  u (x, I) = — p(47rry- ' 5'  r +  p f o (p , -r)d-r + E  E  u „„,Y „,„, w e app ly
0 n m

Tokita's argument showing the decay of the solution only to the second terms of
the expansion.

Now we can construct the solution of an exterior problem that never decays.

Proposition 4.4. Consider the problem

flti(x . t)= 0 in {xl lx1>P} x (o, 00)

u(x, 0)=0, u t(x, 0)= f(x ) on t=0, supp f  is compact

( L +-j-p  )u(x, t)=  0 on {xl lxi =P} x (0, oo)

T hen either the solution, or local energy  of  the solution never decays if  f  is
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suitably chosen.

P ro o f  First we remark g(pw, t)= —(410- 1 (
a + - 1f ( r w + t 0 ) ( 1 0 .  We
ar 19 )1 1 1= 1

choose a  spherically symmetric function f  such  that supp f {xlp+ a <1x1<p + b}.

Then W(x, 0=4470- 1 5 f(x + tO)c10 a n d  g(pw, t) are also spherically symmetric.

We set U(r)=S
o

W(r, t)dt for large T fixed. T h e n

(4.3) OW AU = (r T)— f(r)at •

By virtue of Huyghens' principle, we see U..._=, 0 for lx1 ..>-- R, for some R  >0 . Integrat-

ing the both sides o f  (4.3), we see AUdx = —1 au au, ds— —47rp2 7-1,-. (p)=
51, 1---p

( 14/ —f)dx.
Ix1=P Cr

' i

S in c e  W(x, T) --_-0 Ix' < 2 p  f o r  la rg e  T , w e  h a v e  proved
ixi;-"p —

— 47.4,2 S j
: (p)= -(1-111-,. (x, T)dx — ew 

atf (r )d x . If we caluculate w e see  easily
R 3 , R3 ,

q,:dx =5f (r)dx. A n d  th e re fo re  a)
i

j
r- (p )= 0 . A s w e can take beforehand

R 3  GI ■ R 3 5t -r+ p T

large T such that W(r, r)dri,..,,= I4/(r, -r)dr1,.,,, fo r  t — r - I-  p ,.>: T,
Jo o

to
- r + P g ( p ,  r)dr= —( Sr  + - 1-A r

o W(r. r)d -r1 ,,

=

= — p - 1 U(p).

S o ,  i f  f >0, U(p)=(47r) - '5 TS f(pw+tO)dOdr i s  positive. T hen  lim u(x, t) =-
0 0 1 = 1 t - o x

— pr- l
o
g(p, r)dr, which indicates the solution never decays. Looking closely at

the expression, we find the local energy neither decays.
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