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§1. [Introduction and statement of the results

Let G be a finite group. Let p be a prime number. Define the p-rank r,(G)
of G by the maximal integer k such that G contains the elementary abelian p-group
(Z,)* of rank k.

It is obvious that G is of p-rank 0 if and only if the p-Sylow subgroup G, =e.
According to Cartan-Eilenberg [5], we see that G is of p-rank 1 if and only if G,
is either a cyclic group Z, or a generalize& quoternionic group if p=2. It is also
shown [5] that a finite group G with p-rank 0 or 1 for any p is characterized by
having the periodic cohomology. Such a group is called an Artin-Tate group.

Now the purpose of the present note is to give a characterization of finite groups
of p-rank 1 in terms of stable homotopy groups.

Let |G| be the order of G and let X, denote the symmetric group on n letters.
We denote by p=ps;: G—Z|; the regular permutation representation, and Bp:
BG—BZ s denotes the induced map on classifying spaces. Let

w: [ I1BZ, — QB(L]BZ,)~Q(S")

be the Barratt-Priddy-Quillen map [3], where Q(S°)=Ilim,QkS*. Then as the
adjoint of the composition

BG, 224 BX g, < [;[BE,, -2, Q(S9)
we obtain a stable map of spectra
f: S(BG,)— S
where BG . = BG U disjoint base point. Then we obtain a homomorphism
¢=d¢: n3(BG,) — n3(S°)

of stable homotopy groups. Note that n$(BG.,)=nS$(BG)®n3(S°), direct sum.
The restriction ¢|,s pg, is also denoted by ¢.
Now let J: m,(0)—n$(S°) denote the J-homomorphism, where O=Ilim O(n).
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Restricting J: n,(0)—n$(S° on n,(U) or m,(S,), we obtain the complex J-homo-
morphism J¢ or the quoternionic J-homomorphism J ;. o :

For a finite abelian” group A we denote by A » the pcomponent of A. Then
we can state our theorems. Coi

Theorem 1.1. Let G be a finite group of p-rank 1. If p is odd, then
Im[¢: n3(BG) — n} (S°)]:>(Im Nipny=(0mJ ).
If p=2, then
Im [¢: n3(BG) —> n3(S9)]=2(ImJ ),

Theorem 1.2. Let G be ua finite group. Then the p-rank of G is equal to 1
if and only if ¢: n5,_3(BG)(,=75,-3(5°) ) (¢: n3(BG)2,—>73(S%) ) if p=2)isan
epimorphism.

Concerning with the 2-component, it may be worth showing the following

Propositlon 1. 3 (,b n$ (BG)—»m‘(S“) is an epimorphism if and only tf the
2-Sylow subgroup Gy is a non trivial cyclic group.

- From this proposition -it-follows immediately that if G, is- non trivial cyclic,
then G is not perfect. hence not simple unless G=Z, (Burnside’s theorem).
- If one uses the Feit-Thompson theorem [6], one can show the following -

‘COrblAlérs' 14. Let G be an Artin-Tate group. VSuppose that H(G: Z)=
0, 1<i<3, then G is trivial.

Proof. By the assumption, n§(BG)=0. Hence by Theorem 1.2, we see that
G;y=e. i.e., G is of odd order. Then by the Feit-Thompson theorem, G is solvable.
Then H,(G: Z)=0 implies G=e. q.e.d.

Now for a finite group G of p-rank I, Theorem 1.1 shows the non-triviality of
3 ,-3(BG),, (13(BG) 3, if p=2). We remark that such a non-triviality of n$(BG),,
for i<2p—3 does not hold as the following examples show. If p is odd, then X,
is of p-rank 1. Itis known [10] that H(BZX,: Z.,)=0 for i<2p—3. Then by Serre’s
class theory, n¥(BZ,),,=0 if i<2p—3. For p=2, consider the binary icosahedral
group I*. This is a subgroup of order 120 of Sp(1)=S3. Hence I* is an Artin-
Tate group and I3, is the quoternionic group. It is well-known [16] that H,(BI*)
=H,(BI*)=0. Hence n¥(BI*)=0 for i<2. '

The non-triviality of n5,_3(BG),(n$(BG),;)) clearly fails for general finite
groups as the following Quillen’s example shows. Let F, be the finite field with
q=p® elements. Then Quillen has shown [11] that H(BGL(n, ¥)): Z,)=0 for
O<i<d(p—1). Thus n§(BGL(n, F,)),,=0 for i<d(p—1).

For a cyclic group Z, of prime order, Theorem 1.1 is a direct consequence of
the 'Kahn-Priddy theorem [7], that is ¢: n}(BZ,)—n%(S%);, is an epimorphism
(¥>0). We shall show that the Kahn-Priddy theorem fails for cyclic group of order
2r, r>2.
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Theorem 1.5. Let r be an integer >2. Let f: SBZ,.—»S be an arbitrary
stable map. Then f: n3(BZ,.)—713(5%),, is not epimorphism.

For an odd prime, the problem seems to be more difficult. For example, a
direct computation shows that the element f§, e n3,,—,,-,(58%), is in the image of
¢: n3(BZ,)-n5(S°) for any r.

The proof of Theorem 1.1, 1.2 and Proposition 1.3 will be given in §3, and that
of Theorem 1.5 in §4. : '

§2. Factorization of the J-homomorphism

In this section, we review some results of Becker and Schultz [4]. For odd
primary component, similar results can be obtained based on the algebraic K-theory
which will be explained in the Appendix.

Let G be a finite group. Suppose that G has a free orthogonal representation
W (G acts freely on the unit sphere S(W)). Let kW=W@®---@W, the direct sum of
k copies of W. Set

Fg=lim, M(S(kW), S(kW)),
where M( , ) denotes the set of G-maps with compact open topology.
For a topological space X, let Q(X)=Ilim, Q*S¥X. Then one has
Theorem 2.1. ([4]). There is a homotopy equivalence
A=Ag: Fg— Q(BG,).

For the naturality of 4, with respect to G, one can see the following. Let H
be a subgroup of G. Then there is a map

Yy: Fo— Fy

by regarding G-maps as H-maps. Next consider the finite covering map BH— BG.
According to Kahn and Priddy [7], one can associate to the finite covering a map

7 Q(BG4) — Q(BH ;)
called the transfer map for BH—BG. Then we have ([4], 6.10).
Proposition 2.2, The following diagram is homotopy commutative
Fg =3¢, Q(BG,)
v T
Fl,, = Q(Blm) :

For the homotopy functor [, F;] and [ . Q(BG,)], induced maps of maps in
the above diagram are denoted by the same letter, e.g.,

A [’FG]—*[’Q(BG+)]'
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Now let us recall the definition of the transfer of Kahn and Priddy [7]. Let
k=[G, H]. The left coset G/H is a G-set of order k with the standard left G-action.
Let g,,..., g, be a representatives of the coset G/H. Then the G-action on G/H
determines a homomorphism

y: G— I,

by the formula gg;,=g,.,,h:» h;€ H. Define a homomorphism

i G — szH.
by u(g)=(y(9); hy,..., hy), where Z,,SH denotes the wreath product. Let

Bu: BG — B<£kSH>

be the induced map on classifying spaces. Note that B(Z,SH) is identified with

EX,®;5,(BH)k, where EZ, is a universal Z,-space and X, acts on (BH)* by permuta-
tions of factors. It is known (see, e.g., [9]) that there is a canonical map

w: ]_"]EZ,, Xy (BH)" — Q(BH ).
Then the composition
BG, 2% (EX, x y(BH)*), = LIEZ, x5 (BH)" —~ Q(BH )
extends to the transfer map.
i Q(BG.) — Q(BH,).

using the natural transformation QQ—Q (see [7]).
The following lemma about the functoriality follows from the definition and a
straightforward argument.

Lemma 2.3. Let Ho> K be subgroups of G. Then the following diagram is
homotopy commutative

Q(BG,) —— Q(BH,)

\ A

Q(BK,)
Suppose now that H=e. Then 7 is clearly the extension of
BG., -2, BZ|g -2 Q(S°).

hence 1,: n(Q(BG,))=n¥(BG,)->n(Q(S?))xn$(S° is just the homomorphism ¢
defined in §1.
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Consider the homomorphism ¢: n3(BG,)=n3(BG)@n3(S°)—n$(S®). Then
we have

Lemma 2.4, ¢|.s.50): m3(S°)—n3(S°) is the multiplication with |G|.
Proof. @|,s(so, is induced from the adjoint of the composition map
g: SO ——‘-—) BG+ —_ Bz|G|+ —_— Q(SO)

where i: S°>BG, maps the non base point of S° into BG. Hence g maps that
point into the component of degree |G| maps of Q(S°). Hence Ad(g): S-S is a
map of degree |G|. This shows the lemma. g.e.d.

Let K=R, C or H be the field of real, complex or quoternionic numbers, res-
pectively. Let Og(n) denote O(n), U(n) or Sp(n) according to K=R, C or H, re-
spectively. We let Ox(1) (=Z,, S' or S3%) act on K" as the scalar multiplication.
Then any element fe Og(n) gives an Og(1)-equivariant map f: S(K")—S(K"). Let
G be a finite subgroup of Ok(1). Then we obtain a map

Jg: Ox(o0) — F.

By Theorem 2.1, there is an isomorphism A: [, Fgl=[, Q(BG,)]. Hence j; in-
duces a map

Jgi [, 0x(0)] — [, Q(BG,)].
It is obvious that if G=e, then
Je: [, O(0)] — [, Q(S%]

agrees with the (K-)J-homomorphism.
If Go H, then we see easily that

Vijc=Jn: Og(0) — Fy
Then setting H =e, we have obtained

Propesition 2.5. The following diagram is commutative,
7,(O(0)) —2— 73(BG.)

X/

n3(S5°)

§3. Finite groups of p-rank 1
Proposition 3.1. Let p be a prime number and a>1 an integer. Then

Im [¢: n3(BZ,.) — n3(S°)]>(Am J¢g)(,)-
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Proof. Since Z,.cS', one can apply Proposition 2.5 for K=C. Then one
see that o

Im[¢: n3(BZ,uy) — n3(5°)]2Im J.
By Lemma 2.4, ¢|,8.s0)(x)=p“(x). Then clearly

Im ¢ lx?(BZ,n) > (Im JC)(p)-
q.e.d.

Let Q(2¢) denote the generalized quoternionic group of order 2¢*2,  Then
Q(29)<= S? and we have similarly

Proposition"3.2. Im[¢: ni(BQ(Z“))—-»ni(SO)] o(ImJg);)-
Now we prove Theorem 1.1, 1.2 and Proposition 1.3.

Proof of Theorem 1.1. Let G be of p-rank I. Leti: G,,—G be the inclusion
of p-Sylow subgroup. Then the composition homomorphism

13.(BG y).) 2% 73(BG,) 22, 73(S°)
is iﬁduced from adjoint map of the composite
BG ). 25 BG, 22, BE g1y —— Q(S9).

Note that the restriction of the regular permutation of G on H is a direct sum of that
of H. Thus we have a commutative diagram

Gpy L258s Fig o1 X X 216, ([G: Gpy] times)

:l lea

G—— 5 L

p

where @ is the homomorphism defined by the juxtaposition. Thus we have

$6(Bi)y=[G: G(p)]d’c(,,,

Since G is of p-rank 1, G, is a cyclic group if p is odd, and a cyclic group or a gen-
eralized quoternionic group if p=2. Then since [G: G(,] is prime to p, the theo-
rem follows from Proposition 3.1 and 3.2.

Proof of Theorem 1.2. Note that InJ=ImJ.=ImJy in n§(S°), for canonical
homomorphisms 73(Sp)—n3(U)—>n3(0) are isomorphisms. Therefore the only if
part of the theorem follows from Theorem 1.1.

We now prove the if part. Suppose that the p-rank of G is greater than 1.
Then G contains a subgroup H=Z,xZ,. Applying Lemma 2.3 for GoHoe, we
obtain a commutative diagram '
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n%(BG,) —=*— n3(BH,)

N/

mx(S°%)

where 1, is the transfer homomorphism induced from t: Q(BG,)—Q(BH ,).

Suppose first that p is odd. To prove the theorem, we have to show that ¢:
3,-3(BG)—>n$,_3(5%,, is not epimorphic. Assume contrary that ¢ is an epi-
morphism. Then by the above diagram,

¢ 18,-3(B(Z,x Z,)) —> 13,-3(5%p

is an epimorphism. Note that the regular permutation representation of Z,®Z,
can be given by the composite

Z,XZ, 2%, 5 x5, 8, %,

where p is the regular permutation representation of Z, and ® is defined by the
standard action of X,xZ, on {l,..., p}x{l,..., py={l,.... p?}. Let y: S(B(Z,®
Z,)+)—S be the stable map adjoint to

B(Z,xZ,), 2%, BX ., -2 Q(S°)
Then one has easily the following commutative diagram

an 3(B(Z xzp) ) Blpxpie 7[2p—3(B(Z XZ )+)

NP4

7T2’, S(So)

Note that y*l,,s;,_j(so,(x)=px2 for xen3, 3(S%)cn3,_5(B(Z,xZ,),). Itis known
[10] that Hy(BX,: Z,)=0 for x<2p—3, and H,, ;(BX,),=Z, Hence one see
casily that n§,_;(BX,x BZ,),,=Z,®Z, generated by j, (u) and j, (u), where j;:
BX,—»BX,xBZ, is the canonical inclusion, i=1, 2, and uen$,_ 3(BZ,) is a gener-

ator. Let d: X —»]_[2 be the diagonal map. Then for i=1, 2, the following
diagram is commutative up to some inner automorphism of X,

I, 1,xz,

S

P
1z, 5 %,:

Remark that an inner automorphism induces the identity on stable homotopy groups.
Then we see that

Voaedise = My n2p 3(32 ) — 7'52,; 3(59).
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where u: S(B(IEIEP)J,)—»S is the adjoint of B(ﬁ Z,)4)E8BY ., —©,0(S°. Now
it is easy to see that p,du(x)=p¢(x) for xen3(BX,,). Hence y,j,=0 in 7§,
(BZ,,) and this contradicts to the assumption. Hence ¢: n3,_;(BG)—n$,_;(5°)
is not epimorphism.

Next suppose that p=2. We have an isomorphism

n3(BZ,x BZ,)=n3(BZ,)®n3(BZ,)@n(BZ,ABZ,)

By the homomorphism ¢: n§(BZ, x BZ,)—n$(S°), the first and the second sum-
mands are mapped onto 2n§(S°),,, by the same reason as for p odd. Since n§(S%),,,
~Zs, it suffices to show that n3(BZ, A BZ,) contains no element of order 8.

Let M=S'U ,e? be the Moore space mod2. Then n§(BZ, A BZ,)—n$(M A
M), for the 3-skeleton of SBZ, is SM vSS3. But it is easy to see that n§(M A
M)=Z,. This completes the proof. g.e.d.

Proof of Proposition 1.3. Let ¢: X,—Z, be the sign homomorphism. We
easily see that H,(BX,: Z,)~Z,, and ¢*: H,(BX,: Z,)»H (BZ,: Z,) is an isomor-
phism for n>1. Let G be a finite 2-group. Then one can easily see that ep: G—
Z, is an epimorphism if and only if G is a cyclic group, where p: G—-Z|g, is the reg-
ular permutation representation. For if G is not cyclic, for any g € G, the restriction
p|<,> on the subgroup generated by g is trivial. Therefore we see that

p¥: HY(BXy.: Z,) — HY(BZ,.: Z5)
is an isomorphism. Hence
px: H{(BZ,.) — H,(BZ,.)~H,(QS°
is an epimorphism. This implies
¢: nY(BZ,.) — 13(SV)xZ,
is an epimorphism. Then for a finite group G with G;,=Z,. (a>0), we see that
¢: n$(BG) — n3(S°)

is an epimorphism as in the proof of Theorem 1.1.
Next let G be a finite group such that G, is not cyclic. Then

px: H{(BG(y)) — H,(BZX;.)
is trivial, and hence
¢: 13(BGz)) — mi(S°)
is trivial. Then so is ¢: n$(BG)—nr$(S°). g.e.d.

§4. Proof of Theorem 1.5
Let f: SBZ,.—S, a>2 be a stable map. Let o€ n3(S° be the element of the
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Hopf invariant one. Suppose that there is an element u € n$(BZ,.) such that f,(u)
=¢. Then since o is Hopf invariant one, we see easily that

Uy H7(S7: Zz)_’ H7(BZZa: Zz)

is essential. Let L"(2¢)=S2"+!/Z,. be the standard lens space mod 2°. Then
L"(27) is the 2n+1 skeleton of BZ,.. The stable map u: S(S7)—»SBZ,. is then
factored through a stable map

u': S(S7) — SL3(29)
such that
uy: Hy(S7: Z,) — H,(L3(2°): Z,)
is an isomorphism. Let t be the stable tangent bundle of L3(2%). Then by the re-
sults of Atiyah [2] and by the mod k Dold theorem [1], we see that J(t) € J(L3(2%))

is of odd order (may be zero). Thus in order to prove the theorem, it suffices to
show the following

Lemma 4.1. Let a>2 be an integer. Then J(t)e J(L3*(29)) is a non zero
element of even order.

Proof. First we determine the tangent bundle of L"(2%). Applying Theorem
1.1 of [14] to the principal bundle Z,.—S?"*!— L"(24), we see that

(L"Q29)@ex(n+1)n
where ¢ is the trivial line bundle and n=S82?"*!x zzaC' is the canonical complex
line bundle (Z,. acts on C! via the canonical inclusion Z,.<=S?!). Let

i: L"(2%) — L"(29%1)

be the canonical map. Then it is obvious that i*(z(L"(2°%!))@e) = 1(L"(2?))De.
Hence we are enough to prove the lemma for a=2. Now it is known (Corollary
4.6, [8]) that the order of J(r(n—1))e J(L3*4)) is 8. Thus

J(®)=J(4r(n—1))

is an element of order 2. This completes the proof.

Appendix

The theory of infinite loop spaces says that a small category ¢ with a coherent
associative and commutative bifunctor [X]: ¥ x € —>% (a symmetric monoidal cate-
gory) defines a generalized cohomology theory ([9] and [13]). More precisely,
if ¥ is a symmetric monoidal category, one can associate a spectrum B% =
{B"B% },-0.1,2,.. such that

i) B°B%=B% is the classifying space of €
ii) {B"B%¥},», is an Q-spectrum
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iii) if B¥ is of the homotopy type of countable CW complex, then the struc-
ture map go: B€—B'B¥ is the ‘‘group completion”, i.e.,

Jox: He(BZ; k)[no(B€) '] — H(QB'B%; k)
is an isomorphism for any field k. (see [9]).

The Barratt-Priddy-Quillen theorem asserts that the cohomology theory defined
by the category of finite sets is equivalent to the stable cohomotopy theory (see [13]).
Here we consider an equivariant version of the Barratt-Priddy-Quillen theorem,
essentially due to Segal [12].

Let € be a symmetric monoidal category such that any morphism is invertible.
Then B¥ is a homotopy commutative H-space, and the abelian (additive) monoid
no(B¥) is identified with the set of isomorphism classes of Ob%. Given an object
X, one has a functor

Lx: @ _ g
by Ly(Y)=X x Y. This induces a continuous map

If X and Y are objects in the same component of B%, then clearly Iy~ I, (homotop-
ic). Let aeny(B¥). Choose a representative X of o, and put ¢,=Iy. Then

clearly ¢, 5~ d.0p.

Now regard ny(B¥) as a directed set by setting a<f if f=y+a for some 7.
Suppose that 7y(B¥) is countable. Then one can choose d,, d,,..., € no(B¥) such
that the sequence {a;=d;+ - +d;};=y,,.. is cofinal in my(B¥). Consider the direct
system

B¢ 4> B¥ 3 B¢ — ---
1 2

it is clear that connected components of the direct limit lim {B%, ¢,,} are homotopy
equivalent to each other. So put

B% »=a component of lim {B%, ¢,} .
Theorem A.1. There is a map
w: B¢, — (QB'B¥%¥),

such that wy: H(B%€,)—H(QB'B¥),) is an isomorphism, where the subscript
0 means the 0-component.

Proof. Letting S be the multiplicative subset of n,(B¥) generated by d,, d,,...,
H(B¥; k) [no(B€) '1=Hy(BE; k) [S7']
=lim{— H,(B¢; k) 2=, H,(B€; k)—> -}

=H*(hm{B%’ ¢au} 5 k) .
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for any field k. For f e ny(B%), let

wy: B€, —7 (QB'B¥),; 5= (QB'B%),.
Then clearly w, 3¢, ~wp, and hence by the telescope argument, we obtain a map

w=limwg: B, —> (2B'B¥),.

The fact that w* is an isomorphism follows from that

Gox: He(BE: k)[S~'] — H(QB'B%: k)
for any field k. g.e.d.

Now let G be a finite group. By & we denote the category of finite G-sets and
G-isomorphisms. The direct sum and the direct product of finite G-sets give rise
to binary functors @ and ®, respectively. It is easy to see that (¥, @) and (£,
®) are both symmetric monoidal categories.

Let Qg={(H ..., (H)} be the set of conjugacy classes of subgroups of G.
Let &; be the full subcategory of & consisting of objects of the form nG/H,=G/H,
--G/H,.

Lemma A.2. The category &g is equivalent to the product category &y X -
X &, and '

B# =11EZ, X so(BWy)"
where EZ, is a universal Z,-space and Wy, =N(H)/H,.
Proof. The first statement is clear. By definition B&;=]]BAutg(nG/H).

Clearly we see that Auty(G/H;)=Wy,. Hence BAutG(nG/Hi)=B(E,,SWH‘>=EZ,,><
m(BWy )" g.e.d.

Note that B!'B&;=Q((BWy,),) by the Barratt-Priddy-Quillen theorem and by
Lemma A.2. Thus we have obtained

Theorem A.3. There is a map

K
w: (BLg)o — QQ((BWH)+)O
which induces an isomorphism of homology.

Next we shall consider subcategories of & which represent ‘‘free part” of
Fs. Let F; and F@ be the fall subcategories of & consisting of free G-sets,
and consisting of G-sets of the form free G set \U+*, respectively. Clearly #¢
is a symmetric monoidal subcategory of &, whereas #§ is symmetric monoidal
with respect to ®.

Theorem A.4. There is a map

2 (BFE)w — Qo(BGL)p )
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inducing an isomorphism on homology, where Xp, denotes the localization of

X at the set of primes P(G)={p; p‘IGI}.

Proof. Note that ny(BFE) is the multiplicative submonoid of ny(B&¢) con-
sisting of 14nG, where G is regarded as a free G set, hence n,(BF®) is a free
abelian monoid with countable generators.

For S, Te Ob %, let

F(S,T): yc'—>y6

be the functor defined by F(S, T)(X)=S®(T®X). Let f(S, T): B#;—>B¥; be
the induced map. Put y,,=f(mG, 1+ m|G|). Then restricting to BF;, we have a
map

Ym: BF ¢ — BF
Also put B,,= f(¢, 1 + mG): B#FE—-BF®. Note that we have
(14+mGY(1 +nG)=1+(n+m+nm|G)G
=14+mG+(1+m|G))nG
in no(B#F®). Hence we have a homotopy commutative diagram
BF; —Im_ BF,

f(l,d’)l 1f(1,¢)
Bf@-—;,m—% BF%®

Similarly we have a homotopy commutative diagram

(BF )y — > (BfG)ym(a)
mal lwm(a)
(QB'BZF ;)0 <aFmien” (QB'BF ),
Note that if m tends to infinity, then so does y,(«). Hence (B#g),, ., approxi-
mates (2B'BZ ;), homologically. Also note that the multiplicative set M ={l+
m|G|; m=1, 2,... } is cofinal in the multiplicative monoid of positive integers prime

to |G| because of the Dirichlet theorem on arithmetic progression.
Now since (QB!'B& ), is an H-space, the limit of

—— (QB'BZF ;) xtismien” (RB'BF )

is (QB'BF )o)ps) the localization at the set of primes P(G). By Theorem A.3,
((2B'BZ )0)p6) = Qo(BG 1 )pg)- Note that (BF§),, is a component of lim {BFE,

B}, and
f(1, ¢): BF;—> BF®

is a homotopy equivalence. Hence taking the limit of the above diagrams, we have
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a map
A (Bf§)oo - QO(BG+)P(G)

which induces an isomorphism of homology. q.e.d.

Finally we sketch briefly a reproof of Theorem 1.1 for odd primes using algebraic
K-theory.

Let F, be a finite field with g=p" elements. Let ¥~ be the category of (finite
dimensional) vector spaces over F, and linear isomorphisms. Let 7"gP> be the full
subcategory of ¥~ consisting of vector spaces of a power of p dimension. Let &P
be the full subcategory of & (the category of finite sets) consisting of finite sets of
cardinal p”. Here the symmetric monoidal structures of ¥"§P> and £ &> come
from the tensor product and the direct product, respectively.

There are two functors

v U yép> L V§p>

where U forgets the vector space structure and L sends a finite set to a vector space
generated by the set.

Let A be a subgroup of F}. By the scalar multiplication, 4 acts on a F,-vector
space V and the set U(V). Since Autg (V) comutes with A4, U(Autg (V))<Aut ,
(U(V)). - Note that U(V)e Ob #%.  Thus we have a commutative diagram of func-
tors

vy —YL 7%

P>

where F is the functor forgetting the A-action.

Now we apply the functor QB!B on the above categories. According to Quillen
[11], (B'B¥")o=BGL(F,)* and the algebraic K-group KFq(X) is defined by [X,
BGL(F,))*]. It iseasy to see that (QB'By 7> ), =(BGL(F)")<,> and (QB'BSLgF>),
~Qo(8%<,>, where X_,, denotes the localization away from p. The functor U;
¥ —#&P> induces a natural transformation

Ji Re(X) — [X, Qol(8°) <> ] 2n0(X )[_H

which refer to the algebraic J-homomorphism. Then by Theorem A.4, we have
obtained
Proposition A.5. There is a commutative diagram

qu(X) Ja [X, Qo(BAL)p4y)

i ¢

[X, Qo(S%) <p>]
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where ¢ is the forgetting homomorphism induced from F.
Now Theorem 1.1 for an odd prime follows from

Proposition A.6. Let A=Z., | odd. Then there is an integer q=p" such
that F{>Z,.=A and

J: qu(sz"_l)u)“‘—’ n$,-1(S% )
is anA epimorphism onto (ImJ),.

Proof. The existence of such q is well known. For Imj, see Tornehave [15].
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