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§1 . Introduction and statement of the results

Let G be a finite group. Let p be a prime number. Define the p-rank r (G )
of G by the maximal integer k such that G contains the elementary abelian p-group
(Zp)k of rank k.

It is obvious that G is of p-rank 0 if and only if the p-Sylow subgroup G( ,) =e.
According to Cartan-Eilenberg [5], we see that G is of p-rank 1 if and only if G( p )

is either a cyclic group Z p ,. or a generalized quoternionic group if p= 2. It is also
shown [5] that a finite group G with p-rank 0 or 1 for any p is characterized by
having the periodic cohomology. Such a group is called an Artin-Tate group.

Now the purpose of the present note is to give a characterization of finite groups
of p-rank 1 in terms of stable homotopy groups.

Let IGI be the order of G and let E„ denote the symmetric group on n letters.
W e denote by p = p :  G->E 1G1 the regular permutation representation, and B p:
BG-)BE IGI denotes the induced map on classifying spaces. Let

w : flB E „---0  C2B( BE„)...1Q(S°)

b e  the Barratt-Priddy-Quillen map [3], where Q(S°)-=lim , QkSk. Then as the
adjoint of the composition

BEIGH OE UBE„ Q(S°)

we obtain a stable map of spectra

: S(BG + ) S

where BG.,. =BG U disjoint base point. Then we obtain a homomorphism

« 4G  n (B G  

of stable homotopy g ro u p s . Note th a t 4(BG.,) nhBG)CDIrchS°), direct sum.
The restriction thl s is also denoted by 0.

Now let J: n„(0)-÷n7,(S°) denote the J-homomorphism, w here 0=lim  0(n).
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Restricting J: 7r„(0).-44,(S°) on  tin (U) o r nn(Sp ) ,  we obtain the complex J-homo-
morphism . ,1c  or the quoternionic .1-hornornorphism

Fot a finite  abeliao group A, we denote by )4( p 1 the  p-component o f  A .  Then
we can state our theorems.

Theorem 1.1. Let G be a f inite group of p-rank 1. i f  p  is odd, then

fm  [0: 4(B G ) 4(S °)] D(Im J)(p)=(Im J C)(p).

If p = 2, then

Im [4): tt (B G) --> 4(S°)]D (1m  J

Theorem 1.2. Let G be a f inite group. T hen the p-rank  o f  G  is equal to 1
if  and only  if  5: 71,_ 3 (BG) ( p ) —c5p _3 (S°) ( p , (4): 7il(BG) ( 2 ) -71(S °) ( 2 )  i f  p=2) is an
epimorphism.

Concerning with the 2-component, it may be worth showing the following

Proposition 1.3. 0: trI(B G)— rT (S °) is an eitim orphisin i f  and  o n ly  if the
2-Sylow subgroup G (2 ) is a non trivial cyclic group.

• From this proposition it follows immediately that if G (2 )  is non trivial cyclic,
then G is not peffect, hence not simple unless G= Z2 (Burnside's-theorem).
• - If one uses the Feit-Thompson theorem [6], one can show the following

COrollàry 1.4. L e t G  b e  an  A rtin-Tate group. Suppose that H i(G: Z)=
0, 1 < i<3, then G is trivial.

P ro o f . By the assumption, nI(BG)=0. Hence by Theorem 1.2, we see that
G( 2 ) =e, i.e., G is of odd order. Then by the Feit-Thompson theorem, G is solvable.
Then 111 (G: Z)=0 implies G=e. q. e. d.

Now for a finite group G of p-rank 1, Theorem 1.1 shows the non-triviality of
7rt,_ 3 (BG) ( p ) (71(BG) ( 2 )  i f  p = 2 ) .  We remark that such a  non-triviality of 7r7(BG)1 p 1

for i <2p— 3 does not hold as the following examples sh o w . I f  p  is odd, then E p

is of p-rank I . It is know n [10] that II ;(BEp : Z ) = 0 for i < 2p— 3. Then by Serre's
class theory, 7t7(BZ p )( 9 ) =0  if i <2p — 3. For p= 2, consider the binary icosahedral
group l * .  This is a  subgroup of order 120 o f Sp(1)=S 3 . Hence I*  is an Artin-
Tate group and 112 )  is  the quoternionic g ro u p . It is well-known [16] that H i (B/*)
--=H 2 (B /* )=0 . Hence tr7(BI*)=0 for i<2.

T he non-triviality o f  7r _3 (BG) ( p ) (71(8G) ( 2 ) )  clearly fails f o r  general finite
groups as the following Quillen's example shows. Let Fq b e  the finite field with
q =p d  elem ents. Then Quillen has shown [11] th a t  Ili(B GL (n.V ,): Zp ) -= 0  for
0<  i <d(p — 1). Thus 7t7(BGL(n, Fq ))( , ) = 0 for i <  d(p — 1).

For a cyclic group Zr, of prime order, Theorem 1.1 is a direct consequence of
the Kahn-Priddy "theorem [7 ], th a t is  (/): 74(BZ p )--.74(S°) ( p )  i s  a n  epimorphism
(*>  0 ). We shall show that the Kahn-Priddy theorem fails for cyclic group of order
2', r> 2.
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Theorem  1.5. Let r  be  an integer > 2 .  Let f : S B Z 2 ,— ,S  be  an arbitrary
stable map. Then f * : 7r1(BZ 2 ,-)--70(S°) ( 2 )  is not epim orphism .

For an odd prime, the problem seems to be more difficult. F o r  example, a
direct computation shows that the element 13, ercL„ p _„_ 2 (S°) ( 1 i s  in the image of
4): 4(BZ p ,.)-44(S°) for any r.

The proof of Theorem 1.1, 1.2 and Proposition 1.3 will be given in §3, and that
of Theorem 1.5 in §4.

§ 2 .  Factorization of the J-homomorphism

In this section, we review some results of Becker and Schultz [4]. For odd
primary component, similar results can be obtained based on the algebraic K-theory
which will be explained in the Appendix.

Let G be a finite  group. Suppose that G has a free orthogonal representation
W (G acts freely on the unit sphere S (W )). Let k W = • • • C , W ,  the direct sum of
k  copies of W. Set

F G = liM kM (S(kW ), S(kW )),

where M( , ) denotes the set of G-maps with compact open topology.

For a topological space X, let Q(X )=1im k f lk S k X . Then one has

Theorem 2.1. ([4]). There is a homotopy equivalence

). =A 0 : F G

For the naturality of ;1G with respect to  G  one can see the following. Let H
be a subgroup of G .  Then there is a map

/ :  F„  F11

by regarding G-maps as H-maps. Next consider the finite covering map B H-03G.
According to Kahn and Priddy [7], one can associate to the finite covering a map

t :  Q(BG + ) Q(BH ±)

called the transfer map for B H --43G . Then we have ([4], 6.10).

Proposition 2.2. The jot/ow ing diagram  is hom otopy commutative

FG Q(B G,)

F1, Q(B H+).

For the homotopy functor [ , F 0 ]  and [ Q(BG.f.)], induced maps of maps in
the above diagram are denoted by the same letter, e.g.,

A: E, F G ] [, Q (B G ,)].
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Now let us recall the definition of the transfer of Kahn and P riddy  [7 ]. Let
k =[G , H ] .  The left coset Glif  is a G-set of order k with the standard left G-action.
Let g ,,...,g k b e  a  representatives of the coset G IH . Then the G-action on GIH
determines a homomorphism

y: G Ek

by the formula gg 1 = g " ( ,) 111, h i e  H .  Define a homomorphism

p : G  --+ E 4H .

by p(g)=(y(g); h 1 ,..., h k), where I 4 H  denotes the w reath product. Let

B p : BG B  (l k H )

be the induced map on  classifying spaces. Note that B (E 4 H ) is identified with
E l k ® i k (BH)k, where E l k is a  universal E k -space a n d  k acts on (BH)k by permuta-
tions of fac tors. It is known (see, e.g., [9]) that there is a canonical map

L IEI n x i .(BH)" Q(BH+).

Then the composition

BG + (Elk x I k (B H)k ),cL jEE„ X z (B H )n  (- 2-4  Q(B H,)

extends to the transfer map.

T :  Q(BG + ) — ,  Q(BH + ).

using the natural transformation QQ–Q (see [7]).
The following lemma about the functoriality follows from the definition and a

straightforward argument.

Lemma 2 .3 .  Let H K  b e  s u b g r o u p s  o f  G .  T h e n  the fo l lo w in g  d ia g ra m  is
homotopy com m u ta tive

Q(BG+) t  Q ( B H + )

Q(B1C+ )

Suppose now that H =  e .  Then T  is clearly the extension of

Bp BE I G tQ ( S O ) .

hence T* : it1(Q(BG + )) 7r7(BG ± )–■ni(Q(S°)): 71(S°) i s  just the homomorphism
defined in §l.

(i)
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Consider the homomorphism 4): 74(BG 74(B G)Q74(S °)–)74(S °). Then
we have

Lemma 2.4. 4)14 ( s 0) : 4 (S °)– )4 (S °) is  the multiplication with 1GI.

Proof . 4)14 ( s 0) is induced from the adjoint of the composition map

g: S° BG+ BEIG1+ Q(S°)

where i: S ° -4 3 G , maps the non base point of S° into B G .  Hence g  maps that
point into the component of degree IGI maps of Q (S ° ) . Hence A d(g): S--0S is a
map of d e g re e  G . This shows the lemma. q .  e .  d .

Let K =R , C or H be the field of real, complex or quoternionic numbers, res-
pectively. Let O K ( )

 denote 0(n), U(n) or Sp(n) according to K=R, C or H, re-
spectively. W e let OK (1) (= Z2, S' or S3 )  ac t on  K " as the scalar multiplication.
Then any element f E OK (n) gives an 0 K (1)-equivariant map f: S (K ")-- , S (K ") . Let
G be a finite subgroup of OK (1). Then we obtain a map

,iG: O K (G 0 ) - p  F .

By Theorem 2.1, there is an isomorphism A: [ , FG ]=-[ Q (B G +)]. Hence j G in-
duces a map

iG: [  ,  0 K (0 0 )] [  ,  Q(BG+)].

It is obvious that if G =e, then

je: ,  0 K (c0 )] —  [  ,  Q(s°)]

agrees with the (K-)J-homomorphism.
If  G  H , then we see easily that

tfric = °A G O — ) F

Then setting H =e, we have obtained

Proposition 2.5. The following diagram is commutative.

nn(Ox(00))
 A G

1 ( B G + )

70,(S°)

§3. Finite groups of p-rank 1

Proposition 3.1. Let p  be a prime number and an integer. T hen

Im [0: e o (B Z ,.) - - - )  n ,l( S ° ) ] (Im Jc)(p).
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P ro o f ,  Since Z p „c S 1 ,  one can apply Proposition 2.5 for K = C . T h e n  one
see that

Im  ): 74(B Z p .,) n ( S ° ) ]  1 m J .

By Lemma 2.4, 014 ( 5 o) (x)= p "(x ) . Then clearly

im n V ( B Z ) ( 1111 J C ) (p ) •

q.e. d.

Let Q(2u) denote the  generalized quoternionic group o f  order 2a+ 2 . T h e n
Q(2a)c S 3 and we have similarly

Proposition 3.2. Im  [0: 4(B Q (2°))-4(S °)] JH)(2).

Now we prove Theorem 1.1, 1.2 and Proposition 1.3.

Proof  of  T heorem  1.1. Let G be of p-rank I . L e t  i: G ( ) -+G be the inclusion
of p-Sylow subgroup. Then the composition homomorphism

4 (B G ( ,) + ) 7r (BG,) 7a(S°)

is induced from adjoint map of the composite

BG ( p ) , BG+ BZ101, Q(S °).

Note that the restriction of the regular permutation of G on H  is a direct sum of that
of H .  Thus we have a commutative diagram

G( ,) IIG(p)I x ••• x.EIG 0 ,0  ([G : G(p)] times)

1E )

where C), is the homomorphism defined by the juxtaposition. Thus we have

4 0 (Bi) =[G :

Since G is of p-rank 1, G( 1 )  is a cyclic group if p is odd, and a cyclic group or a gen-
eralized quoternionic group if  p =  2 . Then since [G : G( ,) ] is prime to  p , the theo-
rem follows from Proposition 3.1 and 3.2.

Proof  of  Theorem  1.2. Note that ImJ = 1m J c = l m f ,  in 71(S°), for canonical
homomorphisms n3 (Sp)-9n 3 (U)—>n3 (0 )  are isomorphisms. Therefore the  only if
part of the theorem follows from Theorem 1.1.

We now prove the if part. Suppose that the p-rank of G  is greater than 1.
Then G contains a  subgroup H =Z 1, x Z,,. Applying Lemma 2.3 for G p H e ,  we
obtain a commutative diagram
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4,(B G + ) 4 ,(B H ,)

rtl,(S°)

where TA, is the transfer homomorphism induced from T  :  Q(BG,)-■Q(B11 + ).
Suppose first that p  is odd. To prove the theorem, we have to  show that 0:

nt,_ 3(BG)-47rIp_3(S°) ( r )  i s  n o t  epimorphic. Assume contrary  that 0  i s  an epi-
morphism. Then by the above diagram,

0: n5 p_3(B(Z r  x Zr )) rcL_3(S°)0,1

is an epimorphism. Note tha t the regular permutation representation o f Zr ®Z r

can be given by the composite

Z r  x Zr E p X Ep2

where p  is the regular permutation representation of Zr  and 0  is defined by the
standard action of Ep X E,, o n  {1,..., pl x {1,..., p} p2}. Let y: S(B(Er

Er ),)--oS be the stable map adjoint to

B(E p  x E ) + -L®-0 BE p 2, Q(S°)

Then one has easily the following commutative diagram

nL_ 3 (B(Z r  x 4).„) nIr_3(B(Er x Ed + )

7r5r _3 (S°)

Note tha t y* Inl , _3 ( s . )(x)=px 2 f o r  x E rzlp _3(V )c  ir5r _3 (B(Er  x Er ) ± ). It is known
[10] that H (B E p : Z ,,)= 0 for *< 2p - 3, and H2 r _ 3 (Bi r )(p ) =Z r . Hence one see
easily that 7r5p■3(13EpX BE p)(p) Z p e Z p  generated by j i .(u) and j 2 .(u), where j i :
BEp -+BEp x  B i p  is  the canonical inclusion, i =1, 2, and u e n5p _3(Bi r )  is a gener-
ator. Let d : Ep --411Ep  b e  the diagonal map. Then fo r i= 1, 2, the following
diagram is commutative up to some inner automorphism of E1,2.

Ep EpXEp

d i I
1 1 1

 PE 2

Remark that an inner automorphism induces the identity on stable homotopy groups.
Then we see that

Y*.ii* = t d :  n -3 (B E +) nip-3(S°) •
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where p : S(B(11Ep ),)—>S is the adjoint of B a li p ), )- Bi p z., >Q(S °). Now
it is easy to see that p d ( x ) = p ( x )  fo r  x E 4 (B i p .,.). Hence y*  j" =0  in  7r5p _3

(B E.„) and this contradicts to the assum ption. H ence 0: 7c5,p _3 (BG)—rI p _3(S°)
is  no t epimorphism.

Next suppose that p= 2. We have an isomorphism

trg(B Z 2 x B Z 2 )::•—=n3(BZ2 )(4314 ( B Z 2 )07 .1 (B Z , A B Z 2 )

By the homomorphism 0: irl(BZ 2 x BZ2 )—r1(S°), the first and the second sum-
mands are mapped onto 27r5(S°)( 2 )  by the same reason as for p odd. Since It3(S9 ( 2 )

it suffices to show that 4(B Z 2  A BZ 2 )  contains no element of order 8.
Let M= Si u 2 e2 b e  the M oore space mod 2 .  Then rcl(BZ2 A BZ 2 )--71(M

M), for the 3-skeleton o f  SBZ2 i s  SM v SS3 . But it is easy to see that 7r5(M
This completes the proof. q. e. d.

Proof o f  Proposition 1.3. Let E :  E.„—Z2 b e  th e  sign homomorphism. We
easily see that H,(BZ„: Z 2 )'_•—•Z2 , and E* : H,(B E„: Z 2 )—>H1(BZ2 : Z2 ) is an isomor-
phism for n > 1 .  Let G be a finite 2 -group . Then one can easily see that ep: G—)
Z 2 is an epimorphism if and only if G is a cyclic group, where p: G—>E IG I is the reg-
ular permutation representation. For if G is not cyclic, for any g E G, the restriction

on the subgroup generated by g is trivial. Therefore we see that

p*: 11 1 (13L2 : Z 2 ) 1-- i(BZ2 . :  Z2 )

is an isomorphism. Hence

p * : H i (BZ 2 .) H 1 (B I 2 .)-2H i (QS°)

is an epimorphism. This implies

0: Tr1(BZ 2 .) ---) 7c1(S °) Z2

is an epimorphism. Then for a finite group G with G ( 2) Z 2 .  (a> 0), we see that

0: 7r1(BG) --)  n l(S ° )

is an epimorphism as in the proof of Theorem 1.1.
Next let G be a finite group such that G(2) is not cyclic. Then

p * : H i (BG( 2 ) ) ----) H l (BE2 .)

is trivial, and hence

4): trl(BG ( 2 ) ) — 4 irl(V )

is trivial. Then so is 4 : ttl(BG)--)trY (S°). q. e. d.

§ 4. Proof of Theorem 1.5

Let f :  S B Z 2 .—)S, a  2 be a stable map. L e t  a e ir5(S°) be the element of the
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Hopf invariant one. Suppose that there is an element u en5(BZ 2 .) such that f  ,,(u)
=c r.  Then since a- is Hopf invariant one, we see easily that

U* :  117(S 7 Z 2) H7 (B Z 2 .: Z2)

is  essential. L e t L " (2 a )=  2s „  +  /z2 . be the standard lens space mod 2 a . Then
L"(2 a )  is the 2n +1 skeleton o f  BZ 2 „. The stable m ap  u : S (S 7 )---, SB Z 2  is  th e n
factored through a stable map

14' :  S (S 7 ) SL3(2a)

such that

H 7 (S 7 : Z 2 ) H7(L3(2°): Z 2 )

is an isomorphism. Let t  be the stable tangent bundle of L 3 (2a). Then by the re-
sults of Atiyah [2] and by the mod k  Dold theorem [1], we see that J(r) e j(L 3 (2a))
is of odd order (may be z e ro ) . Thus in order to prove the theorem, it suffices to
show the following

Lemma 4.1. L et a > 2  be a n  in teger. T hen  f ( t ) e l ( L 3 (2 a))  is  a non z ero
element of even order.

P ro o f . First we determine the tangent bundle o f L "(2a ). Applying Theorem
1.1 of [14] to the principal bundle Z2„

- - > S 2 n + 1 — ) L a ( 2 a ) ,  we see that

T(L"(2a))C1 (n +1)n

where e is  the trivial line bundle and n= S 2 "+1 x z e e .  i s  t h e  canonical complex
line bundle (Z 2 . acts on CI via the canonical inclusion Z 2 „  S 1). L e t

Ln(2a) Ln(2°+1)

be the canonical m a p .  T hen  it is obvious that i*(-c(L"(2° -"))0e)'L -r(Ln(2°))(Ds.
Hence we are enough to prove the lemma for a =2. Now it is known (Corollary
4.6, [8]) that the order of .7(r(q — 1)) e l(L 3 (4)) is 8. T h u s

1(r)=J(4r(ti —1))

is an element of o rd e r  2 . This completes the proof.

Appendix

The theory of infinite loop spaces says that a  small category W . w ith a coherent
associative and commutative bifunctor  x  W—>W' (a symmetric monoidal cate-
gory) defines a  generalized cohomology theory ([9] a n d  [1 3 ]) . M o re  precisely,
if is  a  symmetric monoidal category, one  can associate a  spectrum BW=
{BBW }n=0,1,2,... such that

i) B °B W =B W  is  the classify ing space of
ii) { B "13(f } „, is an 0-spectrum



552 Goro Nishida

iii) if  BW is of  the homotopy type of countable CW complex, then the struc-
ture map g o : BW-d3 113W is the "group completion", i.e.,

go , :  1-1* (BW; k)[tr o (BW) - ' ] ---■ H * (S2B'BW; k)

is an isomorphism f or any f ield k. (see [9]).

The Barratt-Priddy-Quillen theorem asserts that the cohomology theory defined
by the category of finite sets is equivalent to the stable cohomotopy theory (see [13]).
Here we consider an equivariant version of the Barratt-Priddy-Quillen theorem,
essentially due to Segal [12].

Let W be a symmetric monoidal category such that any morphism is invertible.
Then BW is a homotopy commutative H-space, and the abelian (additive) monoid
tro (BW) is identified with the set of isomorphism classes of Ob W . G iven an  object
X , one has a functor

Lx:

by L x (Y)= X x Y. This induces a continuous map

lx : B 'f —*BÇÇ

If X and Y are objects in the same component of BW, then clearly Ix , - ly (homotop-
ic). L e t  tetr o (B W ). Choose a  representative X  o f  a , a n d  p u t  ckt = l x . Then
clearly ct, „4.0 - O ccOp .

Now regard tro (BW) as a  directed set by setting a<fl if 13=y +a fo r some y.
Suppose that tro (BW) is countable. Then one can choose dl , d2 ,..., etr o (BW) such
that the sequence {a i = d i  + ••• +d 1}i=1 ,2 ,.•. is cofinal in tro (B W ). Consider the direct
system

• • •

it is clear that connected components of the direct limit lim OW , 0 ,0  are homotopy
equivalent to each other. So put

B C 0 =a component of urn {BW, ckOE,} .

Theorem A .1 .  There is a map

co: B C, (S-2B'BW)0

such that co * : H (B C 0)--q-1(QB'BW) 0)  is  an isom orphism , where the subscript
0 means the 0-component.

P ro o f . Letting S be the multiplicative subset of no (BW) generated by d l , d2,•••,

11(B '; k )[7c o (BW) - 1 ]=1-1* (BW ; k ) [S - ']

; k ) ( * ** 1-1* (BW ; k)->•••}

=1-1,(lim{BW, 0„,} ; k).
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for any field k. For /36 n o (BW), let

BW/i(S 2 B 1 B W )1 3 (CIBIBW)o •

Then clearly coŒ + fl OOE — cos , and hence by the telescope argument, we obtain a map

co = lim cop  : B C D(S 2 B 1 B W )0 .

The fact that co* is an isomorphism follows from that

go* : H * (B W : k)[S - 9 H*(0131BW : k)

for any field k. q. e. d.

Now let G be a finite group. By .99 ,  we denote the category of finite G-sets and
G-isomorphisms. The direct sum and the direct product of finite G-sets give rise
to binary functors 0 and 0, respectively. It is easy to see that (5°G , C I) and (Y G ,
0) are both symmetric monoidal categories.

Let S2G= {(H,),..., (11,)}  be  the set of conjugacy classes of subgroups o f G.
Let Y i be the full subcategory of 9 9

G  consisting of objects of the form nGlfl i --=GIHi

•••Glil i .

Lemma A .2 .  The category  <9°
G  is equivalent to the product category  Y i  x ••-

x Y k , and

B Y i=jjE Z ,,x  i n (BW„,)"

where El i, is a universal 1 n -space and WI's = N(H)1H i .

Pro o f . The first statem ent is clear. By definition .1199
1

-= LIB Aut G (nGI I

Clearly we see that Aut 6 (G/H1)= W f f . H e n c e  B AutG (nGlfl i ) =-B(E n 1WH , ) =E i n x

zn(BWO"- q. e. d.

Note that BiBY i =Q((BW „1) , )  by the Barratt-Priddy-Quillen theorem and by
Lemma A .2 . Thus we have obtained

Theorem A .3 .  There is a map

(B,9,G). _ .  A Q0BWH)+)o

which induces an  isomorphism of homology.

Next we shall consider subcategories o f ..VG  which represent "free part" of
,SPG . Let g -

G and g -2  be the fall subcategories of <99 „  consisting of free G-sets,
and consisting of G-sets of the form free G set u +*, respectively. C le a r ly  .FG
is a symmetric monoidal subcategory of Y G , whereas ,F2 is symmetric monoidal
with respect to  0.

Theorem A .4 .  There is a map

(B5rP) DoQ 0 (B G 4 .)p (G )
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inducing an isom orphism  on  homology, where X , ( , ) denotes the localization of
X  at the set of  prim es P(G)={ p;

P ro o f . Note tha t n0 (13g1) is the multiplicative submonoid o f no (BY G )  con-
sisting o f  I +nG , where G  is regarded as a  free  G  se t, hence n0 ( B ,2 )  is  a free
abelian monoid with countable generators.

For S, Te Ob .99
G , let

F(S, T): G

be the functor defined by F(S , T )(X )=S O ,( T O X ) .  Let f (S , T ): B 9 ' G -43.99
G  b e

the induced m a p . P u t y„,= f(mG, 1+ 0 0 .  Then restricting to fig *  G ,  we have a
map

y m :  B cF G G

Also put /3 =f (0 , 1 + m G ): B g 1 -4 .1 3 .n . Note that we have

(1 + mG) (1 + nG)= 1 + (n + m + nmIGDG

=1+ m G +(l+m IGI)nG

in no (B..n ) .  Hence we have a homotopy commutative diagram

Bt5r  G G

f ot91 if ( 1 .0 )

B,F )

Similarly we have a homotopy commutative diagram

 

(B g-G )y ,„(a)

Icom(a)

 

(f2B 113 G)c, .(1-1-.1G1) (t2B 'B G )o

Note that if  m tends to infinity, then so does y,, 1(Œ). H e n c e  (11.FG ) yn (O E ) approxi-
mates (S2B'f3. 6 )0 hom ologically. A lso note that the multiplicative set M ={I +
mIGI; ni = I, 2,... } is cofinal in the multiplicative monoid of positive integers prime
to IQ because of the Dirichlet theorem on arithmetic progression.

Now since (S2B 'B.F 6 )0  is an H-space, the limit of

(0131 B.FG)0 x(i+miGi) (g2B 1 .&FG)o

is .((r2B BF  1 11 - -  G.. 0 z  P(G ) the localization at the set of prim es P (G ) . By Theorem A.3,
(( 2-6113 .-FG)o)p(G)=-Qo(BG+)p(G). Note that (BS),,, is a component o f  lim {B‘91,
/3„,}, and

f  (1, 0): G B .91

is a homotopy equivalence. Hence taking the limit of the above diagrams, we have
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a map

(B ..n ) 0 0Q 0 ( B G + ) p ( 6 )

which induces an isomorphism of homology, q. e. d.

Finally we sketch briefly a reproof of Theorem 1.1 for odd primes using algebraic
K-theory.

Let F g  be  a  finite field with g =p r elem ents. Let be the category of (finite
dimensional) vector spaces over F q and linear isomorphisms. Let V W >  be the full
subcategory of consisting of vector spaces of a power of p  dimension. Let ,91P>
be the full subcategory of 09  (the category of finite sets) consisting o f finite sets of
cardinal p". Here the symmetric monoidal structures of v-ap> and .99 a P ' come
from the tensor product and the direct product, respectively.

There are two functors

yr. y(5?».

where U  forgets the vector space structure and L sends a finite set to a  vector space
generated by the set.

Let A  be a subgroup of F .  B y  the scalar multiplication, A  acts on a F g -vector
space V  and the set U (V ). Since Aut, g (V) comutes with A , U(A ut F .(V ))c A u t A

(U ( V ) ) .  Note that U(V) E Ob T h u s  w e  have a commutative diagram of func-
tors

where F is the functor forgetting the A-action.
Now we apply the functor f213'13 on the above categories. According to Quillen

[11], (5
-
2 B 'B r . )0 .̂.' B GL (F4)±  and the algebraic K-group -1Z,JX) is defined by [X,

B G L ( F 0 ] .  It is easy to see that (OW B
-

'("IP>)0  (B G L (F01 < p ) .  and (f2B 1 B9W > )0

Q0 (S °).,,,, where X , , , ,  denotes the localization away from p. The functor U;
'V -4.9'A P> induces a natural transformation

J : [ X ,  Q0 (S°), 4„.]L--n°(X)P--p l
which refer to the algebraic J-homomorphism. Then by Theorem A.4, we have
obtained

Proposition A.5. T here is a com m utative diagram

„ (X ) I A [X , Q0(BA +)P(A )]

[X , Qo(S
°
)<p>]
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w here is the forgetting hom om orphism  induced from  F.

Now Theorem 1.1 fo r an  odd prime follows from

Proposition A.6. Let A .--Z ,„ I  o d d . T h e n  th e re  is  an  integer q = p r  such
that F :  Zi„,= A  and

j :
F  (S 2 n — 1 ) ) 71„--1(s°)(1)

is an epimorphism  onto (1m J) ( 0 .

P ro o f . The existence of such g is  w ell know n. F o r  Im j ,  see Tornehave [15].
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