On the cohomology mod 2 of the classifying space of AdE_7

By

Akira Kono and Mamoru MIMURA

Dedicated to Professor A. Komatu on his 70th birthday (Received Sept. 12, 1977)

§1. Introduction

Let E_7 be the compact 1-connected exceptional Lie group and AdE_7 the quotient of E_7 by its center $\mathbb{Z}/2\mathbb{Z}$. The purpose of this paper is to determine the module structure of $H^*(BAdE_7; \mathbf{F}_2)$ where \mathbf{F}_p is the prime field of characteristic p and $BAdE_7$ is the classifying space of AdE_7 .

To determine this we make use of the Rothenberg-Steenrod spectral sequence ([8]):

(3.1) $E_2 = \operatorname{Ext}_{H_*(AdE_7; F_2)}(F_2, F_2) \Longrightarrow E_{\infty} = GrH^*(BAdE_7; F_2).$

In fact, we show

Theorem 3.5. The spectral sequence (3.1) collapses.

Corollary 3.6. As a module over \mathbf{F}_2

 $H^*(BAdE_7; \mathbf{F}_2) \cong \mathbf{F}_2[y_i; i \in \overline{M}]/R,$

where R is the ideal generated by (3.9) and (3.10) in [6], deg $y_i = i$ and $\overline{M} = \{2, 3, 6, 7, 10, 11, 18, 19, 34, 35, 64, 66, 67, 96, 112\}$.

Remark. $H^*(BAdE_7; \mathbf{F}_p) \cong H^*(BE_7; \mathbf{F}_p)$ for any odd prime p.

The paper is organized as follows. Certain indecomposable elements of $H^*(BAdE_7; \mathbf{F}_2)$ are constructed in §2, where the adjoint representation of E_7 plays an important role. In the next section, §3, the E_2 -term of (3.1) is determined and the main theorem is proved. Throughout the paper we use the following

Notations. $\pi: E_7 \rightarrow AdE_7$ is the covering projection. For a homomorphism $f: G \rightarrow G'$ between compact Lie groups the induced map between the classifying spaces $BG \rightarrow BG'$ is denoted by the same symbol. $H^*(\)$ is the mod 2 (not integral) singular cohomology functor. \mathscr{A}_2 is the mod 2 Steenrod algebra.

§2. Certain elements of $H^*(BAdE_7)$ Notation 2.1. $M_1 = \{6, 10, 18, 34, 66\}$, $M_2 = \{7, 11, 19, 35, 67\}$, $M = M_1 \cup M_2$, $\tilde{M} = \{4\} \cup M \cup \{64, 96, 112\}$, $\bar{M} = \{2, 3\} \cup M \cup \{64, 96, 112\}$.

Notation 2.2. $S_n = S_q^{2^n} S_q^{2^{n-1}} \cdots S_q^4 \in \mathscr{A}_2$ for $n \ge 2$, $S'_n = S_q^1 S_n$ for $n \ge 2$.

Now recall the result of Kono-Mimura-Shimada [4]:

Theorem 2.3. There exist indecomposable elements

 $y_i \in H^i(BE_7)$ for $i \in \widetilde{M}$

such that as an algebra

$$H^*(BE_7) \cong \mathbf{F}_2[y_i; i \in \tilde{M}]/\bar{R}$$

for some ideal \overline{R} of $\mathbf{F}_2[y_i; i \in \widetilde{M}]$. Moreover

$$y_6 = S_q^2 y_4, \qquad y_{2^{n+2}} = S_{n-1} y_6 \qquad (3 \le n \le 6),$$

$$y_7 = S_q^1 y_6, \qquad y_{2^{n+3}} = S_q^1 y_{2^{n+2}} = S_{n-1}' y_6 \qquad (3 \le n \le 6),$$

$$y_{96} = S_q^{32} y_{64}, \qquad y_{112} = S_q^{16} y_{96}.$$

Remark 2.4. $H^*(BE_7) \cong F_2[y_4, y_6]$ for $* \le 6$.

Lemma 2.5. As an algebra over \mathbf{F}_2

$$H^*(BAdE_7) \cong \mathbb{F}_2[e_2, e_3] \quad for \quad * \leq 5,$$

where deg $e_i = i$ and $e_3 = S_q^1 e_2$.

Proof. According to Ishitoya-Kono-Toda [2]

$$H^*(AdE_7) \cong F_2[x_1]/(x_1^4)$$
 for $* \le 4$,

where deg $x_1 = 1$. Clearly x_1 is universally transgressive and so is x_1^2 . Put $e_2 = \tau(x_1)$ and $e_3 = \tau(x_1^2) = S_q^1 e_2$ where τ is the transgression operation. Then the result follows easily. Q.E.D.

Let

$$\varepsilon: BAdE_7 \longrightarrow K(\mathbb{Z}/2\mathbb{Z}, 2)$$

be the map corresponding to $e_2 \in H^2(BAdE_7)$ so that exists a fibering

$$(2.1) \qquad BE_7 \xrightarrow{\pi} BAdE_7 \xrightarrow{\epsilon} K(\mathbb{Z}/2\mathbb{Z}, 2).$$

The cohomology Serre spectral sequence associated with the fibering (2.1) has the following E_2 -term

$$E_2 \cong H^*(K(\mathbb{Z}/2\mathbb{Z}, 2)) \otimes H^*(BE_7)$$

and converges to $H^*(BAdE_7)$, where

$$H^{*}(K(\mathbb{Z}/2\mathbb{Z}, 2)) \cong \mathbb{F}_{2}[u_{2}, u_{3}, u_{5}]$$
 for $* \le 8$

with deg $u_i = i$, $u_3 = S_q^1 u_2$ and $u_5 = S_q^2 S_q^1 u_2$. Clearly y_4 is transgressive. Since $H^4(BAdE_7)$ is decomposable, we have

$$\tau(y_4) = u_5 + \alpha u_2 u_3 \qquad \text{with} \quad \alpha \in \mathbf{F}_2.$$

Since $y_6 = S_q^2 y_4$, y_6 is also transgressive with

$$\tau(y_6) = S_q^2 \tau(y_4) = S_q^2 u_5 + \alpha S_q^2(u_2 u_3).$$

Then by the Adem relation we obtain

$$S_{q}^{2}u_{5} = S_{q}^{2}S_{q}^{2}S_{q}^{1}u_{2} = S_{q}^{3}S_{q}^{1}S_{q}^{1}u_{2} = 0$$

and

$$S_{q}^{1}u_{3} = S_{q}^{1}S_{q}^{1}u_{2} = 0,$$

and hence

$$S_{q\tau}(y_4) = \alpha u_2(u_5 + u_2u_3) \in (\tau(y_4))$$
, the ideal generated by $\tau(y_4)$.

So $(1 \otimes y_6)$ is a permanent cycle and $y_6 \in \text{Im } \pi^*$.

Proposition 2.6. $y_i \in \text{Im } \pi^*$ for $i \in M$. This is an immediate consequence of the naturality of the Steenrod operations.

Let

$$\mu: E_7 \longrightarrow O(133)$$

be the adjoint representation of E_7 . Then, as is well known, $\text{Ker }\mu = \text{Center }E_7$ (=the center of E_7). So μ induces a representation $\bar{\mu}$ of AdE_7 :

$$\bar{\mu}: AdE_7 \longrightarrow O(133)$$

such that the diagram

is commutative.

Lemma 2.7. E_7 contains SU(7) as a closed subgroup such that Center $E_7 \cap SU(7) = \{unit\}.$

For a proof see P. 279 of [4].

Let T^6 be a maximal torus of SU(7) and T^7 a maximal torus of E_7 such that $T^6 \subset T^7$. The commutative diagram

gives rise to a homotopy commutative one

where i_j 's are the inclusions. On the other hand, there exists a representation of T^7

$$\mu': T^7 \longrightarrow O(126)$$

such that $\mu \circ i_4$ is equivalent to $\mu' \oplus \varepsilon_7$ as a representation of T^7 , where ε_7 is the 7dimensional trivial representation of T^7 . Then we have the following homotopy commutative diagram

where i_5 is the map corresponding to the natural inclusion: $O(126) \rightarrow O(133)$.

Lemma 2.8. $H^*(BSU(7))$ is a finite $H^*(BO(133))$ -module under $(\mu \circ i_2)^*$: $H^*(BO(133)) \rightarrow H^*(BE_7) \rightarrow H^*(BSU(7))$.

Proof. Since Ker $\mu \cap \text{Im } i_2 = \{\text{unit}\}, \ \mu \circ i_2 \text{ is an injection.}$ So the result follows

538

from the Quillen's finiteness theorem (cf. §2 of [7]).

Recall that

$$H^{*}(BO(n)) = \mathbf{F}_{2}[w_{1},..., w_{n}],$$

$$H^{*}(BSU(7)) = \mathbf{F}_{2}[c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}],$$

with deg $w_i = i$ and deg $c_i = 2i$. Let *I* be the ideal of $H^*(BSU(7))$ generated by c_2 , c_3 , c_5 and *J* the subalgebra of $H^*(BO(133))$ generated by w_i , $i \le 126$. Then the Wu-formula indicates

Lemma 2.9. I is \mathscr{A}_2 -invariant and J is generated by w_{2i} for $0 \le i \le 6$ over \mathscr{A}_2 .

Lemma 2.10. $(i_2^* \circ \mu^*)(w_i) = 0$ for $i \ge 127$.

Proof. Since i_1^* is injective, it suffices to show that $(i_1^* \circ i_2^* \circ \mu^*)(w_i) = 0$ for $i \ge 127$, which follows from

$$(i_1^* \circ i_2^* \circ \mu^*)(w_i) = (i_3^* \circ \mu'^* \circ i_5^*)(w_i) = 0$$
 for $i \ge 127$.
Q.

Proposition 2.11. The element $\mu^* w_{64}$ is not decomposable.

Proof. Since $H^*(BE_7)$ for $* \le 63$ is generated by y_4 over \mathscr{A}_2 , $\operatorname{Im}(\mu \circ i_2)^*$ for degrees ≤ 63 is contained in *I*. So, if $\mu^* w_{64}$ were decomposable, the element $(i_2^* \circ \mu^*) w_{2^i}$ would belong to *I* for $0 \le i \le 6$. Thus $(i_2^* \circ \mu^*)(J) \subset I$ and so $\operatorname{Im}(i_2^* \circ \mu^*) = \operatorname{Im}(\mu \circ i_2)^* \subset I$ by Lemma 2.10, which would contradict to Lemma 2.8. Q.E.D.

Now Lemma 2.5, Propositions 2.6 and 2.11 yield the following

Theorem 2.12. There exists indecomposable elements

 $e_i \in H^i(BAdE_7)$ for $i \in \overline{M}$

such that $\pi^*(e_i) = y_i$ for $i \in M$ and $\pi^*(e_i) \equiv y_i \mod decomposables$ for i = 64, 96, 112.

Proof. The elements e_2 , e_3 are as in Lemma 2.5. By Proposition 2.6 there exists e_i such that $\pi^*(e_i) = y_i$ for $i \in M$. Moreover, put $e_{64} = \overline{\mu}^*(w_{64})$, $e_{96} = Sq^{32}e_{64}$ and $e_{112} = Sq^{16}Sq^{22}e_{64}$. Then $\pi^*(e_{64}) = \mu^*(w_{64}) \equiv y_{64}$ mod decomposables and so $\pi^*(e_i) \equiv y_i$ mod decomposables for i = 96, 112. These are not decomposable by Proposition 2.11. Q.E. D.

Remark 2.13. The element e_i ($i \in M$) is not uniquely determined. But we can rechoose e_i such that $e_7 = S_q^1 e_6$, $e_{2^n+2} = S_{n-1} e_6$ ($3 \le n \le 6$) and $e_{2^n+3} = S'_{n-1} e_6$ ($3 \le n \le 6$).

§3. Proof of the main theorem

First recall from [2] (see also [3] and [4]):

Theorem 3.1. As an algebra

E.D.

Q. E. D.

Akira Kono and Mamoru Mimura

$$H^{*}(E_{7}) \cong \mathbf{F}_{2}[x_{3}, x_{5}, x_{9}]/(x_{3}^{4}, x_{5}^{4}, x_{9}^{4}) \otimes \Lambda(x_{15}, x_{17}, x_{23}, x_{27}),$$

$$H^*(AdE_7) \cong \mathbf{F}_2[x_1, x_5, x_9]/(x_1^4, x_5^4, x_9^4) \otimes \Lambda(x_6, x_{15}, x_{17}, x_{23}, x_{27}),$$

where deg $x_i = i$ and the coalgebra structure is given by

$$\begin{split} \bar{\phi}(x_i) &= 0 \qquad i = 1, \ 3, \ 5, \ 6, \ 9, \ 17, \\ \bar{\phi}(x_{15}) &= \begin{cases} x_3^2 \otimes x_9 + x_5^2 \otimes x_5 & for \quad E_7 \\ x_6 \otimes x_9 + x_5^2 \otimes x_5 & for \quad AdE_7, \\ \bar{\phi}(x_{23}) &= \begin{cases} x_9^2 \otimes x_5 + x_3^2 \otimes x_{17} & for \quad E_7 \\ x_9^2 \otimes x_5 + x_6 \otimes x_{17} & for \quad AdE_7, \\ \bar{\phi}(x_{27}) &= x_9^2 \otimes x_9 + x_5^2 \otimes x_{17}. \end{cases} \end{split}$$

Put $A = H^*(E_7)//(x_3)$ (for the notation see [5]). Since x_3 is primitive, A is also a Hopf algebra. Then it follows from Theorem 3.1

Lemma 3.2 As an algebra

$$H_*(E_7) \cong \Lambda(s_3) \otimes A^*,$$

$$H_*(AdE_7) \cong \Lambda(s_1, s_2) \otimes A^*,$$

where deg $s_i = i$ and A^* is the dual of A.

The following is Proposition 3.2 of [6].

Lemma 3.3 As an algebra

$$\operatorname{Ext}_{H_{*}(E_{7})}(\mathbf{F}_{2}, \mathbf{F}_{2}) \cong \mathbf{F}_{2}[y_{4}] \otimes (\mathbf{F}_{2}[y_{i}, i \neq 4, i \in \tilde{M}]/R)$$

where R is the ideal generated by the elements of (3.9) and (3.10) in [6].

Thus we have

Proposition 3.4. As an algebra

$$\operatorname{Ext}_{H_{\bullet}(A \, d \, E_{7})}(\mathbf{F}_{2}, \, \mathbf{F}_{2}) \cong \mathbf{F}_{2}[y_{i}; \, i \in \overline{M}]/R.$$

Now consider the Rothenberg-Steenrod spectral sequence [8]:

(3.1)
$$E_2 \cong \operatorname{Ext}_{H_*(AdE_7)}(\mathbf{F}_2, \mathbf{F}_2) \Longrightarrow E_{\infty} \cong GrH^*(BAdE_7).$$

Using Theorem 2.12, we can easily get

Theorem 3.5. The spectral sequence (3.1) collapses.

Corollary 3.6. As a module over \mathbf{F}_2

 $H^*(BAdE_7) \cong \operatorname{Ext}_{H^*(AdE_7)}(\mathbf{F}_2, \mathbf{F}_2).$

Corollary 3.7. As an algebra $H^*(BAdE_7)$ is generated by the elements e_i 's

.

$$e_{3} = S_{q}^{1}e_{2}, e_{7} = S_{q}^{1}e_{6},$$

$$e_{2^{n}+2} = S_{n-1}e_{6} \qquad (3 \le n \le 6),$$

$$e_{2^{n}+3} = S_{n-1}'e_{6} \qquad (3 \le n \le 6),$$

$$e_{64} = \mu^{*}(w_{64}), e_{96} = S_{q}^{32}e_{64} \quad and \quad e_{112} = S_{q}^{16}S_{q}^{32}e_{64}.$$

DEPARTMENT OF MATHEMATICS **KYOTO UNIVERSITY**

MATHEMATICAL INSTITUTE YOSHIDA COLLEGE **KYOTO UNIVERSITY**

References

- [1] J. F. Adams: Lectures on Lie groups, Benjamin, 1969.
- [2] K. Ishitoya-A. Kono-H. Toda: Hopf algebra structure of mod 2 cohomology of simple Lie groups, Publ. RIMS Kyoto Univ., 12 (1975), 141-167.
- [3] A. Kono: Hopf algebra structure and cohomology operations of the mod 2 cohomology of the exceptional Lie groups, Japanese J. Math., 3 (1977), 49-55.
- [4] A. Kono-M. Mimura-N. Shimada: On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E_7 , J. Pure and Applied Alg., 8 (1976), 267–283.
- [5] J. Milnor-J. C. Moore: On the structure of Hopf algebras, Ann. Math., 81 (1965), 211-264.
- [6] M. Mimura-M. Mori: The squaring operations in the Eilenberg-Moore spectral sequence and the classifying space of an associative H-space, I, Publ. RIMS Kyoto Univ., 13 (1977), 755-776.
- [7] D. Quillen: The spectrum of an equivariant cohomology ring I, Ann. Math., 94 (1971), 549-572.
- [8] M. Rothenberg-N. E. Steenrod: The cohomology of the classifying spaces, Bull. A.M.S., 71 (1965), 872-875.