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§0. Introduction

After studying ample vector bundles on algebraic varieties, R. Hartshorne has
posed the following problem in [5] and now it is known as the conjecture of
Harshorne’s.

(H-n) 1If X is an n-dimensional non-singular projective algebraic variety with ample
tangent vector bundle defined over an algebraically closed field k, then X is
(algebraically) isomorphic to P" over k.

In the case k=C (the complex number field), it is known that this conjecture
is deeply connected with the following famous conjecture of Frankel’s in complex
differential geometry.

(F-n) A compact Kaehler manifold X of dimension n with positive sectional
curvature is biholomorphic to the complex projective space P*(C).

From now on, we assume that the characteristic of k is 0. (H-1) and (F-1)
are obvious. Using classification of algebraic surfaces, (H-2) and (F-2) are solved
affirmatively by R. Hartshorne [5] and by Frankel and Andreotti [3] respectively.
Recently, T. Mabuchi has succeeded in proving (H-3) under the assumption that
the second Betti number of X is equal to 1 [9]. In this paper, we will prove that
(H-3) holds true without the assumption on the second Betti number. The keys
to our proof of (H-3) are the following.

(1) A criterion for Pic(X)=Z: Let X be a non-singular projective algebraic
variety with ample anti-canonical divisor ¢, =c,(Tx). Then the Picard number
p(X) of X is equal to 1 if and only if every effective divisor on X is ample (Theorem
3). Using this criterion, we prove that if the tangent vector bundle Ty of X is ample,
then the Picard number p(X) of X is equal to 1 (Theorem 4).

(2) A characterization of projective spaces: If a non-singular projective alge-
braic variety X has a non-zero global vector field vanishing on an ample irreducible
effective divisor D on X, then X is isomorphic to a projective space P" and D cor-

* The first author is partially supported by Sakkokai Foundation.
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responds to a hyperplane in P* (Theorem 8).

(3) Bialynicki-Birula’s results on G,-actions [2] and T. Mabuchi’s argument:
We use T. Mabuchi’s argument in simplified form on vector fields.

Finally we note that the conjecture (H-2) is proved by our method without
using the classification of algebraic surfaces and it seems that our method might
work in higher dimensional cases.

Notations

Ty: the tangent vector bundle of a non-singular algebraic variety X, i.e., a locally
free 0 x-sheaf with rank=dim X.

¢, =c(Tx): the anti-canonical divisor of X, i.e., the first Chern class of Ty.

Ky: the canonical divisor of X, i.e., Ky= —c,.

H!(X, F): i-th cohomology group for a coherent @-sheaf F.

hi(X, F), h'(X, D)=hi(D): hi(X, F)=dim Hi(X, F), hi(X, D) = hi(X, 0 (D)) for a
divisor D on X.

x(F): the Euler-Poincare characteristic of a coherent @ y-sheaf F, i.e., y(F)=Y(—1)'
hi(X, F).

Pic(X): the Picard group of X.

(D-C): intersection number of a divisor D and a curve C in a non-singular projec-
tive algebraic variety.

Aut(X), Aut(X)°: the automorphism group of an algebraic variety X and the con-
nected component of Aut(X) containing the unit element.

XG: G-fixed points scheme with reduced structure of an algebraic variety X on
which a linear algebraic group G acts.

Vi (A), D,(F): the closed subscheme defined by a homogeneous ideal A(<R) in
Proj(R) (R being a graded ring) and the open subscheme defined by a homo-
geneous element F in Proj(R).

§1. A criterion for Pic(X)=7Z

Let X be a non-singular projective algebraic variety defined over an algebra-
ically closed field of characteristic 0. In this section, we will give a criterion for
Pic(X) to be isomorphic to Z when the anti-canonical divisor ¢,=c¢,(Ty) of X is
ample and using it, we will prove that the ampleness of the tangent vector bundle
Ty of X implies Pic(X)=2Z.

Before stating our criterion, we shall begin with the following lemmas.

Lemma 1. Let D be an ample divisor on X (n=dim X). Then ho%(mD —
¢;)#0 for some integer m with L <m<n+1.

Proof. For every integer m, we put P(m)=yx(mD—c,)=x(mD+Ky). Since D
is ample, P(m)=%m"+--- is a numerical polynominal of degree n in m by the
Riemann-Roch theorem and hence P(m)=0 has only n roots. We have hi(mD+
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Ky)=h""{(—=mD)=0 for i(1<i<n) and m(>1) by Serre duality and Kodaira
vanishing theorem. Hence P(im)=h%(mD—c,) (m>1)and h°(mD—c,)#0 for some
m{<m<n+1). g.e.d.

For a divisor D on X, we write D>0 if D is ample and D >0 if D is numerically
effective, i.e., (D-C)>0 for every effective curve C in X.

Lemma 2. Assume that the anti-canonical divisor ¢ =c(Ty) is ample.
Then we get the following:

(1) linear equivalence=numerical equivalence for divisors on X.

(2) Foradivisor D>0on X, there is a positive integer m such that h®(mD)> 1.

Proof. (2) Let D be a numerically effective divisor on X. Let P(x) be the
polynomial such that P(m)=y(mD) for every integer m. Since ¢, is ample, P(0)=
1(0x)=1 and P(m)=-%'—m"+-~-+l. hitmD)=h""i{(—=mD+ Ky)=h""(—(mD +
¢))=0 for all i>0 because mD+¢, is ample for every m(>0). Hence P(m)=
h°(mD)>0 for m(>0) and h°(mD)>1 for some integer m(>1). (1) Let D be a
divisor which is numerically equivalent to 0. Then we sce easily that h%(@4(D))= |
and h%@y(—D))=1 because c,=c(Ty) is ample. Hence D is linearly equivalent
to 0. g.e.d.

Let AY(X)=N(X)®R where N(X) is the Neron-Severi group of X and let p

z
be the Picard number of X, i.e., p=dimg A'(X) ([7]). Now we shall give a theo-
rem which implies p=1 under some condition.

Theorem 3. Let X be a non-singular projective algebraic variety defined over
an algebraically closed field of characteristic 0 and let the anti-canonical divisor
¢, =¢,(Ty) be ample. Then the following are equivalent.

(1) p=1

(2) Every effective divisor on X is ample.

Proof. We have only to prove (2)—(1). Assuming that there is an ample
divisor D on X so that D&Re; in A'(X), we will get a contradiction. By virtue of
Lemma | and our assumption, we have (n+1)D—¢, >0 and (n+1)D—c¢, >0 be
cause DeERey. Let (n+1)D=¢,+D, in A'(X), D, being an ample divisor on X.
Then D, & Re,. Applying the same process to D, we get (n+1)D,=c¢,+D,, D,
being an ample divisor on X. Repeating this process, we obtain

(n+1D =c,+D,

(n+ DD =c,+ D,

(n+ l)Dm—l=C1 +Dm

Hence, D= = (1/(n+ )"

p ci+(1(n+1)y"*'D,, where D, is an ample divisor
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on X. Taking m- oo, Dz%, i.e., nD—c,;>0. By virtue of Lemma 2 and our

assumption, nD —c¢, >0 because DeRc,. Hence, nD—c¢, >0 for any ample divisor
D which is not contained in Rc¢,. Applying the above argument to this situation
again, we get (n—1)D—c¢,>0. Repeating this argument, we finally get that D—
¢, >0 if D is an ample divisor and DeERc,. Now we have D=c¢;+D,, D;=c, +
D,,... (D,, is an ample divisor for every m.). Then D=mec, +D,,. Since c, is ample,
D,,=D—mc, is not ample for a sufficiently large m, which is a contradiction.

g.e.d.

Now we will prove the following theorem.

Theorem 4. Let X be a non-singular projective algebraic variety with ample
tangent vector bundle Ty defined over an algebraically closed field of character-
istic0. Then Pic(X)=Z.

Before giving the proof, we shall show three lemmas and fix some notation.
The following lemma is well-known and hence we omit the proof.

Lemma 5. Let D be an irreducible divisor on X. Then D is ample if and
only if 04(D)®0O,, is ample and (D-C)>0 for every curve C in X.

Let 4,(X)=(Z,(X)/Num. equiv.)®R where Z (X) is the group generated by
¥4
cycles of codimension (n—1), i.e., curves in X. Then A,(X) is the dual space of
AYX) by the intersection pairing: A(X)®A4,(X)e(D, C)->(D-C)eR and dim
A(X)=p, p being the Picard number of X. We define a norm | || in 4,(X) by
ICll= X x? for C= ixiC,, where {C,...., C,} is a fixed basis of A4,(X).
i=1

S. Kleiman gave a useful criterion for a divisor D on X to be ample, i.e., D is
ample if and only if there exists a positive number & such that (D - C)>¢| C|| for every
effective curve C in X([7]). C. Barton extended the criterion to vector bundles on

X ([1D.

Lemma 6 (Barton). Let E be a vector bundle on X. The following are
equivalent to each other.

(1) Eisample.

(2) There exists a positive number ¢ such that d(f*(E))=¢| f+(C)| for every
finite morphism f: C—X, C being a non-singular projective curve, where
d(f*(E)) denotes the minimum of degrees of quotient line bundles of f*(E) on C.

The following lemma is obvious and we omit the proof.

Lemma 7. Let A be a commutative noetherian ring, I a prime ideal in A
and let D be a derivation on A. Then, D(I'™)c "1 where I™ are the m-th
symbolic powers of 1 (n=1, 2,...) and the induced homomorphism [(m[I(m+1D
[0m=D[I™ js AlI-linear.

Proof of Theorem 4. Since ¢, =c,(Ty) is ample, we have only to prove that
every irreducible divisor D on X is ample by virtue of Theorem 3. Using Lemma
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5, we will check the following two facts (i) and (ii).
(i) 0x(D)®O, is ample: We prove that there exists a positive number & such
that (D - C) > em(C) for every irreducible (reduced) curve C in D, m(C)= max mult ,(C)

([5], Seshadri’s criterion for ampleness of divisors). Let I, I, be thc sheaves of
defining ideals of C, D in X respectively and let m be a natural number such that
I oIy, IV DI, where I are the [-th symbolic powers of I (I=1,2,...).
Then, m <multp (D) for a general point P in C. The natural homomorphism I,®
Oc=Ip/IcIp,—I I+ D induces a non-zero map at the generic point of C and the
induced homomorphism a: #m, (I [IE+D, Oc)— Hom o (I p/IcIp, Oc)=0x(D)R O
is also non-zero at the generic point of C. By virtue of Lemma 7, we have an O,-
homomorphism B: S"(Ty)®0c3 D, ®-@D,,— [g—D (- (D,(9))+-)] € Hosmy (1]
I+ 0.) and a-f: S"(Ty)@0c— 0 x(D)® 0 is non-zero at the generic point of C.
Let f: C'—>C be a desingularization of C. Since f*(S™(Ty))—f*(0x(D)) is a non-
zero homomorphism and S™(Ty) is ample, there is a positive number &' such that
(D-C)>¢'|C| by virtue of Lemma 6. ¢ may depend on the integer m. However,
considering the Samuel function on D, we see that these integers m are bounded.
Since m(C)<A||C]| (A>0) for every curve C in X, we get a positive number ¢ such
that (D - C)>em(C) for every irreducible curve C in D.

(i) (D-C)>0 for every curve C in X: Since 04(D)®0O, is ample, O4(ID) is
generated by global sections for a sufficiently large integer I. Let C be an irreducible
curve in X. Let ID~3r;D; (~ denotes linear equivalence), D; being irreducible
divisor so that D;n C;é(lb for some i. If D;,o>C, then (D;-C)>0 by virtue of (1).
Hence, we get (D-C)>0. q.e.d.

§2. A characterization of P”"

In this section, we will give a characterization for a non-singular algebraic va-
riety X to be isomorphic to a projective space by using global vector fields on X.

Theorem 8. Let X be an n-dimensional, non-singular projective algebraic
variety defined over an algebraically closed field k of characteristic 0. If there
is a non-zero global vector field on X vanishing on an ample irreducible*) effec-
tive divisor D in X, i.e., HY(X, Ty®0O(— D))#0, then X is isomorphic to P" and
D is a hyperplane in P".

Proof. Let G=Aut(X)? and let G'={g € G| every point of D is fixed by g}.
Then, G’ is a linear algebraic subgroup of G and the tangent space of G’ at the unit
element=Ho(X, Tx®Ox(— D)). Therefore, we consider the following two cases,
(1) and (ID).

(I) G,, acts non-trivially on X and Dc X%~: Since Pic (G,,) =0, there isa G,,-
linearization on @4(D) and we fix this linearization on Oy(D). Let R= @ HO(X,

v20
0x(vD)), R,=H%X, 04x(vD)). Then R is a finitely generated graded ring over k and

*) The irreducibility can be omitted. We have only to assume that H%D, @ ,)=k.
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each R,, the homogeneous part of degree v in R(ve Z, v>0), is a rational G,,-module.
Now let {Fy, F...., F,} be a minimal set of G,-semi-invariant homogeneous gen-
erators of R over k, Fo( € R,) being the element corresponding to D. For a semi-
invariant element F(s0), we denote the weight of F by x(F), i.e., ©({)F=txFF
(teG,). We prove that R=K[F,,..., F,] is a polynomial ring over k, r=n, degF,=
1 (0<i<n) and y(F,)/deg Fy=---=x(F,)/deg F,, y(Fo)/deg Fo# x(F)/deg F .

Lemma 9. x(F,)/degF,=---=y(F,)/deg F,. x(F,)/deg Fo# x(F,)/deg F .

Proof. {F,,..., F,} is a minimal set of semi-invariant homogeneous generators
of the quotient ring R/(F,) where F, is the image of F; in R/(F,) (1<i<r). Let
(Y, L) be a polarized algebraic scheme over k with a G,-action such that HO(Y,
Oy)=k and L has a G, -linearization. Then the action of G,, on Y is trivial if and
only if there are characters g, of G,, such that the action of G,, on HO(Y, L®*) is a
multiplication by y, for every HO(Y, L®)#0 (v e Z) such that all the y,/v are equal

to each other. Therefore, y(F,)/deg F,=---=y(F,)/deg F, because the action of G,
on D=Proj(R/(Fy)) is trivial and x(F,)/deg(F,)# x(F,)/deg F, because the action
of G,, on X is non-trivial. q.e.d.

Hence, F, is transcendental over {F,...., F,}.
Lemma 10. r=n and {F,. F,..... F,} is algebraically independent over k.

Proof. Since F, is transcendental over {F,..., F,}. V,(F,,..., F,)={P} where
P is a closed point in X =ProjR and PeD,(F,)=Speck[F},..., F,] (F;=
Fi/F$eeFi 1<i<r). Now let k[F,..... F.]=k[Y,,..., Y,]/I, where {Y,...., Y.} is
algebraically independent over k and let M be the maximal ideal in k[Y,,..., Y,]
generated by (Y,,..., ¥,). Then the regular local ring (0 p, mp) is equal to (k[ Y]/
Tk[ Y]y MK[ Y]y /IK[Y],). We claim that r=n and I=0. Indeed if I & M2, then
we may assume that there is a non-trivial, G,,-semi-invariant relation such that

Fi+ éza,-F§+f(F’,,..., F)=0 (degf(Yy,..., ¥,)=>2).

By virtue of Lemma 9, we can easily prove that f(Y,,..., Y,) does not contain the
monomial which is divisible by Y, and the relation

Fi+ Y aF;+f(F,.... F,)=0
i22

holds. This contradicts to the fact that {F,, F,,..., F,} is a minimal set of semi-
invariant homogeneous generators of R. Hence I<M?2 Then dim,(mp/m})=
dim, (Mk[ Y]y /M2k[Y]y)=n implies that r=n and I=0. Therefore, {F,..... F,}
is algebraically independent over k. ' ' q.e.d.

~Lemma 11. deg F;=1 '(0gi,<_n").

Proof. For every i(1<i<r), put D, to be the divisor defined by F;in X. Then
P

D; is linearly equivalent to deg F;D. Let C; be the curve defined by (F,,..., F,, ...,
F,)(1<i<n). Then (D;-C)=1 and degF,;=1. q.e.d.
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By the above results, we have completed the proof of the assertion in case (I).

We consider the other case.

(I) G, acts non-trivially on X and DcX%: Since Pic(G,)=0, thereisa G,-
linearization on @4(D) and we fix this linearization on @,(D) and as in the case (1),
we consider the finitely generated graded ring R= @ HO(X, 0x(vD)), R,= HO( X,

0x(vD)). Let {F,, F,,..., F,} be a minimal set of homogeneous generators of R,
Fy(eR,) being the element corresponding to D. Since G, acts on D=Proj(R/
(F,)) trivially, the action of G, on the quotient ring R/(F,) is trivial, i.e., T(f)F —
Fe(F,) (teG,) for every homogeneous element F in R. Now we define 4(F)=
(t()F—F)|Fo(e R) and x(F)=deg,[t(f)F] for every homogeneous element F.
Since F, is G,-invariant, ©(t)(4(F))=(t(t+ 1)F —t()F))/F, and yx(4(F))=yx(F)—1
if y(F)#£0. By the induction on the degree of F, we see that deg F > y(F) in general.

Lemma 12. max {y(F;)/degF;} =

Proof. Assuming that max{y(F;)/degF;}=bla<l, (a, b)=1, a>1, we will
get a contradiction. For a general point P in X, 1(o0)(P)e V. (F;|x(F;)/degF;<
b/a). Since a and b are coprime. deg F; is divisible by a if y(F;)/deg F;=b/a. Hence
7(00)(P) € V4 (Ryq+,) for every N>0. Since D is ample, \/RyR is an irrelevant
prime for every sufficiently large integer N and this is a contradiction. g.e.d.

Operating 4 if necessary, we may assume that there is an element F(30) with
degF=1 and x(F)=1. Hence, after changing generators appropriately, we may
furthermore assume that 7(1)F,=F, +tF, (te G,) and degF,=1.

Lemma 13. For every homogeneous element F, there exists a unique set of
G, -invariant homogeneous elements {G,, G,,..., G,,} such that

n

F=3 S F\(F = Fo}-{Fi=(v=DF}  (m=1(F)).

Proof. We prove the assertion by the induction on y(F). If y(F)=0, ie., F
is G,-invariant, it is obvious. Applying the induction hypothesis on A(F), we have
a unique set {G,,..., G,,} (G;: G, -invariant and homogeneous) such that A(F)=

v+' Fy- {F,—(V—I)Fo}=A[§%.F,--~{F,—(v—|)Fo}]. Hence Go=F —

§
B G tF 0= DFy). q.e.d.

For every homogeneous element F, we denote by a(F) the element G, given in
Lemma 13. Then Lemma 13 implies that F—oa(F)e(R3),+k[Fo, F,], (v=degF),
where R, = the ideal (Fy, Fy,..., F,) in R. Applying the above relation, we can
take a good minimal set of homogeneous generators of R.

Lemma 14. There is a minimal set of homogeneous generators {F,, F,, F,,...,
F,} of R such that {F,, F,,..., F,} are G,-invariant and 1({)F,=F,+tF(te G,).

Proof. Let Fo=F,, F)=F, and F;=a(F)), deg F;<degF;,, (i>2). Then F,
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€ kF;+(R2),+k[F,, F,], (v=degF;). Therefore, we can prove that k[F,, F,,...,
F1=k[F,, F,,..., F;] for every i(0<i<r) by the induction on i and {F,, Fi,...,
F.} is the desired minimal set of homogeneous generators of R. q.e.d.

By virtue of Lemma 14, F, is transcendental over {F,, F,,..., F,} and V (F,,
F,,..., F)={P} (P is a closed point in X). By the same argument used in the case
(I), we can prove that r=n, {F,,..., F,} is algebraically independent over k and
deg F;=1(0<i<n). Therefore, X is isomorphic to P* and D corresponds to a
hyperplane in P~ q.e.d.

§3. Application

T. Mabuchi has succeeded in proving that the conjecture (H-3) holds true under
the assumption that the second Betti number=1 [9]. Our Theorem 4 implies that
the second Betti number =1, if the tangent vector bundle Ty of X is ample. Com-
bining his result with ours, we can now prove that the conjecture (H-3) is true. In
this section, applying our previous results, we shall give another proof which is
simpler than Mabuchi’s [9]. [t seems that ours might work in higher dimensional
cases. The keys to our proof are the results of Bialynicki-Birula’s on G,-actions
[2] and the arguments of Mabuchi’s.

Theorem 15. If X is a 3-dimensional, non-singular projective algebraic
variety with ample tangent vector bundle Ty defined over an algebraically closed
field of characteristic 0, then X is isomorphic to P3.

Proof. Let P=P(Ty) be the projective fiber bundle of Tx over X and let L be
the tautological line bundle of Ty. Then L is ample because Ty is ample and the
canonical line bundle of P is isomorphic to L®3. H(X, Ty)=H(P, Ly=H>"/(P,
L®-4=0 for i (1 <i<3) by Serre’s duality and Kodaira’s vanishing theorem. Hence
dim HO(X, Ty)= (X, Ty) = (ci—2¢,c;+¢3)+5, ¢; (1<i<3) being the i-th Chern
class of Ty, by the Riemann-Roch theorem. ¢3—2¢,c,+¢3 is a positive integer
([3]). Hence, dim HO(X, Ty)>6. Now let G=Aut%X). Since the irregularity
of X(=h'(X, 0y)) is 0, G is a linear algebraic group and dim G=dim H(X, Tyx)>6.
We consider the following two cases.

IO GoG,

We use the useful results of Bialynicki-Birula’s on G,-actions [2]. As for the defi-
nitions of (4 )-decomposition (resp. (—)-decomposition) of X and G,-fibrations
y¥: XF— X6 (resp. y7: X7 —>X¢), we refer to his paper. Let X% be the fixed
point scheme of X and let X6m= C/ X @ be the decomposition of connected com-
ponents. Then every component .)?:13" is smooth [6]. Following the Bialynicki-
Birula’s results ([2], Theorem 4.3 and Corollary 1), let X = ¢=Ul X+ (resp. X = \=Jl X7),
(X})Gm=XGn (resp. (X7)%m=X¢~) be the unique (+)-decomposition of X (resp.
(—)-decomposition of X), yt: Xt—XF~ (resp. yi: X;—»X¢) a G,-fibration and



On Hartshorne’s conjecture 531

let U= X7 be the dense G, -invariant locally closed subscheme of X. For simplici-
ty, we put Y=X§¢n»=UC% and denote the G,-fibration by y: U-Y. Since y is a
smooth morphism, we have a surjective homomorphism: T,=Ty|U—-y*(Ty) (U
being an open subcheme of X). Restricting these vector bundles to Y, we see that
there is a surjective homomorphism: Ty|Y— T, and hence Ty is ample. Since the
action of G,, is non-trivial, dim Y=0, 1 or 2.

(i) dimY=2. By virtue of our Theorem 8, X ~P3 and Y~ a hyperplane in P3.

(i) dimY=1. Y is a non-singular curve with the ample tangent bundle.
Hence, Y~P!. Let H be the closure of y~!(P) for a point P in Y. Then, the inter-
section number (H - Y)=1 and so H is the ample generator of Pic(X)=Z (cf. Theo-
rem 4). Put ¢, =aH (« being a positive integer). We see that «>4 by considering
the exact sequence: 0—Ty—Ty|Y—>Ny,x—0 and the fact that Y~P!. By virtue of
Kobayashi-Ochiai's theorem ([8], Corollaries to Theorem 1.1 and Theorem 2.1),
X ~P3.

(iii) dimY=0. In this case, U=~A? (3-dimensional affine space) and the
action of G,, on U is positive definite [2], i.e., ()X, =1°X,, t() X, =1"X,, 1()X;=
t°X; (teG,; a, b, ¢ being positive integers) for an affine coordinate system {X,,
X,, X3} of A3, Let P, be the origin (0, 0, 0) of A3=U and let H=X—U. Since
Pic(X)~Z and U~A3, H is irreducible and is the ample generator of Pic(X).
Now let us consider the G,-invariant locally closed (+ )-strata of X contained in H.
Assume that X3} is the (4)-stratum which is open in H. Let Z=(X%})%~, W the
(—)-stratum such that Wo»=Z and y': W—Z the G,-fibration. Let P be a point
in Z and let C be the closure of y'~!(P) in X. Then C is a rational curve such that
(C-H)=1. For a closed subscheme V in X, let us denote by Ty(V) the tangent
space of V at a non-singular point Q in V. Now let Tp(X)=Tp(X)°®D Tp(X)*®
Tp(X)~ be the decomposition of Tp(X) into the eigenspaces with respect to the
action of G, on T(X) (See [2]). Then, Tp(Z)=Tu(X)°, To(H)=T(X)°@Tp(X)",
Tp(W)=Tp(X)*@Tp(X)° and TH(C)=Tx(X) . Since dim, Tp(H)=2, we see that
dim, Tp(C)=1 and C is a rational curve such that (C- H)=1 because C and H meet
transversally at P. Let f: C—C be the desingularization of C and let ¢,=aH
(x being a positive integer). Since C~P!, f¥(Ty) decomposes into three ample
line bundles and so «>3. Thus, we see that X ~P3 by virtue of Kobayashi-Ochiai’s
theorem.

(I)  G= a unipotent algebraic group.

In this case, we prove that X is isomorphic to P3. This is a contradiction because
G=PGL(3). Therefore, case (IT) does not occur. First, we state an easy lemma
on unipotent algebraic groups.

Lemma 16. Let G be a connected unipotent algebraic group defined over
an algebraically closed field of characteristic 0 and let K be a connected closed
subgroup of G. Then, we get the following

(i) If codimgK =1, then K is normal in G and K> [G, G].
(ii) If codimgK =2, then N(K) (= the normalizer of K in G) is normal in
G and K> [N(K), N(K)].
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Proof. Since G is nilpotent as an abstract group, N(K)=z2K for every subgroup
K of G. Using this fact, one can prove the lemma easily.

Let H be an ample generator of Pic(X)=Z. We see H(X, 04(H))=0 for
every i(1 <i<3) by Serre duality and Kodaira vanishing theorem. Thus ho(X,
Ox(H)=xX, 0x(H)=1+ Ilz(c%+cz)H+;i c,H2+-é‘H3 by the Riemann-Roch theo-
rem, and hence h%(X, 0x(H))>2. Therefore, we may assume that H is effective,
irreducible and G-invariant. For each point y in H, we denote by G, the stabilizer
group of y. First, we will get a contradiction assuming that G does not contain
commutative 5-dimensional closed subgroup: Let m=max {dimO(y)}, O(y) being
the G-orbit of y. Then, m=0, [ or 2. el

(i) m=0. Since every pointin H is G-invariant, X ~P3 by virtue of Theo-
rem 8.

(ii) m=1. Every G,(ye€ H) is normal in G and G, contains [G, G] by virtue
of Lemma 16. Since [G, G]#e, and [G, G] fixes every point in H, X ~P3.

(iiiy m=2. Let y(e H) be a pointsuch thatdim O(y)=2. By virtue of Lemma
16, N(G,) is normal and G,2[N(G,), N(G,)]. Since [N(G,), N(G,)] #e(dim N(G,)
>5) and [N(G,). N(G,)] fixes every point in H, X ~P>.

Thus, G contains a 5-dimensional commutative closed subgroup K. Now let
n=maxx {dim O(x)}, O(x) being the K-orbit of x and K, the stabilizer group of x.

Ther’;f n=1,2or 3.

(i) n=3. Letxbea pointof X suchthat dimO(x)=3. Then K,(dimK,>2)
acts on X trivially because K is commutative. This is a contradiction.

(ii) n=2. Letx bea pointof X suchthat dimO(x)=2. Then K (dim K ,>3)
acts on the closure O(x) of O(x) in X trivially. Hence X ~P? by virtue of Theorem
8.

(iii) n=1. Let X;(1<i<5) be the linearly independent global vector fields
on X corresponding to the subgroup K of G and let Y =zero locus of X,. We
claim that dim Y=2. Put U=X-Y. By our assumption, X,=fX; on U where
f is a regular function on U. If dim Y <1, then f is a regular function on X and f
is a non-zero constant. Since X, and X, are linearly independent, this is a con-
tradiction. Therefore G, acts on Y trivially and X ~P3. q.e.d.

Finally, we give a theorem which might work for Hartshorne conjecture in higher
dimensional case. Indeed, we can generalize the proof of the case (I) in Theorem
15 by using the Bialynicki-Birula’s result cited above, and we get the following:

Theorem 17. Let X be an n-dimensional non-singular projective algebraic
variety defined over an algebraically closed field of characteristic 0. Assume the
conjecture (H—m) (1<m<n-2) is true and that X has a non-trivial G,-action.
Then, X is isomorphic to P".
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