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1. TIntroduction

In this paper, we consider the non-characteristic Cauchy problem for the differ-
ential operators with Gevrey or analytic coefficients.

L. Boutet de Monvel and P. Krée [2] have showed some fundamental proper-
ties of analytic and Gevrey symbols of pseudo-differential operators. In [1],
L. Hérmander has localized the pseudo-differential operators with analytic symbols
in a suitable way on the dual space to extend the regularity and uniqueness theorems
and to study the propagation of the singularities.

Let L(x, t; D,, D)=P(x, t; D, D)Q(x. t; D, D,) be a differential operator of
order m with Gevrey or analytic coefficients, and Lu=0. If P is a elliptic differential
operator of order v, then the analytic-hypoellipticity means that Qu is a Gevrey or
analytic function. Therefore, Dju(x, 0) (v+pu=m, u<j<m—1) are also Gevrey
or analytic functions provided that r=0 is non characteristic for Q and D/u(x, 0)
(0<j<p—1) are in Gevrey or analytic class. This shows that, for the Cauchy
problem of L, we cannot give the first u+ ! initial data arbitrarily in C® class.

Here, using the above localized differential operator, we shall generalize this
simple example and give the same necessary relation between the admissible initial
data and the number of real roots of the characteristic equation. And, as applica-
tion of this relation, we extend the Lax-Mizohata theorem to the analytic and Gevrey
classes.

2. Definitions and Results

Definition 2.1. Let V be an open set in R™, we shall denote by y (V) (s=1)
the set of all. fe C*(V) such that for every compact set K<V, there are constants
C, A with

@ IDf)I<CAHlalt,  xeK,

for all multi-indexes a.
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Definition 2.2. ([1]) Let xoeVcR"™ & eR™0 and ue2'(V). Then we
shall say that (x,, &) is in the complement of wave front set WF(u), if and only if
there are an open neighborhood U of x,, an open conic neighborhood I' of &, and
a bounded sequence uy € &'(V) which is equal to u in U, such that

(2.2) lan(&) < C(CNAHNEIN

is valid for some constant C when £e .

Let p(x, t; D,, D,)=Dm+ Z ajx, t; D,)Dr~J be a differential operator with

coefficients in ys)(W), where W lS an open neighborhood of the origin in R"*!, and
the order of a;(x, t; D,) is less than j. We shall denote

19 2R I o o L,
D=~ Dx_<76;;,...,..i_3;".), = (Xpeees X))y E=(Epyens )

and
plx, 13 & Ay=i"+ Zm, aj(x, t: A" =po(x, t; & D+ py(x, 118 A+
=

o +pm(x’. L fa '1)
where, p(x, t: &, A) is a homogeneous polynomial of order m —j in (&, A).

Theorem 2.1. Suppose that the characteristic equation py(0, 0; & 1)=0
(1€ %0) has pu real and v non-real roots (resp. p roots with Im2>0 and v roots with
ImA<0) (u+v=m, v=1), and u is a C* solution of the equation p(x, t; D, D)u
=0 defined in a neighborhood of the origin in R"*! (resp. in R"*! n (t>0)) such that
Diu(x, 0)=0 for 0< j<pu—1. Then (0, &) is in the complement of wave front set
WF(Diu(x, 0)) (u<j<m—1).

Consider the following problem

p(x, t; D, DYu=0
(P)y= .
Diu(x, 0)=u(x) 0<j<k—1 (k<m)

then by the theorem 2.1, we have

Corollary 2.1. If the problem (P), has a C*-solution in a neighborhood
k

of the origin for any given (ug(x),..., u;-(x))€ TTy*"(R") (s<t), then the charac-
teristic equation py(0, 0; &, 2)=0 must have more than k real roots for every

¢#0.

Corollary 2.2. Assume that s=1 and py(0, 0: &, 2)=0 has at least k roots
with negative imaginary parts for any £+0. If u is a C®-solution of (P)y—
defined in a neighborhood of the origin in R"*'n(t>0) with analytic u; (0<j
<m—k—1), then the Cauchy data of u i.e. Diu(x, 0) (0<j<m—1) is analytic
at the origin and the radius of convergence only depends on p(x, t; D,, D)), u;
(0< j<m—k—1) and the size of definition domain of u.
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Remark: When the case s=1, k=m in the corollary 2.1, more detailed result
is obtained in [4], by constructing the exact solutions.

Definition 2.3. The Cauchy problem (P), is said to be y'®-well posed
(s=1) in a neighborhood of the origin, if there exists a neighborhood D of the
origin such that the problem

p(x, t; Dy, DYu=0 in D
(2.1) .
Diu(x, 0)=ux) 0<js<m—1 in Dn(=0)

has a solution u € C*(D) for any given initial data

(U X)sernr U 1(x)) € [TYIRY).

Theorem 2.2. For the Cauchy problem (P),, to be y'S-well posed in a neigh-
borhood of the origin, it is necessary that the characteristic equation py(0, 0; &, 4)
=0 has only real roots for any £ +0.

Corollary 2.3. (c.f. [5]) Suppose that s=1, and the characteristic equation
po(0,0; 1,0,...,0, ))=0 has at least one non-real root. Then for any open
neighborhood W of the origin in R"*', there is an analytic initial data on R"
which is independent of (x,,..., x,) such that the corresponding solution of the
Cauchy problem (P),, cannot be continued analytically whole in W.

3. Fundamental lemmas

Let W be an open set in R"*!, and I be a conic open set in R"*1\0. We write
y=(x, 1), n=(& 4) and [n|2=[E]2+|A[2.

Definition 3.1. ([2]) We shall say that the formal sum p= i Py, n) is a
k=0

symbol on W x I' of class s with order (r,, r,), if each p(y, n) is a smooth function
on WxTI, homogeneous degree r,+r,—k with respect to n and then there exist
constants C, A4 such that for any integer k, any multi-indexes a, f, any (y, n)e Wx T,
the following inequality holds

3.1 Ipihy (v, M < CARFletblp|ra|g|r=k=lal(k 4+ |B])lsal
where we have set

P (35 1) =<ll —%)ﬂ(—%)pku, n .

Let p= i pi(y, n) be a symbol on Wx I of class-s with order (ry,.r;). Fol-
k=0
lowing [2] we set

_ < 2(2n) kK ! () || T2k+|at8]
(3'2) N(P‘ T) kEﬂ (k+|d|)!(k+|ﬂ|)!’ “pk(ﬂ)”T ’

where | pia) Il = sup {|n| 72 || rrkele |pah (v, M1},
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then the definition 3.1 is equivalent to that the power series (3.2) converges for small
T>0. If we define »r=peq by

(3.3) r=2 ra(vs s ra(y,m= ¥ ﬁpiy’qzm

k+l+|y|=m

then we have by lemma 1.2 in [2] (or rather by its proof)

Lemma 3.1. Let p, g be symbols on Wx T of class s with order (r, m), then
p+q is a symbol on Wx I of class s with order (r, m) and we have

(3.4) N(p+4q, T)<xN(p, T)+N(q, T).

Let p, g be symbols on Wx T of class s with order (ry, m,), (r,, m,) respectively,
then the inequality

(3.5) N(pegq, T)«<N(p, T)N(q, T)
holds, i.e. peq is a symbol on Wx T of class s with order (r,+ry, m,+m3).

Remark: If we set s=pgq.s= Z Sl M)y Sy = Z pkp,, the proof of the
lemma 3.1 shows

(3.6) N(peq—pq. T)«<2N'(p, T)N'(q, T),

2(2n)"kk !

h N'(p, T)=
where (p, T) ka1 (k+ [a D) I(k+[BD T

| pith | T2+ 128,

Furthermore, obvious mequahty N'(p. TY<N(p, T) means
(3.7 N(pq, T)<<2N(p, T)N(q, T)

Lemma 3.2. Suppose that py(0, 0: &, 2)=0 (|é|%0) has u real roots and
v non-real roots (u+v=m). Then there are a neighborhood W of 0 in R"*!, a
conic neighborhood I' of & in R"\0 and symbols ai (1<j<p), b' (1<i<V) on
Wx (I x R) which are independent of )., of class s with order (j, 0), (i, 0) respectively,
and satisfy the equation

(3.8) p(x, t; & )=+ i ai(x, 13 O )2 + Y bi(x, 13 E)A)
ji=1 i=1

as symbols on Wx(I'xR). Where, I*+ Z a$(0, 0; )ar=i=0, i+ Zbo(() 0;
&)A=1=0 has only real and non-real roots respectwely

Lemma 3.3. Under the same condition in the lemma 3.2 there exists a
neighborhood W of 0 in R"*1, a conic neighborhood I of & in R™0, and symbols
q. r on Wx(I' x R) which satisfy followings. i.e. p>.q=r, where r=A"+ Z‘:: ai(y,
&)Ar=J is the same one in the lemma 3.2 and q is of:class.s with order 56, — V).

Moreover, for k+|a|>1, (v, n) € Wx (I' x-R), the-inequality
(3.9) gkt (v, ) | SCARHPL g | ==t &) ke lel (o | B o
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holds.

4. Proof of the theorem 2.1

Admitting the lemma 3.3, we shall prove the theorem 2.1 when u is defined in
o0
a neighborhood of the origin in R"*!. For the symbol p= Y p.(y, n), following
k=0
[1], we define the differential operator P(y, ; D) by

(4.1 P(y,n:D)= % &'—.p}f’(y,n)D“.
k+la|=1 %"

If g is another symbol and p-q=r, then the identity

!
(4.2) R(y,n: D)= gopl—j(y‘ n: D)Q(y. n: D?
is easily verified.

Remark: In the case when p is a polynomial of order m,
emi<rn> p(y, D)(e<r1>v)= 3 Py(y, 1 Do
o ‘ j=0 .
is valid.

By the lemma 2.2 in [1], for any compact sets K, K (K € K) in‘ ‘R‘"“i, we can find
a sequence vy(y) € CE(R"*1) such that supp [vy]<K, vy=1 on K and
(4.3) [D*oy(»)| < CAl*INIal

when |x| <N, where C, A is independent of N (N=1, 2,...).

Applying the lemma 3.3 to the transposed operator ‘p of p, we get two symbols
g, r on Wx(I'xR). If u is a solution in the theorem 2.1 we take vy such
that supp[vy]l= W, p(y, Du= 0 on supp [vy], Diu(x, 0)=0 on supp [vN] n(t=0)
(0<j<u—1) and we set wy= Z Q;vy. Then (4.2) shows

—m

711> p(y, DY) = T Ry + oy PiOAN
After the integration by parts, we have

N—m
@d  feor (S Rugudy == feor( 3 Powudy,
Jj= :

N>k+I>N-m
N—m>k, m>1

Now estimate the right hand side in (4.4). . We set h=Q,vy and consider the
integral ‘

Sef<m>(P,h)udy.

For the term in Ph which includes A% (k>1), we replace A* by D¥(ei*") and



514 Tatsuo Nishitani

integrate by parts, then, noting p is a polynomial of order m with coefficients in (),
we obtain the following estimate

4.5) 'Se"<m>(1>,h)udy <Clé|msup |Diu| sup | DDA

Rj<m Rj+|a|<m
for |£|>1, where constant C is only depends on p(y, D) and K. In virtue of (3.9)
in lemma 3.3 and (4.3), D*(Q,vy) can be estimated as follows

(4.6) IDY(Quon)| < CANp|~*~1[g| kNN

for any integer N, any k (1 <k<N—m), any y(|y|<m), and any EeTI". Then, (4.5)
and (4.6) show that for k> 1,

@n  [feor s POwudy| < Ca g PN,
N

On the other hand, if we set r=A#+s, then s is a polynomial in A of order u—1.
Since D{u(x, 0)=0 on the support of vy(x, 0) (0< j<u—1), the Fourier inversion
formula gives

Sdlgei<y-'I>(NimSjUN)udy =0.
o
This shows that
N=m
(4.8) Sdlge“""’( Y R oy)udy = (— l)"ge‘<"'¢>v,,,(x, 0) D¥u(x, 0)dx.
o

Here we integrate (4.4) by A, and combining this identity with (4.7), we have for
Eerl

(4.9) 'Se"<x-¢>ol,‘u(x. 0)uy(.x, 0)dix| < CAN|&|2m1-N NN,

where A depends only on p(y, D) and the size of definition domain of u. Inequality
(4.9) means that (0, ) is in the complement of WF (D*u(x, 0)).

Multiplying (4.4) by 1 and using the fact that (0, &g WF(D"u(x, 0)), we can
show (0, &)& WF (D"*'u(x, 0)) by the same process. Thus, the theorem follows
from the finite number of iterations of this argument.

In the statement of the lemma 3.2 and 3.3, we can replace real roots (resp.
non-real roots) by roots with non-positive imaginary parts (resp. roots with positive
imaginary parts). Then, there exist a neighborhood W of 0 in R"*!, a conic
neighborhood I' of —¢& in R"\0 and symbols g, r on Wx (I" x R) which satisfy peg=r.
Then, noting that q,(y; &, 4) is a rational function of 1 with poles only in the upper
half plane for fixed y e W, £ e I', the same reasoning gives also the proof in the case
when u is defined in a half neighborhood of the origin.
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5. Proof of the theorem 2.2

Suppose that the Cauchy problem (P),, is y*)-well posed in a neighborhood of
0 in R+, and that the characteristic equation py(0, 0; & 4)=0 (/€| #0) has at least
one non-real root.

Without loss of generality we may assume that py(0, 0; 1, 0,..., 0, )=0 has
u real roots and v non-real roots (v>1). Then we can easily find the sequence of
initial data which is not compatible with (4.9).

For instance, we set

(5.1) gs.e(x) =Swe"’"e“"”‘dt e>0, xeR,
0

and consider the initial conditions

Diu(x,0)=0 for O0<j<m—1, j#u

(5.2)
Diu(x, 0)=g,(x,).

It is clear that g, (x,) € y*)(R"), and by the theorem 2.1, the Fourier transform of
gs,(x1)vn(x, 0) is estimated such as (4.9) in +I'. On the other hand, we see easily
that

T
(5.3) (g5,:08) (DI < C(BNNE'| 7N

where By(x)=vp(x, 0), &'=(0, &,...., ¢,) and B is independent of &. By (4.9) (in
+TI) and (5.3) (in the complement of +1I') we have

—
(5.4) (9.8 () < CLANHVEI™N

for any &(|¢| = N*), any integer N. Where A is independent of ¢.
The estimate (5.4) shows, with another constant 4 which also independent of e,
that

(5.5) (52 (gt 0| <ot

for any integer k. In (5.1), setting x=0, we obtain, the other hand,

(35 ) asetximmo=s (4 )T s+ 1)

Then, taking into account of the Stirling’s formula, this leads us to a contradiction.

6. Proof of the lemma 2.2

Let I be an open conic set in R"\0, and W be an open neighborhood of the
origin in R"*!. In this section we only consider the symbols on Wx (I' x R) which
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are independent of A.

0
Let p= Zopk(y, ¢) be a symbol, then we shall denote by Py the symbol which
k= .
is defined as follows

(60]) P[.r]=L§O(D:)pk)(y, é)

By the definition (3.1), py,, is also the symbol with the same class and order those of
j 2
For the simplicity, we introduce the following notation:

2(2n) k!
(k+aD!k+o+ BT

(6.2) Ctop=

we also denote Cf o ,=C¥ ;. then we have

Proposition 6.1. Let p, g be symbols of class s, and set Ur=poq, then,
there are constants C, ; (0< j<v) such that

63 I, Chosl(DpI T < 3 €, TINGprs TING. T,

vwhere C,;is z'vndependeht of p, g and T.
Proof. By virtue of the lemma 3.1, this is easily shown by induction on v.""
Corollary 6.1. Let “r=peq,;, v=0,+0, (v, v,, ve N), then we have

(6.4) k;p 1Cr) g | T3 +otletbix Cg

va X
«<T" ZOC.,L,-TJN(p[,], T)N(qpp,y, T).
=

By the assumption of the lemma 3.2, we can find the symbols a{(y, &), bi(y, &)
(I<j<p, 1<i<v) on Wx(I'xR) of class s, homogeneous degree j, i respectively
in &, and satisfying the equation

(6.5) Po(y: & N=(A*+ f_l ajir=iyx (A¥ + Z. bisv=iy,
j= i=

where W is a neighborhood of 0, and I is a conic neighborhood of ¢&. Furthermore,

we may assume that for any root (y, £) of the equation A+ i bi(y, ) 1v-i=0,
i=1
the inequalities

Imz(y, Ol =c;,  (>0)

(6.6) » ] .
[T(y9 é)‘l-l-j;la(‘)(y’ é)‘t(y, é)“_ll >CZ (>0)

hold, when ye W, ée ' n (|¢|=1).
We write a/=aj+ A/, b'=bi+Bi, and find A/, B in the class s for which the
identity (3.8) holds. For this purpose, we introduce the vector-valued symbol
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C='(A!,..., A*, B'; ..., B"), and say that the symbol C is of class s with order 0 if
each A/, B is a symbol of class s with order (j, 0), (i, 0) respectively, and A}=
=0. We set

LO) =3 Ly(C)=3 (L, {C)ees Ly ()
p=0 p=0
i min(n, p) 1 i@
(6'7) n p(C) g Z 2 ___CI‘ ja * Bl(a.t)

(=1 i+j=n—t It+|a[=p-t
i>1 1>1

min(n,p) 1 uei 4i )
+ Z Z Z ‘TC; Ak(a)bb(a,t)
=1 i+j=n-t k+|a| p-— .
j>1

+ Z C" lAf(a)Bl(a 0
=1 i+j= n'l k+I+|a1 p ¢ al !
"

v oc
M(C)= p‘é‘o =pZ=‘,0 M, ,(C),..., M,, ,(C))
68 M, ()= ¥ L al®Bi,
’ i+Ten 1+[aj=p o!
i>1 1<I<p-—1
1 .
+ L Al@pi 4 ——AJ(“’B
i+§=n k+|§'|=p al 7k o= l+§nk+l+|a|—p ol @
j>1  1<k<p—1 i,j>1 1<k,I<p-1

where B, =D:D/Bi, n=1,2,...,m,p=1,2,.., and ¥ =0,if k<0, Cci{=0, if
i+j=k
i>j. !
Then the equation (3.8) becomes
(6.8) Y (alBi+ Abbb) = — L, (C)=M, (O)=F, ,+G,,

i+j=n

where, n=1, 2,...,m, p=1, 2,...,

(6.10) Fop= % T Loadoni,
iT=n (a12p @
min(n,p)
+ Z > —a Ci1a}®blq, 1

=1 i+j=n—t |a|=p—t

and G, is the coefficient of A"~ in p(y; &, 4) (k=1, 2,..., m).

Denote by H(y, £) the coefficient matrix of equation (6.9) then, det H(y, &) is
the resultant of A#+adi»=14...+ah and A*+bjA*~'+ .-+ by as the polynomials
of J, then from (6.6), there is the inverse matrix D(y, &)=(d; (¥, &)1<i,jam Of
H(y, &), and for the entries of D(y, &) we can show the followings.

For 1<i<y, d;j(y, &) is a symbol on Wx(I'x R) of class s and homo-
geneous degree i—j in &.

For p+1<i<m, d(y, £) is a symbol on Wx(I'x R) of class s and
homogeneous degree i —j—p in &.

(6.11)
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We rewrite the equation (6.9) in the matrix form by use of D(y, &), namely
(6.12) C=—D(L(C)+M(C))— DF + DG.

The proof of the lemma 3.2 is achieved in solving the equation (6.12) by successive
approximation.
For the vector-valued symbol C, we introduce the following formal norms,

(6.13) N(C, T)= jil N(4/, T) + gl N(B, T)

" m . v m )
Nu(C, D=3 3 NAly, T+ 2 3 N(Bluy, )

and at first we shall show that if C is a symbol of class s with order 0, then the right
hand side of (6.12) defines a symbol of the same order and class. We consider the
most delicate part of L, ,(C). Let us denote

min(n,p) 1 . .
n,p(C) Z Z z —-l— C;‘ lAllc(a)B;(a,t)
t=1 i+tj=n—t k+l+|a|=p—t .
i,j>1 k,i1>1
min(n,p)

= > Cri(d4/oBiy),-,

=1 + -
t i ] nl t
then for v m, we see easily

2z C;,ﬂ”(D;’Lﬁ_p)&;"]"zpﬂu*-ﬁ

p, e,
v n
«ZC Y T CIIEnTT S Cisl D X
=0 t= +11>n1_ p>t,2,p
x T2(p=t)+i+|a+p|
v n )
2 2 +,Z ,C;‘#J(zn)—'T'kzpcﬁ,p”(")’);ﬁ}n”Tz"*'*'“*ﬂl,
=0 t=1 n— <

i,j>1

where we have set ¢y=A{,_,°B},1,; which also depends on 1, i, and j. We divide
the last term into two parts:

T CLye+ T CLYe
t,o L
t+to>m t+o<m

In the first term, setting t+p=m+t, (t>1,), we apply the corollary 6.1, then we have

11

Y Chx ¥ Cy, ¥ CHi@m)'T* 13 C,, T %
t,o t,o i+j=n—1t =0

t+to>m tto>m i,j>1

X N(A{v—¢+0]’ T)N(Bf,,.], 7).

The second term is estimated by the lemma 3.1 as follows,
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Z Cpex X Chy g"_'C',"f(zn)"Tz‘N(A{,,_(,], T)N(Blyrop T) -
t+p&m A 1751

On the other hand, N(M,(C),,; T) (v<m) is majorized by TE(T)N,(C, T)
+EN,(C, T)N,(C, T) in virtue of the lemma 3.1 and (3.7). Therefore, taking ac-
count of F,o=G, =0 (1<n<m), we can show that the right side of (6.12) is esti-
mated by

(6.14) TE,(T)N,(C, T)+E,(T)N,(C, T)N,(C, T)+ T?E5(T)

where E(T) is the power series of T which converges for small T >0, does not depend
on C. This shows that the right hand side of (6.12) defines a symbol of class s with
order 0. Moreover, the estimate (6.14) means the followings,

For sufficiently small ¢>0, there is a §>0, such that N, (2C, T)<e for

6.1 {
(6.13) any 0<T<éd and any 1=0, 1, 2,...,

where *C is defined successively by **1C= — D(L(*C)+ M(*C))— DF + DG °C=0,
A=1,2,3,...

By the analogous estimate, we can majorize N,(**2C—**'C, T) by TE(T)-
N,(**1C=*C, T)+E(T)(N,(*C, T)+ N, (**'C, T))N,(**'C—*C, T), where E(T)
does not depend on C. Therefore this estimate and (6.15) show that the successive
approximation converges.

7. Proof of the lemma 3.3

From the lemma 3.2, we can decompose p in the form (3.8), then the proof of

the lemma 3.3 is carried out by construct the inverse symbol of r=21"+ Zv: biivt,
i=1
By (6.8) and the homogeneity, we may suppose that

.1 Iro(y; & Al =c3Inl”,

for any ye W, any ne I’ x R, where ¢, is a positive constant.

Proposition 7.1. If we set qo(y; m)=1/ro(y; n), then q, is a symbol on
Wx (I x R) of class s with order (0, —v). Furthermore, there are constants C, A
such that

(7.2) |g&ehy (v M | S CAl=+l | =1 | 1712l| B 15!
is valid when |a+B| > 1, for any (y; n) € Wx (I x R).

Proof. At first, we remark that the symbol with order (j, v—j) is also the
symbol with order (0, v) for any non-negative integer j. Therefore, by this note and
the obvious inequality

LA < CAl=+Bl gt [E el B Lot for |a+B]>1,

we have for |a+ 8| >1,
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la+B]
(1.3) s mi<c(5)" I ig e g v,
Now, we shall show by induction on |a+ f| that

(7.4) 1g65n (v 3 M| S Cle+pI+1 glatpl g =v=2 [ g 112l | B 15| !

holds on Wx (I'x R) for |«+B|>1. Suppose that (7.4) is valid when 1< |a+ 8| <p,
and prove it when |+ B|=p+1. From the identity

0=(roq0) 5 = ZC5CErE10a60)
we obtain
a6t = — ZC;Chr5'ri5=lath),
then by the induction hypothesis show

485y | < CoCCI+#1 0] =v=1 |11 41e+91
2| |B) |a|-P |£1-q
x 8 8 cpidal -p (1) eprasi g g (L)
50 ¢=o 3 3
< (eoC)ClwtLAI | =+=1 1121 B 1] 1.

Therefore, if we choose C, >4¢,C, the proof is complete. (c.f. lemma 3.1 in [3])

Proposition 7.2 If we set reqo=1—h (go=1/r,), then h is a symbol of class
s with order (1, —1) such that

(7.5) N(h, T)«<T2C(T)
holds.

Proof. If we set r=A"+s, and rewrite regy—1=(A"q,—A"q,) +(5°90 —S0q0),
then from the preceding proposition, the second term is of order (I, —1), further-
more, by the definition (3.2) we have

N(s°qo—soq0, T) =k>?.‘.a ﬁci'f,p" (5°g0)h) | T2+ a8« T2C(T) ,

On the other hand, if we denote T=A212qy—A"q,, then the proof of the lemma 3.1
shows that

kZﬁCt,pSUp{ In| &1 71+ 1) |} < N' (2, T)N (g0, T) < T2C(T).

Proof of the lemma 3.3. We write h'=h,...

h?=hohoh--- hoh
\ J

p-times
then by the proposition 7.2 and the lemma 3.1, the series

t=h+h2+--4+hP+...
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defines a symbol of class s with order (1, —1). Noting that the formal composition
is associative, we have the lemma 3.3 by setting g=go°o(1+1)=go+goot. The
estimate (3.9) follows from (7.2) and the fact that 7 is a symbol with order (1, — 1).
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