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The purpose of the present paper is to introduce the concepts called semi-C-
reducibility and S4-likeness of Finsler space and to consider relations between these
concepts and other important ones which are familiar to us.

The concept "semi-C-reducibility" is a  generalization of the well-known C-
reducibility and a certain restriction of the quasi-C-reducibility. The concept "S4-
likeness" is introduced based on the fact that the v-curvature tensor S „ j ,  of any
four-dimensional Fins ler space is of a special form, similarly to the case of the concept
"S3-likeness".

The notations and terminology are used the ones of the monograph [17] without
comment. The introduction of two new concepts are done by the first author and
the contents of the final section is due to the work of the second author only.

1. Semi-C-reducibility

Throughout the paper we denote by F n an  n-dimensional Finsler space with a
fundamental function L(x, y) (y 1 = Î 1) , the fundamental tensor g 1 j  and the angular
metric tensor hi j =L (5,5 i L )=g, i -

We are concerned with special forms of the (h)hv-torsion tensor Ci j k  ( 5kg1i)/2 -
First of all, it should be noted that Co , of any P  is written in the form

W i j k  1m1 mimic,

where I  is the main scalar and we refer to the Berwald frame (11 , m 1) (VI § 6 of [24],
§ 28 of [17]). If the torsion vector C1 = Co k e '  has the non-zero length C, then we
have m i ----+Ci /C and Ci j k  is written in the form

3C 1jk - h i jC k  +hjkC i + h k i C j•

Next, consider an P  with non-zero C ([19]). We can refer to the Moor frame
(1i, m1 , n') (mi Ci/C) ([12], § 29 of [17]) and C i i k  is written in the form
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(1.2) LCijk= Hm,m 3 m k — S 3
( 3 ,0 {Jm i m j n„— Im i n i nk } 4- A z/li nk ,

where H, I, J are main scalars.

Now, one of the authors proposed a special form of Ca ,, ([11]):

(1.3) A i , B , ±  A i k B i + A k i B i ,

where Ai j  is  a  symmetric tensor and 131 a covariant vector. The equations A „=
and B,,=0 were shown. The angular metric tensor 11,3 has these properties of Ai j

and it was also shown that i m p l i e s  B i -= Ci l(n + 1). Thus we are led to the
special form

(1.4) (n+1)Cok— hoCk+hikCi+hkzCi•

It follows from (1.1) that (1.4) imposes no restriction on any P .  A non-Riemannian
F n 3 )  with C, i „  of the form (1.4) is called C -reducible. It has been, however,
concluded in a recent paper ([18]) that the metric of any C-reducible Fn is only of the
Randers type or the Kropina type.

On the other hand, one of the authors proposed another special case of (1.3)
such that B , is equal to the torsion vector C, ([15]):

(1.5) Cok =A iiCk + A ,,k Ci+

and non-Riemannian F n  ( n  3) with C, 3 7, of the form (1.5) was called quasi-C-reduc-
ible. It was shown that any non-Riemannian Fn (n_-_.3) with the so-called (a, p)-
metric is quasi-C-reducible and F 3 is quasi-C-reducible i f  J= 0  in (1.2) ([12]).

Really speaking, Ai j  of any (a, je)-metric is of a special form A j j =2h 1 5 -FpC
1
C

3

with some scalars 2  and p. It is also verified easily that any quasi-C-reducible P
( J=0 )  has this form . Further we should recall that one of the authors has already
treated A, 3 of this form in a previous paper ([20]). In the case of this A, 3 we have

(1.6) C1 3 1  =  2(h i 3 C,c +h 31.C i +14,C 3 ) +3pC ,C 3 Ck •

We deal with C i i k of the form (1.6). Contraction of (1.6) by g'k  gives (n+1)2
--F3C p = 1 ; two scalars 2  and p  are not independent. In case of 2 = 0  we have to
take accont into Brickell's theorem ([4]), because C i 3 7 .=3 p C i C3 C, causes immediately
vanishing of the v-curvature tensor S h ijk = C h r kC r ,j — Ch r

Next, in case of C=0, Deicke's theorem ([5]) must be taken into account. Fur-
ther, in case of p = 0, (1.6) is solely reduced to (1.4). Paying attention to these cir-
cumstances we are naturally led to the following definition:

Definition. A Finsler space F" 3) with the non-zero length C of the torsion
vector C 1 is called semi-C-reducible, if the (h)hv-torsion tensor C, p , is of the form

(1.7) Cijk= [P/(h+l)](h, i Ck +h i k Ci d-h„C j ) ±(q1C 2)C i C i Ck,

1 )  S ( ii k ) means cyclic permutation of indices i,j,k  and summation.
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where p  and q(=-1— p) do not vanish . p is called the characteristic scalar of the P .

It is easily seen that the v-curvature tensor S h o ,  of a semi-C-reducible P  is
written in the form

(1.8) L'Sho,

where the symmetric tensor M o  is defined by

(1.9) Mo/L2= — [(pC) 2 12(n+1)111 1 i —[pz1(n+1 )2 +pql(n+ 1)1C,C

§2. T-tensor = 0

In 1972 one of the authors ([10]) and H. Kawaguchi ([7]) independently found
an important tensor

(2.1) Thijk — L C ho lk  I h C i i k + l i C h j k + l j C h i k +  W h i p

where Ch o  lk is the v-covariant derivative of C h o . This is called the T -tensor. Finsler
spaces with the vanishing T-tensor constitute an important and interesting class (§ 28
of [17]). We denote such a Finsler space by TF n in the following. Thus

(2.2) L C h iJ  11, 1 h C iJk  l i C h J k  1 5 C h i h 1 h C h i J

is the system of partial differential equations which is the characteristic of the funda-
mental function L  of T F .

From (2.2) we immediately obtain

(2.3) = — — 6Ci ,

(2.4)

As to the length C of the torsion vector Ci, (2.3) yields

(2.5) LC211= —2C 2 1„

which further implies

(2.6) C 2 11 C 1 =0.

Consider the normalized torsion vector A ' L C ',  which is (0)p-homogeneous.
The length of A  is equal to L C in our notations. It is remarkable that (2.5) is written
as j,C7C2+ 6, L2/ r  2L . 0, so that we obtain

Theorem 1. The length LC of the normalized torsion vector Ai = L C ' of any TF'
is constant in every tangent space of TF'.

Pay attention to the integrability condition

C h i J ik i l (I t i i){ C h i r S  J r  k i l l
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of (2.2), which is one of the Ricci identities (§ 17 of [17]). Applying this condition
to (2.2), we have

(2.7) L2Chr iS r im }  O.

It is noted that (2.7) is a system of algebraic equations satisfied by Ci ,„ of TF".
We shall derive various equations from (2.7) for the later use. First, applying

(11c1) to (2.7), we obtain

(2.8) (ilc1){ Cir .1S null Chr jS ,ik il =O.

Contraction of (2.8) by 
g i l l  gives

(2.9) TI(J1>2){CzriSr1 = 0,

where S ,= S r ik i  is the so-called v-Ricci tensor.

Secondly we contract (2.7) by gm  and moreover by g ui  to obtain

(2.10) n C iik — h k ,C i+ h k iC i L 2 (C is ,S ir  slc+ C i S rS , r  „ + C i r  JSrk),

(2.11) (n-2)C1+ L 2 CrS, =O.

Thirdly we contract (2.7) by e i  to obtain

(2.12) h i i C k  h1 i C,4-L 2 CrS r i h ,-0 .

The equation (2.10) is rather interesting. In fact, while Ci i k  is symmetric in all
indices, the right-hand side of (2.10) is seemingly not symmetric in j  and k. The
symmetric form of C z i k  is easily derived from (2.10) by app lying ( i i k ) :

(2.13) 3 n C , i 5 =  w k ,{2h o C k - 2 P C , S  j r 8k- 2L C z T 3 S r k } .

Further, we apply the Christoffel method (§ 5 of [17]) to (2.10) to get

(2.14) nC 07 ,-2 (h ,kC a— L 2C iarSk r,i)— L 2(C zr i s r k + C  i r C k r  j ) .

§ 3. S4-likeness

It is well-known ([9], § 29 of [17]) that the v-curvature tensor S a „ „  of any F 3 is
of the form

(3.1) L2S,t,ik — S (h h i h i k  h h k h o ),

where the scalar S is called the v-curvature. One of the authors introduced the con-
cept of S3-likeness ([9]): F n  (n _4 ) is called S3-like if S h i j k  is written in the form
(3.1). It is known that the v-curvature S of any S3-like Fn is a function of position
alone. Recently appear various papers concerned with S3-like Finsler spaces ([1],

2 ) 91 ( i1 )  means interchange of indices j,k and  subtraction.
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[2], [3], [22] and [23]). The v-curvature S  of any T F' is equal to —1 ([13], § 29 of
[17]). The following is a generalization of this fact:

Theorem 2. The v-curvature S of  any non-Riemannian S3-like TF' is equal to
— 1.

P ro o f . Substitution from (3.1) into (2.10) and (2.11) yields

(S +1)(nC j , — C i h C ,h„) = 0 , (S +1)(n —2)C k =0

Thus S + 1 0  causes Co k = 0  and the proof is completed.

R em ark . Theorem 2 asserts that the indicatrix of any non-Riemannian S3-like
TF" is flat (§ 31 of [17]), very strange circumstances.

Next it is known ([16], § 31 of [17]) that the v-curvature tensor Sn o ,  of any F'
is written in the form

(3.2) L 2 S h i j k h h j M i k h i k M h j h i i M h k ,

where M o  is a symmetric tensor and satisfies Mu  = 0. Thus, similarly to the case of
the S3-likeness, we are led to the following definition:

Definition. A  non-Riemannian F n  (n_>_5) is called S4-like if the v-curvature
tensor S h i i k  is written in the form (3.2) where Mo  is  a  symmetric and indicatory
tensor (§ 31 of [17]).

From (1.8) we immediately have

Theorem 3. Any semi-C-reducible F. " 5) is S4-like.

The reverse of Theorem 3 is true on the assumption of T -tenso r = 0 . Precisely
speaking, we have

Theorem 4. Consider a TF (n,>___4) with the non-zero length C of the torsion
vector Ci and suppose that the TF" is not S3-like.

(1) The space TF' is semi-C-reducible and the scalar is not equal to
3/2.

(2) If the TF" (n_>_5) is S4-like, it is semi-C-reducible and the M  is not equal to
(1 —n)12.

P ro o f  From (3.2) the v-Ricci tensor So  is written as

(3.3) L2So---(n-3)M13+ Mho .

Substitution from (3.3) into (2.11) yields

(3.4) 0C4, 0= — (M+ 1)/(n— 3).
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By means of (3.2) and (3.4), the equation (2.12) gives

(3.5) Mil = [(20 —

From (3.2), (3.3) and (3.5) the equation (2.9) is written as

(3.6) (215— l)2tu k ,Iht i (Bk — Ck ) ± (n - 2)B i i Ck l = 0,

where we put B i i = C C d C z  and B,= B, i C i .  I f  2 0 -1 = 0 , then M i , is proportional
to hi ,  from (3.5), so that the space is essentially S 3-like . Therefore we get 2 0 - 1 #
0, i.e., 2 M  1  —n.

We contract (3.6) by Ck to obtain

C 2 *h i i + C i C ,+ (n -2 )C 2 .130 = (n -2 )B 1 C1 + B 1 C1 ,

where * =  (B i — Ci )C 1/C 2 . Because the left-hand side of the  above is symmetric in
indices, we get B i --=(*+ I)C i  easily from ri 4. Thus the above is written as

(3.7) B o= — {*/(n— 2)}hi i + {1+ (n— 1)*/(n — 2)1Ci Ci /C 2 .

It follows from (3.5) that (3.2) is written in the form

(3.8)
L'S n i ,„ = — 20(hn i kk — hhkhii)

+ [(2 0 -1 )/ C la u k ,Ih n i Ci Ck + h, k Ch Ci l.

Finally, substituting from (3.8) into (2.14) and making use of (3.7), we arrive at
the form (1.7) of C i jk ,  where p = — (n+1 )0 (n - 2).

§ 4. The T-tensor of semi-C-reducible Finsler spaces

It is known ([14], § 30 of [17]) that the T-tensor of any C- reducible Finsler space
is of an elegant fo rm . T he  purpose of the present section is to consider the T-tensor
of semi-C-reducible Finsler spaces. We shall use following notations:

(4.1) p e =p 1 C IC 2 , a=C il i 1C2 ,

Now from (1.7) we obtain

C
i jk lh — S ( i ik ) t

h
i j ( P

C
 k ilt +  C k P h ) / ( n +  1 )

(4.2) —[pl(n+1)L]hn,(Cilk+Ckli)d-gC,C,CkIkIC21
—(p h ± qC 2 1,1C2)C,C i Ck 1C2 .

While Ci „„lh  is symmetric in all indices without any assumption, the right-hand
side of (4.2) is seemingly not symmetric in k, h. From this point of view, it is con-
jectured that the symmetry property of the right-hand side of (4.2) may impose some
restriction on the characteristic scalar p .  We shall examine this in the following.

Pay attention first to the  fact that Col, ikgk h = g k h =C ili. It then follows
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from (4.2) that

( 4  )  
(n +1 -2 p )C ,[7 =(p a+p c )C 2 11,1 + C,p i +C i p,— (n— l)p(C ,1 +1)1L

.3
+(n+l)q(C,C2[1+CjC21,)12C2+(n+ 1){q(ce —13)—p c }C,C,.

By applying the contraction by C  to (4.3), we obtain

(4.4) C2 V C' = UCi  + [2/(n — 1)p]

where the coefficient U is given by

(4.5)( n —  1)pU = 2(nq +1)a—  (n +1)q p — 2(n-1)p c .

Substitution from (4.4) into (4.3) yields the following form of C,[7 :

(n + 1— 2p)C,L, = (pa +p c )C 2h, + (n +1—   2p){(C i p + C j p,)1(n — 1)p
—(C11.1 +C i 11)1L+V C 1 CJ ],

where V is given by

(4.7)( n +  1 — 2p)V = (n + 1){(a — p + U)q — 13, }.

We consider four scalars a, 13, U and V appearing in the above. These satisfy
(4.5) and (4.7). We obtain further two equations arising from the definition (4.1) of
a and p. That is, the contraction of (4.6) by gui gives

(4.8) (n — 1)(n + 1 — 2p)p V = (n +1)[(n — 1)pqa — {2+ (n —3)p} p c ].

Contraction of (4.4) by CJ does

(4.9) (n— l)p(p— U)=2pc.

Among these four equations (4.5), (4.7), (4.8) and (4.9), the second is solely a
consequence of the last two, as it is easily verified. (4.5) and (4.9) are equivalent to
the two equations

(4.10) (n +1 —2p) 3= 2{(nq+ 1)a — (n— 2)/30 1,

(4.11) (n — 1)(n +1-2p)pU=2[(n — 1)(nq +1)pa —  {n+1 +n(n — 3)p}p c ].

Accordingly we have three independent equations (4.8), (4.10) and (4.11), which give
V, p and U respectively in terms of a, p  and p c , provided n + 1 - 2 p  0.

On account of the above circumstances we are naturally led to the classification
of semi-C-reducible spaces as follows:

Definition. A semi-C-reducible Finsler space is called of the first kind or of the
second kind, according as the characteristic scalar p * ( n + 1)/2 or p  =(n+ 1)/2.

(4.6)

We continue the discussion of a space of the first kind. The equation (4.6) is
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written in the form

(4.6) Ci C2 Wh i 1  ( C 1 p 1 +C 1 p 1)1(n-1)p— (C 111 ± C 1 l,)1L±V C 1 C1 ,

where the coefficient W is given by

(4.12) (n+1-2p )W =pa± pc .

Substitution from (4.4) and (4.6,) into (4.2) yields

ih — W C2h11h7,h h, ±hh t- 
1 .(722)I +  1 )

±[ql(n— l)pC1C,C i p k Ch l —[q1LC2](Ci Ci Ck lh

± C i C,C h li ± C k Ch C11j ± C h Ci Ci lk )
±[(1— np)1(n— l)pC 2]Ci Ci Ck p h ±q(3V — U)C i Ci Ck Ch l C 2

,

where we put

13'3)-=(C,pi+Cjpi)1(n-1)— [plaCili+C11,)
(4.13) ±pV CiCi±Cipj,

P.?)=(n+1)qW C,C i —[pIL](C i li +C 1 11).

Now the symmetry property C1
1
7,C t i h  lk- -= . 0 is written as

(4.141) WuctolhijCkPh+hik(Pa)  — P 212)±hil,(P (
J

11?- 1 ' ) — (n± 1)CiCiCkPhIC 2}-=0.

Contraction of (4.14) by C iC i yields n(n-3)(C 7,p 7,—C7,p 7,) =0 , so that the equation

(4.15) Pk—PeCk

must be satisfied, provided n_>_4.
It is seen from (4.8) and (4.12) that (4.15) implies p )  = p ) ,  and (4.2,) is rewrit-

ten in the symmetric form

C11kLi=Sc117, ) {[(P(xd- Pc)PC21(n+ 1) 0 + 1 - 2 11 1111hk7,
(4.16) +hi 1 P k 7, ±1-17,1P j kl — [q1LC21(CiCI Cklii

+C j Ck Ch li +C k Ch C,11 ± C h C,Ci lk ) ± rC i Ci Ck Ch IC 2,

where Po  and r are given by

Po  —qWC i Ci — [pl(n±1)1](C i lj +C 1 11),

( n +  1 —  2p)r = +1—  (n±3)plqa { (n ± 3)p —  2(n +1)1 p c .

We turn our discussion to a semi-C-reducible Fn (n 4) of the second kind.
In this case (4.5), (4.7), (4.8) and (4.9) are reduced to s = 0 and 19-= U only. (4.4) is
of the form

(4.42) C21,— C2(pC1-21j/L).

(4.2,)

(4.17)
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Then (4.3) is reduced to a trivial equation. Substitution from (4.42) into (4.2) gives

C o k i h —  ( 1 1 2 ) S c l i k d h a C j i k + C k l i ) I L  h i i C k k

+ (n - 1 )C i Ci Ck 1h 1C 1+ (n -1 )(P C h 12-1,1L)C i Ci Ck1C 2 .

Therefore C i j k l h — C i j h l k = 0
 is given by

± h ik 0 2  [2(n — 1)1L,C1C,Ci Ch lh

— (n —1)(Ci Ch Cilh+ CiCkCi101C1= 0,

where we put

(4.18) V Y =c11J+(cili+cioiL .

We contract (4.142) by C 'C h .  Then it follows from (4.4
2
) that

C ilk=  — [PC 2120-2 )]h ik— (C ilk+ C k liV L
(4.19)

±[(11-1)P12(n— 2)1C j Ck.

Finally, substitution from (4.19) into (4.2,) yields the symmetric form of C i 1 7, 1h :

Ci j k lh  = S c iA — [pC 2/4(n — 2 )]hiihkhd - hiiQkhd - hhiQjkl
(4.162) ±[(n-1)12LC1(CiCiCklh+CiCkChli+ChChCil,

± C h C iC i lk ) — [(n 2- 1 )1314 (n - 2 )C 1 C ,C iC k C h ,

where we put

(4.20) Qii = — (C i /i  C i 1i )/2L [(n—l)p14(n— 2)]C C .i

It is observed that (4.16,) and (4.162)  are of somewhat complicated form, but
these lead to the T-tensor of rather simple form. In fact, if we put

H hiik — h h ih ik ± h h ih k i+ h h k h ip
H ITik -=

(iik){ 111ti C  jC k+ h i j C kC h}
, c „ =c h c,cj ck ,

it then follows from these equations and (2.1) that the T-tensor T h i jh  is written in the
form

(4.21) Thijh/L= M-W,T,h+ T r ) C;,42.ik , r= 1, 2,

where the coefficients TT, 7T ) and n " ) are given, according as the ordinal number
r= 1  or 2 of the kind, as follows:

(4.22,) T P ) = ( P a d - P ) P C 2 1 ( n + 1 ) ( n + 1 - 2 p ) ,  7 1)= gW , T P ) = rIC 2 ,

712 ) -- — pC214(n- 2), TT -= 19(n — 1)/4(n — 2),
TP) = — (n2 — 1)p/4(n —2)C2.

Summarizing up all the above, we have

(4.22)

(4.142)

(4.222)
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Proposition 1. ( 1 )  T he characteristic scalar p o f  a semi-C-reducible Finsler
space F n  (n _ 4 )  of  the f irst k ind must be such that 6,p is proportional to C„ and the
T-tensor of the F" is written in the form (4.21) ( r =1 ) .  (2) A s to a semi-C-reducible
F" (n_4) of the second kind, the tensor CI, vanishes and the T-tensor is written in the
form  (4.21) (v=2).

We are concerned with the exceptional case n - 3 .  Comparing (1.7) with (1.2)
and paying attention to h, i =m ,m i d-n,n i  and C .  Cm , we get J=0  as the condition
of semi-C-reducibility. Further we get H=(1— p14)LC and I =p L C I 4 .  The space
is of the second kind iff p-= 2, i.e., H  = I .  It is, however, easily shown ([12], § 29 of
[17]) that H = I and J = 0 cause S,„,„ = 0 immediately. Thus we have

Proposition 2. A  three-dimensional Finsler space is semi-C-reducible,  one of
the main scalars J vanishes identically. The characteristic scalar p is equal to p=
41/(L C ). The space is of the second kind, H = I ,  and the v-curvature tensor S„,,,
vanishes in this case.

The T-tensor of F' is expressed by the scalar components T ( a ,  p, 1,3=1, 2, 3)
with reference to the M o6r fram e. In the case of J = 0  we obtain ((29.19') and
(29.22') of [17]) T i m = 0 and

T2226 
— 1 1

;3, T2236 — 21)v,,

T2336 = 
1

0 , T3338 = 3Iv,, ( 6 = 2 ,  3).

The symmetry property of Ci 3 ,1„ is written in the form (29.20') of [17]; in the case of
J= 0 it is written as

(H - 2 I ) v ,=H ;3 , ( H - 2 I ) v 3 = I ; 2, 3 1 v 2  =  / O.

We consider the condition for a semi-C-reducible Fn (n> 4) to be "T-tensor= 0".
In § 2 we already have (2.4) (a= 0) and (2.6) (13 = .  It is obvious from (4.21) and
(4.222) that p-o is sufficient for the space of the second kind to be "T-tensor =0".
In the case of the first kind, (4.10) yields p ,= 0 and (4.15) does p,, = 0. Conversely,
a=Pk = 0 lead us to W=0 from (4.12) and r = 0 from (4.17), so that (4.21) and (4.22,)
yield T h i j k = 0. Consequently we have

Theorem 5. A  necessary and sufficient condition for a semi-C-reducible Finsler
space F n  4 )  to have the vanishing T-tensor is as follows:

(1) For the F n  of  the f irst k ind: C'I,-=0 and the characteristic scalar p is a
function of position alone.

(2) For the F" of the second k in d : C 2 1, Ci =O.

The meaning of Theorem 5 is that the system of differential equations (2.2) is
reduced to a single equation Ci 1, =  0  or CI, C = 0  on the assumption of semi-C-
reducibility, similarly to the case of C-reducibility (cf. (30.28) of [17]).
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§ 5. Semi-C-reducible Landsberg spaces

As to a  C-reducible space, it is known ([11], § 30 of [17]) that a  C-reducible
Landsberg space is a Berwald space. We shall try to generalize this theorem to the
case of semi-C-reducible space. From (1.7) the h-covariant derivative C jk 1 1 ,, of
is written in the form

(5.1)
+ qC, I „  C  k l C 2 1 —  (p C 2 +

C k + P C k i h ) 0 + 1 )

/ )C i C ./ Ck

A Berwald space is characterized by the equation = O . As = 0  and
C 2

1,,= 0 are derived from it, (5.1) leads immediately to p i ,„= 0; the characteristic scalar
p  being h-covariant constant. Conversely = 0  and Gi p , = 0  imply 0  by
(5.1). Therefore we have

Proposition 3. A semi-C-reducible Finsler space is a Berwald space the char-
acteristic scalar p  and the torsion vector C, are h-covariant constant.

Next we treat a semi-C-reducible Fn (n_4) which is a Landsberg space, i.e., the
hv-curvature tensor

(5.2) C C ik rP  j r 1 C  j k r P i r

vanishes. In this section we shall use the notations

P ilc = "P lk ,1 4 = P k C V C ,
cy' =C f i lC, p' = CLC 1/C 2 .

Contracting (5.1) by ghk and paying attention to = C ite/ 1 j

obtain

(5.3)

from P i i k t = 0, we

(n + 1 — = (Pa' F P',)Ch i i  + Gi p; +
(5.4) — P0(C1lid-Ci/1)±(n+1)q(C1gi+C1C1)12C2

+(n+1){ q(ce —

From one of the Bianchi identities ((17.17) of [17]) we have S h i j k i , = 0  for a
Landsberg space. Thus (1.8) implies

(5.5) hhA4 , 11 + 11
lti

l il h j I 1 h h k  
M

i J h i j M n k  = 0.

Contracting (5.5) by gni and putting M = g 1 M 1 5 , we have (n-3)111- h ik M 1 1 - 0 .

Further, contracting by gik , we have M 11 = 0 , so that M o i k = 0  because of n_>:4. It
follows from (1.9) that the last equation is written in the form

(5.6)
2(n +1) n +1

P   (2 C p ik - i-p C k )h ii+(   2p+ 1 - 2 p ) C , C i p i k

+P ( -1 nP i
n+1 

) ( C  C .1 +C ilk  C ) =0 •rk 
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Contraction of (5.6) by Ck yields

(5.7) pC3 
2(n+ 1 )

(2p c +PP)h
„

i j d-C,D i +C i D ,= 0,

where we put

(5.8)
2 p  

D i =(Cp'12)( +1-2p)C i+(p12)(1—   n P   )CI •n +1 n +1

It is observed from (5.7) that the rank of the matrix (h,,) becomes less than
three if 2 p +  # 0 , contradicting to Thus

(5.9) 2p', +pp' = 0

and C,D i  + C ,D ,= 0 .  The latter leads immediately to D 2 =0 , i.e.,

(5.10) (C pI2)(2P
 1

 +1 - 2 p ) C i +(p12)(1—   n P  

n  + n +1

Contraction of (5.10) by C  and (5.9) yield p = 0 at once, so that p ' =0 from (5.9),
and (5.10) yields (I) np n + 1 and C = 0  or (II) n p =n + 1.

On the other hand, contraction of (5.6) by gives

(5.11) C2 q p + p(1—  p12)q,= 0 .

In the case (I) (5.11) is reduced to p lk =O. Then (5.6) is reduced to C C i +
= 0 , so that C =0 by contraction by C .

In the case (II), (5.6) is immediately reduced to q k =O. Then we see from (1.9)
that M i j  is proportional to h ,, and the space is S3-like, as it is shown from (1.8).
Consequently we have

Proposition 4. A ll the semi-C-reducible Landsberg spaces of dimension are
divided into the following two classes:

( 1 )  n p # n + 1 ,p 11 =0  and C, I ., =0.
(II) n p =n +1 , 0 and the space is S3-like.

In the case (II), from (5.4) we have

(5.12) (n -2 )C t ih = — - (C hht — CtCh).

Therefore C h = 0 is equivalent to a '= 0 .  From this fact and the last two proposi-
tions the following conclusion is obvious.

Theorem 6. ( 1 )  A semi-C-reducible Landsberg space belonging to the class (I)
of Proposition 4 is a Berwald space.
(2) A semi-C-reducible Landsberg space belonging to the class (II) of Proposition 4 is
S 3 - l ik e .  It is a Berwald space, C;, vanishes identically.
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