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§ 0. Introduction

Let M be a closed manifold, w a closed one form of class C' on M with singu-
larities 3 ={x|w,=0} and & a codimension one foliation on M — 2 defined by v =0.

Let Per () be the set of periods of w i.e. Per (w)= {f w|c: closed curve in M } This

is a Z-module and we define rank o by the rank of Per (w). If 2'=¢ the properties
of & are well known (see [2], [4], [5], [6]) in particular all leaves of # are compact
or everywhere dense according to rank w=1 or >2. The purpose of this note is to
generalize this property to the case of X=:4.

To state the theorem we make some definitions. A leaf L of & is called singu-
lar if there exists p € X' such that, for any neighborhood U of p and a function f on
U such that w|U=df, we have LN UN f~'(f(p))=¢. A leaf L is called compact if
LU2 is compact. We say that w has generalized isolated singularities if there exist
a neighborhood U of X and a function g on U such that | U=dg and the set of
singular values of g isisolated. In this case we suppose, by choosing U and g suitably,
that 3 is contained in g~'(0).

Our result is as follows.

Theorem 1. If M is closed and w has generalized isolated singularities then any
non-compact leaf of F is locally dense and if & has a locally dense leaf then rank
w=2.

If M is an orientable closed surface, let 2 be a volume form on M. It is easy
to see that the corespondence X'<«>i,f2, where i, is the inner product, between vector
fields and one forms on M is one to one and X preserves the volume form £ if and
only if i, is closed. Moreover the orbits of X are the leaves of the foliation defined
by iy2=0. So as a corollary of Theorem 1 we have the following (well known for
the case of non-degenerate singularities) result.
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Theorem 2. Let X be a volume preserving vector field on a closed orientable two
manifold and suppose that iy$2 has generalized isolated singularities. Then any non-
trivial orbit of X is periodic or a separatrix joining singular points or locally dense.

For the proof of Theorem 1 we take a vector field X on M—J satisfying w(X)
=1 and consider the local one parameter transformation ¢(x, #) generated by X.
Then ¢( , t) preserves the foliation & locally, but X is not complete and we see that,
for any non-compact leaf L, L contains a non-compact singular leaf (Propositions
1.8. and 1.10.). So for the proof of Theorem 1. it is sufficient to show that a non-
compact singular leaf is locally dense. This is done in § 2.

If we assume that (M) is abelian, then the proof of Theorem 1 becomes very
simple and a more accurate description of & is possible. This will be done in a
subsequent paper [3] under more general situations.

§1. Preliminaries
In this section we assume M is closed and w has generalized isolated singularities.

Definition 1.1. A compact codimension zero submanifold D of M is called a
regular neighborhood of Y if D satisfies the following conditions.

(i) UDDDIntDDJ.

(ii) oD is transverse to g '(0).

(iii) For a connected component 4 of DN g~'(0) we have AN X ¢.

It is easy to see that for any neighborhood U of X there exists a regular neighbor-
hood contained in U. In the sequel we fix a regular neighborhood D.

Definition 1.2. We call D(e)=D Ng ([—e, €]) a regular e-neighborhood of % if
F is transverse to 0D N g~'(—¢’, ¢’) for some ¢’>e. We call each connected compo-
nent of W(e)=dDNg '([—e,¢]) an e-wall of D(¢) and we define W*(e)=0DN
g7'([0,e), W (e)=0DNg'([—e, 0]) and W(0)=0DNg '(0). D*(e) are defined simi-
larly.

For sufficiently small ¢, D(¢) is a regular e-neighborhood of 2, and if D(e) is
regular then for ¢/ <<e D(¢’) is also regular. There is a one to one correspondence be-
tween connected components of D(e) and D(¢').

Definition 1.3. A connected component D,(e) of e-regular neighborhood of D(e)
is called an e-cell. We say D,(e) a separating cell if D,(e) N\ W(e) is disconnected. A
leaf L of & is called a D-separatrice if g~'(0)N LN D,() ¢ for some separating cell
D,(e). We denote &, the set of D-separatrices and S,={x € M|L, e &,} where L,
is the leaf containing x. We define SD(¢)= U D,(c) where the union is taken for all
separating cells. SD*(¢) are defined similarly.

Clearly &, is a finite set and this fact plays a crucial role in the proof of Theo-
rem 1.
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Definition 1.4. A vector field X of class C' on M—2 is called D(e)-regular if
o(X)=1on M—2 and X is tangent to W(¢). Let DyC(M—2)X R be the domain
of maximal solutions ¢(x, ) of X under the initial conditions ¢(x, 0)=x. Define
a*(x)=sup{t|(x, 1) € Dy}, a~(x)=sup {¢|(x, —t) € Dy} and for a subset 4 of M— 2%,
a*(A)=inf {a*(x)|x € A}, a~(4)=inf{a " (x)|x e A}. For x,ye L we define c¢*(x, y)
=sup {t|L, .,y =L,y for 0=¢’<t}. ¢ (x, y) is defined similarly.

Any vector field X on A4, where 4 is a compact set of M — D(e), satisfying w(X)
=1 on A can be extended to a D(e)-regular vector field. The following lemmas are
easy to prove.

Lemma 1.1. Let L be a non-compact leaf of & then there exists a segment C
transverse to F such that C is contained in M— D and LN C is an infinie set.

Lemma 1.2. We have the following properties.

(i) Forx,ye L, 0<c*(x,y)=c*(y, x)<min (a*(x), a*(»)).

(ii) For x,y,ze L, ¢*(x, y)>min (c*(x, 2), c*(z, )).

(i) For x,y e L and a<a*(x, y), set X' =¢(x, a) and y'=¢(p, a) then c*(x, y)
=a-+c*(x, y).

(iv) For any curve l in L from x to y we have a*([)<c*(x, ).

(v) If A is a subset of M—Int D~ () then a*(A)=e.

Definition 1.5. For a curve /: [a, b]—L, a sequence a<t,<t,<---<t,,<b is
called the D~(¢)-partition (or SD~(e)-partition) if [ is transverse to W(e) and if
U1 (-1, t)=1"" (Int D~(¢)) (or =17 (Int SD~(e))=1{"" (Int D~(¢)) respectively).

Lemma 1.3. For x,y e LN (M —1Int D~(¢)), there exists a curve I: [a, bl—L from
x to y which has the SD~(e)-partition. If I has the SD~(¢)-partition then a*(l)=
min {—g((2))|i=1,2, ---,2n} if n>0 and a*(I)>e if n=0. Moreover let j=
min {i| —g(I(t,))=a" (1)} and j’ =max {i| —g(l(t,))=a*(I)} then a*(l|[a, t,]))>a*(I) and
a* (LIt B)>a* ().

Proof. Letlbea curve in L from x to y, then by the transversality theorem of
Pontrjagin-Thom, we can suppose that / is transverse to W(e) so / has the D~ (¢)-
partition. If /({t,;_,, £,,]) is contained in a non-separating cell D,(¢) then we can join
I(t,,_)) and [(¢,;) by a curve in D,(e)N W~(e)NL. So we have a curve [’ in LN
(M —(Int D(¢)—Int SD~(¢))) and /” has the SD~(¢)-partition. The other statements
are trivial.

Proposition 1.4.  If o(x, [0, a)) N\ S, =¢ then for any y € L, such that a*(y)=a,
we have c*(x, y)=a.

Proof. Tt is sufficient to prove for the case of 0<<a<le. If x, y & Int D(e),
choose a curve / in L, from x to y with the SD~(¢)-partition 0<¢t, < - - <¢t,,<1.
Then we have a*(/)=a. In fact if a*(/)<a then take j as in Lemma 1.3. Then
o(l(2)), a*(1)) e Sp, and ¢(x, a* (1)) € Sp, this is a contradiction. If x e Int D(¢) then
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we can take x’ & Int D(¢) such that ¢*(x, x)=a and ¢(x/, [0, a)NS,=¢. So the
problem is reduced to the above case.

Definition 1.6. For a subset 4 of M — 2, the saturation of A is defined by Q(A)
={x|L,NAx¢}.

Lemma 1.5. Let L be a non-compact leaf then for any ¢>0 there exist x ¢ L
and a closed curve C transverse to % passing through x such that Q(C)C Q(¢(x, [0, €])).
Moreover C can be choosen in M — D(¢') for sufficiently small ¢’ >0.

Proof. Choose a segment C as in Lemma 1.1, then there exists x e C and ¢’
such that 0<¢’<e and x, ¢(x,¢’)e L. For &’ <min (¢ (x, ¢(x, ¢’)),¢’) we have
O(p(x, [0, €D)=0(p(x, [—¢”, €'])) and there exists a curve / in L,, .., from
o(x, —e”’) to o(x, &’ —¢). Then by modification of ¢(x, [—¢”, &’ —¢’]) ] we obtain
a closed transversal curve C’ such that C’ 5 x and Q(C)=0(¢(x, [—¢”, & —¢"]))C
O(p(x, [0, ¢])). If we choose ¢” so that ¢(x, —e””) § S, and [ has the SD(g)-parti-
tion 0<t, < - - - <1, <1 then min {|g(/(z))|]|i=1, 2, - - -, 2n}x0. So for sufficiently
small ¢, / is a curve in M — D(e,) and C’ can be taken in M — D(g,).

Proposition 1.6. Let C be a closed curve in M — D(e) transverse to &, if CN Sy
=¢ then Q(C)=M—2.

Proof. We can assume that C is an orbit of a D(e)-regular vector field. If
Q(C)x M — 2 then there exist x € Q(C) and ¢ >0 such that ¢(x, ¢t) § Q(C). Choose
yeL,NC then ¢(y, (— o, ©)NS,=¢. By Proposition 1.4. we have c¢*(x, y)>t.
This contradicts to ¢(x, 1) § Q(C).

Theorem 1.7. If & ,=d¢(for example if g is a Morse function without critical
points of index 1 and dim M — 1) then if rank w=2 all leaves are dense in M — X and
if rank w<1 all leaves are compact.

Proof. If there exists a non-compact leaf L then by Lemma 1.5. there exists a
closed transverse curve C in M — D(g) and, since Q(C)=M — 2, we see that CN L is
an infinite set. By Proposition 1.4. the holonomy pseudogroup acting on C is really
a group of rotations of C. Since this group has an infinite orbit LN C, all orbits are
dense in C and all leaves of % are dense in M— 2. Since rank o is finite this group
contains a rotation of irrational angle so rank w=>2. If all leaves of & are compact
then there are two possibilities. If there is a closed transversal curve C then the
holonomy pseudogroup actiong on C contains only rational rotations. So there ex-
ists a closed transversal curve C’ which intersects with any leaf at exactly one point.
So there is a map n: M—2—C’, n(x)=L,N C’ this map can be extended to z’: M
—C’ and it is easy to see that w=n*dr where ¢ is a parameter of C’ such that
w(-%): 1. Sorank w=1. If there is no closed transverse curve, choose a leaf L

and put T(L)={p(x, t)|x e L, (x,t) e Dy}. Then by Proposition 1.4. T(L) is a
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connected component of M — 2% and we can constract a map f: M —3—R such that
w=df. So rank w=0.

Proposition 1.8. The set of non-compact leaves of & is open in M—23 and its
boundary consists of compact separatrices.

This proposition can be proved by the same method as Theorem 3.4. of Haefliger
[1]. Butin this case this follows from the following lemma and the finiteness of %,

Lemma 1.9. Let L be a non-singular compact leaf of & and xe L. Set t,—=
sup {t| L, ., is a non-singular compact leaf for 0<t'<t}. Then L, ,, is a compact
D-separatrice.

Proof. Itisclearthat L'=L,, ,, is a D-separatrice. If it is non-compact, then
by Lemma 1.1. there exist y € L’ and ¢<#, such that ¢(y, —e) € L’. But by Proposi-
tion 1.4. ¢ (p(x, t,), ») >, so L'=L,,,,,_., is compact. This is a contradiction.

Proposition 1.10. Suppose ¥ p3x¢. Let L, be a non-compact leaf then for any
e>0 there exist 0<¢, ¢’ <e such that o(x, ¢'), p(x, —e'’) € Sp.

Proof. Otherwise we have ¢(x, (0, e)) N S,=¢. Choose x’'=¢(x, ¢,) for suffi-
ciently small ¢, Then by Proposition 1.8. L., is non-compact and ¢(x’, [0, e —¢,])
N¥,=¢. By Lemma 1.5. there exist y € L,, and a closed transversal curve C such
that Q(C)C Q(p(y, [0, e —¢,])). But by Proposition 1.4. ¢*(x’, y)>¢—¢,. So we have
O(p(»,[0,e—e))NS,=¢ and Q(C)NS,=¢. Then by Propostion 1.6, we have
Q(C)=M—2, this contradicts to Fpx¢.

§2. Proof of Theorem 1

By Proposition 1.8. the set of noncompact leaves is open in M—2%. Let 2 be
a connected component of the open set. We show that any leaf L in 2 is dense in
Q. 1If &5 ¢ then the theorem is reduced to Theorem 1.7. If &, ¢ then by Prop-
osition 1.10. and the finiteness of separating cells, we see that, for any leaf L in 2, L
contains a non-compact separatrice. So it is sufficient to show that any non-
compact separatrice in £ is dense in 2. We use the following notations.

={L|LeF,isdensein 2}, S,={x|L, e £}
Fp={L|L e &, is contained in £ and non-compact but not dense in £}
Fo={L|L e &, is contained in 2 and is compact}
D ,(e) =‘{D1(e) |[LNg ' (0)N Dye)>¢ for some L e &, and D,(e) C SD(e)}
W) ={Wie)| WO)CLe .}

Sy> Dy(e), DE(e), Wi(e), Wi(e), Wy (0) (*=A4,B or C) are defined similarly.
Our purpose is to show that ¥ ,=¢.

Proposition 2.1. &, ¢ and a leaf of & are not locally dense.
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Proof. By Proposition 1.10. S, N 2 is dense in 2. Since &, is finite, there exist
L, .-, L, e ¥psuchthat L, is dense in an open set 2,C 2. Butif 2,N 2, ¢ then
L,is dense in £,U£,. Since 2 is connected, each L, is dense in £.

The next lemma follows easily from the finiteness of &, and &,.

Lemma 2.2. There exists e,>0 such that W () N (SzU Sg)=¢ and Wy(e,) N S,
= ¢.

Lemma 2.3. For any x e Wy0) and ¢>0, there exists 0<¢', " <e, such that
o(x, —&’) e Sy and ¢(x, e"’) e Sp.

Proof. By Lemma 1.1. there exist y ¢ L, and ¢’ <min (g,, ¢) such that ¢(y, ¢’)
e L,. Choose a curve /in L, from x to y with the SD~(¢’’)-partition 0<t,<< - - <
1, <1 where ¢ <&’ <min (g, ¢). If n=0 then o(x,&') e L,,,.,=L, e F5 Ifn>0,
put &,= —g(I(1,)) then 0<e, <min (e, ¢) and ¢(x, ¢,) € L=L,,,,,.,,- Clearly L e &),
if Le %, then I(¢)) € W,(e,) N S5, this contradicts to Lemma 2.2. If Le %, then
o(x, &,) € Wi(e) N Se and this is also a contradiction. So L e &,. Thus we proved
the existence of 0<{¢”” <e such that o(x, ¢’} € Sp.  ¢(x, —¢’) € Sy is similar.

Definition 2.1. We say two leaves L, and L, of & are negatively related if for
any x e L, and y e L, there exists e=e(x, ) >0 such that L, _,,=L,,,_,, for any
0<t<e. Clearly this is an equivalence relation.

Lemma 24. IfL,e &, ,and L e &y then L, and L, are not negatively related.

Proof. Otherwise take x e L,N W,(0) and ye L,N Wy0). By Lemma 2.2
o(x, —t) & Sy for 0<t<¢, but by Lemma 2.3. there exists 0<¢/<<min (g, (x, »))
such that ¢(y, —¢’) € Sp.  This contradicts to L, ,,_,,=L

oy, -8")°

Proposition 2.5. ¥;=¢.

Proof. Suppose that & ;3¢ and take x € W,(0) and y € L, N W3(s). Choose
acurve / in L, from x to y with the SD~(g,)-partion 0<t,< - - - <t,,<lgn,;=1. If
n=0 then ¢(x, —g(»)) € W,(e,) N Sp, this contradicts to Lemma 2.2. So n>0. Put
e,=—8W(t)), Li=L,u,,. € Fpthene, ,=¢, and L,,_, is negatively related to L,,.
Consider k=max {i|I(t,) € W,(e,)}. If k is even then, by considering /|[#, #..,], we
have (I(t,), ex.1) € Wi(e)) N(SzUSe). This contradicts to Lemma 2.2. If k is odd
then ¢,=e¢,,, and L, is negatively related to L,,,. So by Lemma 2.4. L, € &, and
by Lemma 2.2. k<2n—2. We consider the curve /|[¢,,,, 1] with the SD~(e,)-parti-
tion and put e=a*(/|[t,,:, 1]). If e<e, then o(I(2,), &) € W, (e) N (SzU S,), this is a
contradiction. If e>¢, then ¢(I(1), ¢,) € Wy(e,) N S, this is a contradiction. If e=
€, put j=max {i|e;=e, i>k+1} then L, e &, is negatively related to L,. By
Lemma 2.4. we have L, e & and, by considering /|[t,, 1], we have ¢(/(1),¢,) €
Wi(e,) N % This contradicts to Lemma 2.2. Thus we proved Theorem 1.
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