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§ O . Introduction

Let M  be a closed manifold, co a closed one form of class C ' on M  with singu-
larities 2' = {x I co = 0} and F  a codimension one foliation on M —  I defined by w=0.

Let Per (co) be the set of periods of co i.e. Per (w)= co I c: closed curve in M I .  This

is a Z-module and we define rank co by the rank of Per (w). If I=  g5 the properties
of F  are well known (see [2], [4], [5], [6]) in particular all leaves of F  are compact
or everywhere dense according to rank co= 1 or T h e  purpose of this note is to
generalize this property to the case of I

To state the theorem we make some definitions. A leaf L  of F is called singu-
lar if there exists p E I  such that, for any neighborhood U of p and a function f  on
U such that co df, we have Ln U n f - 1 ( f ( p ) )  0 .  A  leaf L  is called compact if
L U I  is  com pact. We say that co has generalized isolated singularities if there exist
a  neighborhood U of I  and a function g  on U  such that col U = dg and the set of
singular values of g is isolated. In this case we suppose, by choosing U and g suitably,
that I is contained in g - 1 (0).

Our result is as follows.

Theorem 1. If  M  is closed and (0 has generalized isolated singularities then any
non-compact leaf  of  F is  locally  dense and if  F  has a locally dense leaf then rank
w> 2.

If M  is an orientable closed surface, let D be a volume form on M .  It is easy
to see that the corespondence X4- 4 1 ,Q, where i1  is the inner product, between vector
fields and one forms on M is one to one and X preserves the volume form Q if and
only if i1 S2 is closed. Moreover the orbits of X are the leaves of the foliation defined
by ii D =  0 .  So as a corollary of Theorem 1 we have the following (well known for
the case of non-degenerate singularities) result.
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Theorem 2. Let X  be a volume preserving vector field on a closed orientable two
manifold and suppose that i1 S2 has generalized isolated singularities. T hen any  non-
trivial orbit of X  is periodic or a separatrix joining singular points or locally dense.

For the proof of Theorem 1 we take a vector field X  on M — I satisfying w(X)
==. 1 and consider the local one parameter transformation ço(x, t )  generated by X.
Then yo( , t) preserves the foliation ,F  locally, but X  is not complete and we see that,
for any non-compact leaf L , L  contains a non-compact singular leaf (Propositions
1.8. and 1.10.). So for the proof of Theorem 1. it is sufficient to show that a non-
compact singular leaf is locally dense. This is done in § 2.

If we assume that 71(M ) is abelian, then the proof of Theorem 1 becomes very
simple and a more accurate description of is  possible. T h is  will be done in a
subsequent paper [3] under more general situations.

§  1 .  Preliminaries

In this section we assume M  is closed and w has generalized isolated singularities.

Definition 1.1. A compact codimension zero submanifold D  of M  is called a
regular neighborhood of I  if D satisfies the following conditions.

( i ) U D D D Int D D I.
(ii) aD is transverse to g - 1 (0).
(iii) For a connected component A of D ng -'(0) we have A n f# 0 .

It is easy to see that for any neighborhood U of X  there exists a regular neighbor-
hood contained in U .  In the sequel we fix a regular neighborhood D.

Definition 1.2. We call D(e)=D e]) a regular e - neighborhood of X  if
is transverse to aD , s') for some E/ > e. We call each connected compo-

nent o f W(E)= ap n e, e]) an e-wall of D(e) and we define W f (e)=ap n
g - 1 ([0, W - (6)--=ap n e, 0]) and W(0)= ap n g - 1 (0). D ± (e )  are defined simi-
larly.

For sufficiently small e, D(s) is a  regular E-neighborhood of 2', and if D(E) is
regular then for e' <E D(e') is also regular. There is a one to one correspondence be-
tween connected components of D(s) and D(s').

Definition 1.3. A connected component D i (E) of E-regular neighborhood of D(e)
is called an c- cell. We say D(c) a separating cell if D i (e) fl W (s) is disconnected. A
leaf L  of 3" is called a D - separatrice if g - 1 (0) n L n D i (E)#95 for some separating cell
D i (E). We denote YD  the set of D-separatrices and SD = {x E MILS E „99 „,} where L„
is the leaf containing x. We define SD(E)= U N O  where the union is taken for all
separating cells. S D ( e )  are defined similarly.

Clearly „9°D  is a finite set and this fact plays a crucial role in the proof of Theo-
rem I.
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Definition 1 .4 .  A vector field X  of class C ' on M — i' is called D(6)-regular if
w(X) -- 1 on M — I and X  is tangent to W (6). Let D,C(M —  E) X R  be the domain
of maximal solutions so(x, t )  of X  under the initial conditions so(x, 0)=-x. Define

(x )= sup ftl(x, t) e a- (x)= sup {t 1(x, — t) E  D A  and for a subset A  of M— E ,
a+ (A)= inf la+ (x)lx e AI, a -  (A )  inf la - (x)lx  E  A l .  For x, y  e L  we define c +(x, y)
=sup for 0.< t ' < tl. c - (x, y) is defined similarly.

Any vector field X  on A , where A  is a compact set of M— D(6), satisfying w(X)
1 on A  can be extended to a D(6)-regular vector field. T h e  following lemmas are

easy to prove.

Lemma 1.1. Let L  be a non-compact leaf  o f  g -  then there ex ists a segment C
transverse to g such that C is contained in M—  D and L(1C is an infinie set.

Lemma 1.2. We have the following properties.
(i) For x, y e L, 0<c+ (x, y)= c+ (y, x)<_min (a+ (x), a+ (y)).
(ii) For x, y, z  E L, c+(x, y)>m in (c+(x, z), c+ (z, y)).
(iii) For x, y  E  L and a<a+(x, y), set x ' =yo(x, a) and y' = y)(y, a) then c+(x, y)

-= a+ c+ (x' , y').
(iv) For any curve I in L from  x  to y we have a+ (1)<c+ (x, y).
( y )  If  A  is a subset of M— Int D - (6) then a+ (A)..s.

Definition 1.5. For a curve 1: [a, b]—>L, a  sequence a<t,<t,< •  •  •  <t 9 „< b  is
called the D - (6)-partition (or SD - (6)-partition) if  I  is  transverse to W (6) and if

021 - 1, (Int D - ())  (or = I - ' (Int SD -  (0 )=1 - 1  (Int D -  (E)) respectively).

Lemma 1.3. For x, y E L (I (M —Int D - (6)), there exists a curve 1:[a, b]—>L from
x  to  y  w hich has the SD -  (0-partition. I f  I has the SD - (6)-partition then a+(1)_=
min { —g(1(t i ))1i= 1, 2, • • • , 2n1 i f  n > 0  and a+ (1)>6 if  n=0. M oreov er le t  j=
min fil — g(I(t i ))= a* (1)} and j' = max g(1(0)= a+ (1)} then a+ (11[a, t J ] ) >  a+ (1) and
a+ (I l[t , b]) > a+ (I).

P ro o f .  Let I be a curve in L  from x  to y, then by the transversality theorem of
Pontrjagin-Thom, we can suppose that I is transverse to  W(6) so /  has the D -  (e)-
partition. If /([4 i _1 , t2i]) is contained in a non-separating cell D 1(6) then we can join
/(t,i-i) and l ( t 2 )  by a  curve in D (s) n  - (6) n  . So we have a curve l '  in Ln
01—(Int D(6) —Int SD -  (6))) and / ' has the SD - (6)-partition. The other statements
are trivial.

Proposition 1.4. If so(x, [0, a]) n SD =ç1q5 then for any y E L , such that a+(y )_a,
we have c+ (x, a.

P ro o f . It is sufficient to prove for the case of 0 < a < 6 .  If x ,  y  Int D(6),
choose a  curve I  in L , from x  to y  with the SD - (6)-partition O< t i < • • • <t,„< 1.
Then we have a+ (I) a. In fact if a+(1)<a then take j  as in Lemma 1.3. Then
9)(1(0, a+ (I)) e S D and w(x, a' (I)) E  SD , this is a contradiction. If x E  Int D(6) then
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we can take x' 4 Int D(E) such that c ( x ,  x ') .a  and yo(x', [0, O n  s ,  0. So the
problem is reduced to the above case.

Definition 1.6. For a subset A  of M— X, the saturation of A  is defined by Q(A)
={x1L z n A*95}.

Lemma 1.5. L et L  be a non-compact leaf then f o r any  s>0 there ex ist x  E L
and a closed curve C transverse to passing through x  such that Q(C)c Q(yo(x , [0, E])).
Moreover C can be choosen in M— D(E') for sufficiently small E'  >O.

P ro o f  Choose a segment C as in Lemma 1.1, then there exists X E C and E'

such that O<E' < 6  and x, ga(x, E') e L. For E"  <  min (c - (x, 59(x, E')), E') we have
Q(y9(x, [0, el))=Q(Ço(x, [—E", E ' ] ) )  a n d  there exists a  curve 1 in  L, ( z ,_„, ) from
50(x, —r") to p(x, E' E " ) .  Then by modification of ço(x, [—r" , — e"]) * 1 we obtain
a  closed transversal curve C ' such that C ' 3 x  and Q(C)=Q(9)(x,[— E", E'  — e"])) c
Q(Ço(x, [0, e ] ) ) .  I f  we choose E" so that go(x, E") 4 SD  and 1 has the SD(E)-parti-
tion 0< t, < • •  <  < 1 then min lig(1(t i ))lii= 1, 2, • • , 2n1# O. S o  for sufficiently
small E„ 1 is a curve in M— D(E0) and C ' can be taken in M — D(E0).

Proposition 1.6. L et C be a closed curve in M— D(E) transverse to if Cn SD
=çb then Q(C)= M —  I.

P ro o f  We can assume that C  is an orbit of a D(E)-regular vector field. I f
Q(C) M  —  I  then there exist x E Q(C) and t > 0  such that yo(x, t) Q ( C ) .  Choose
y E L z  n C  then ço(y, ( - 0 0 ,  G o ) )  n S D

=  95" By Proposition 1.4. we have c'(x , y)>  t.
This contradicts to yo(x, t) Q ( C ) .

Theorem 1.7. I f  D =y5(for example if  g  is a M orse function without critical
points of  index 1 and dim M -1) then if  rank  w__ 2 all leaves are dense in M —  I and
if  rank  w  I all leav es are compact.

P ro o f  If there exists a non-compact leaf L  then by Lemma 1.5. there exists a
closed transverse curve C in M — D(E) and, since Q(C)= M  —  , we see that C n L  is
an infinite set. By Proposition 1.4. the holonomy pseudogroup acting on C is really
a group of rotations of C. Since this group has an infinite orbit L n C, all orbits are
dense in C and all leaves of ,F  are dense in M - 1 .  Since rank co is finite this group
contains a rotation of irrational angle so rank w 2. If all leaves of are com pact
then there are two possibilities. If there is a  closed transversal curve C  then the
holonomy pseudogroup actiong on C contains only rational rotations. So there ex-
ists a closed transversal curve C ' which intersects with any leaf at exactly one point.
So there is a  map 7r: M— x(x)=Lx n C ' this map can be extended to 7r': M
—>C' and it is easy to see that ai =r* d t  where t  is a  parameter of C ' such that

co(  a  =  1 .  So rank w =  1 .  If there is no closed transverse curve, choose a leaf L
\ at I

and put T(L)= {w(x, x  e L, (x , t) e D A. Then by Proposition 1.4. T (L ) is a
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connected component of M - 1  and we can constract a map f : M  f — >R  such that
= d f .  So rank w= O.

Proposition 1.8. The set of non-compact leaves of.  i s  open in M—  I  and its
boundary consists of compact separatrices.

This proposition can be proved by the same method as Theorem 3.4. of Haefliger
[1]. But in this case this follows from the following lemma and the finiteness of Y D .

Lemma 1.9. Let L  be a non-singular compact leaf  of  .F  and x  E L .  S et to =
sup ft1L,, s ,,,, is a non-singular compact leaffor 0<  t' < /1. T hen 4, x ,,o, is a compact
D-separatrice.

P ro o f . It is clear that L ' = is a D-separatrice. If it is non-compact, then
by Lemma 1.1. there exist y e L ' and 8<t0 such that so(y, —6) E  L ' .  But by Proposi-
tion 1.4. c(ço(x, to), Y)> to , so L ' = is compact. This is a contradiction.

Proposition 1 . 1 0 .  S u p p o se  D # 0 . L e t L x  be a non-compact leaf then f o r any
e>0 there exist 0<s', s"<e such that so(x, e'), so(x, — e") E  Sp.

P ro o f  Otherwise we have io(x, (0, e)) n 5D = 0. Choose x' = sp(x, eo)  for suffi-
ciently small so . Then by Proposition 1.8. L x , is non-compact and so(x', [0, 6 —  col)
(16PD =  0 .  By Lemma 1.5. there exist y E L x , and a closed transversal curve C such
that Q(C)OE Q(q)(y, [0, e — ed)). But by Proposition 1.4. c+ (x' , y) > —  e 0.  So we have
Q(so(y, [0, e — e0] ) ) n SD

=  95 and  Q(C) n SD = çb. Then by Propostion 1.6, we have
Q (C )=M —X, this contradicts to ,99 ./3 95 .

§ 2. Proof of Theorem 1

By Proposition 1.8. the set of noncompact leaves is open in M  I . Let Q be
a connected component of the open set. We show that any leaf L  in Q  is dense in
D .  If .9'„# 0 then the theorem is reduced to Theorem 1.7. I f  °D * 0 then by Prop-
osition 1.10. and the finiteness of separating cells, we see that, for any leaf L  in Q,
contains a non-compact separatrice. So it is sufficient to show that any non-
compact separatrice in D is dense in Q . W e use the following notations.

A=  {LILE ,r i , is dense in Q}, SA = IXILx E Al

% =- {LIL E  'D  is contained in Q and non-compact but not dense in Q}
Y c = {LIL E Y D  is contained in Q and is compact}
D A (e) = IN E) IL n g - 1 (0) #  for some L  E  9 A and D,(e)C SD(e)}
W4(6)-= { Wi(E) I'V1(0 )C L  E A}

D (e ) , W ( e ) ,  W (e ) , W* (0) (* = A , B  o r C )  are defined similarly.
Our purpose is to show th a t 9 B=

Proposition 2.1. 9 A #  an d  a  leaf of .9 9 B are not locally dense.
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P ro o f  By Proposition 1.10. SD n Q is dense in Q. Since ,99, is finite, there exist
L „  •  ,  L  e such that L, is dense in an open set S4c Q . But if o i n,Q3 40 then
L, is dense in Di  U Q3 . S in ce  Q is connected, each L1 is dense in D.

The next lemma follows easily from the finiteness of Y ,  and

Lemma 2.2. There exists s o > 0 such that W.4(0 n (sB u S0 )=--  ç5 and wi3(60) n
= 0.

Lemma 2.3. For any x E WB (0 ) and s > 0 , there exists 0<e' , e" <e, such that
io(x, e S B  and yo(x, 6") E S  B.

P ro o f  By Lemma 1.1. there exist y e L , and e' <min ( E „ E )  such that ço(y, E' )

E L .  Choose a curve l in Lx  from x to y with the SD - (e'')-partition 0< t, < • <
t2 < 1 where e' <e" < min (E„ E). If n = 0  then ge(x, e') e E B . If n> 0,
put 61 = œ g (1 (0 )  then 0<e

1 <min (E0, E) and 50(x, e i ) E L=L(Icti),,,)• Clearly L E
if LE Y A  then 1 (t) E wA(60)n B , this contradicts to Lemma 2.2. If LE Y B  then
w(x, 61) e kvB(6°) n s e  and this is also a contradiction. So L E B. Thus we proved
the existence of 0 < E "  <e such that 90(X , E" }  E S B . ço (x , — 6 ') E S B  is similar.

Definition 2.1. We say two leaves Lo and L, of "." are negatively related if for
any x e Lo and y E L , there exists e= e(x , y)> 0 such that L,, ( x ,_„ for any
0< t < E. Clearly this is an equivalence relation.

Lemma 2 .4 .  If  L o E  9  and L, e then Lo and L, are not negatively related.

P ro o f  Otherwise take x E L o n  W A (0 )  and y e L, n WB (0). By Lemma 2.2.
ço(x, — t)(; S B  fo r 0 < t< e ,  but by Lemma 2.3. there exists 0<e'<min (e„ e(x, y))
such that ço(y, —6') E 5B. This contradicts to L,(x,_<,)-=L9(y.-e)•

Proposition 2 .5 .  Y  B =
.75.

P ro o f  Suppose that .9'13 #  and take x E W4 (0) and y e L z nW A O .  Choose
a curve / in L , from x  to y with the 5D - (60)-partion 0< t, < . • • <t2 <i2.+1= 1 . If
n= 0  then ço(x, — g(y)) e WA (e 0) n  s B , this contradicts to Lemma 2.2. So n > 0. P u t
Ei =  —g(1(t1)), L i = L,„ ( „ ) „„ e YD then E21 -1 = E 2i and L 2 1 _ 1  is negatively related to L 2 1 .

Consider k= max fil/(t i ) e WA (eo)}. If k is even then, by considering /1[4, t „ , ] ,  we
have 9)(/(t0 ), ek +1) E wA(eo) n (sB u S 0 ) .  This contradicts to Lemma 2.2. If k is odd
then E k E  k +1 and L 0 is negatively related to L k + 1 . So by Lemma 2.4. L k + , E and
by Lemma 2.2. k< 2n — 2. We consider the curve /1[4,1, 1] with the SD - (E0)-parti-
tion and put E=  a+ (II[tk + 1, 1]). If 6< e 0

 then go(/(i0 ), e WA(60) n (sB u S O , this is a
contradiction. If e>e k then go(1(1), e0) E wB(.0) n se, this is a contradiction. If E=

e k ,  put j= max fi I  = E , i >k +11 then Lk  E 6" A  is negatively related to L3 . By
Lemma 2.4. we have L3 E and, by considering /I [t.,, 1], we have 50(/(1), e3) e
We(eo)n c. This contradicts to Lemma 2.2. Thus we proved Theorem 1.
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