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1 .  Introduction.

Recently, Y. Hasegawa [1 ] investigated the Goursat problem for the general
equations in  th e  ca se  when th e  in itia l hyperplane is  sim ple characteristic.

In  this paper, we consider the  case  when th e  in it ia l  hyperplane i s  simple
characteristic o r  t h e  c a s e  th a t t h e  differential operator is hyperbolic with
respect to some d ire c tio n . A n d , from somewhat different p o in t  o f  view, we
shall g ive a  necessary an d  sufficient condition for the  6-well posedness of the
Goursat problem with constant coefficients.

We state problems, assumptions, a n d  results. W e consider t h e  following
problem

A (D,, Ds , D y )u=0 t >0 , x eR 1 , y RTh

Dir it=g ,( t , y) t >0 , y E R ', x =0 , 1=0,1 , — 1-1

Dlit=h ; (x , y) t =0, x E R 1 , y E R 4 , j=0, 1, , m -1 -1
1  a a a

a t ,  Ds =  a x , D y —( a i  a y i  „  a y  .) )

where we im pose  on  the  da ta  (g „ k )  th e  following compatibility condition.

(C) y)---D1g,(0, y)

f o r  i=0, 1, ••• , /-1, j=0, 1, ••• , m -1 -1 , yE Rn

We assume th a t A  i s  a  differential operator o f  order m  w ith  constant
coefficients, and written a s  follows

(1.1) A(z-, C, 7)).-= C,(C, )2 ) m - J =  E D,„_,(z-,72)V
j=0

where C,(C, yi) is a polynom ial of order_ j ,  and  C2(1,0)=1 (0 means th e  homo-
geneous p a r t  o f  degree 1 o f CI ).

R em ark . If  th e  hyperplane t=0 is  simple characteristic for A, then  A  is
written in  th e  form (1.1) a lw ay s . In  other case , if  we assume that A is hyper-

(P)
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bolic with respect to some direction, and t= 0  i s  a  characteristic hyperplane,
then A  has the form (1.1).

We shall say that the problem (P) is 6-well posed, if for every g i  aC - (R1 X Rn),
h i EC - (R 'x R n) with compatibility condition (C), there exists a unique solution
u c0"(R IxR iX R 19 .  Then we have

Theorem 1 . 1 .  In  order that (P) is 6-w ell posed, it is necessary  and sufficient
that the follow ing condition (G) is fulfilled.

{

There exists a positive constant s> 0, such that f o r every 6 with

0< 131 __ e, A (r, C, 22) is hyperbolic with respect to (1, 3, 0).

From the condition (G), we have more concrete necessary conditions. When
1=1, the next theorem is obtained in  [ 1 ]  by constructing the exact analytic
solutions.

Theorem 1 .2 .  I f  (P )  is 6-well Posed, then the  princ ipal part A .  o f  A  is
decomposed as follows:

Am(r, C, 72) = C ,  ) Q  z ( r  C ,  7))

where Q m _t i s  a  homogeneous Polynomial o f  degree m— 1 which is hyperbolic with
respect to (1, 0, 0).

From the hyperbolicity of A  with respect to (1, 6, 0) and the theorem 1.2,
we have

Corollary 1 . 1 .  I f  (P )  is 6-well posed, then A  is w ritten as follows:

(1.2) A(r, C, 7)) C1( ,  2 7)(L-Kr, C, , C, 71)

where i s  the polynom ial w ith Principal Part C?, Q„,_ i respectively , and
1?„,, is a polynom ial of  degree at m ost m -2.

Theorem 1.3. (Hasegawa [ 1 ] )
 L e t 1 =1 , an d  assu m e  that Q m _i  is  s tric tly

hy perbolic w ith respect to (1, 0, 0). Then for the Goursat problem  (P) is 6-well
posed, it is necessary and sufficient that the decomposition condition (1.2) holds.

P ro o f . It will suffice to prove the sufficiency. Since Qm _i  is  str ic tly  h y-
perbolic with respect to (1, 0, 0), we have

R 7„,_2 (2-Pir, e - l- i5r, 77)(Q m-1(2+1:7, 7)))-'=O( ri
(z-E R , H  --> 00)

for sufficiently small 3 .  If we note (1.2), this shows that A  satisfies the condi-
tion (G).

2. Necessity of the condition (G).

(G)

If (P) is well posed, then by the closed graph theorem, there are positive
constants T , X , Y ,C  and integer N , such that



Goursat problem 181

m -1-1
(2.1) lu(1, -T-1, 0)1_-<_C E sup I /:4D ;hi(x, Y)1J-0 ix16X1/15Y

k- - I N

l-1
+C E  sup I  DiteD gi(t, Y )I

0516T.Iy15Y
h-FlaIgN

holds fo r  every solutions of (P).

Lemma 2.1. I f  (P )  is well posed, then there exists e> 0  such that f o r  every
(0< 5< e), there is a  /3

3 >0 with

(2.2) A(r, C, v)#0 f o r  Im z-G—Pa(log(l+Irl-FICI-1-1771)+1)

11InC1=31Imz- 1,E R ' .

P roo f. We take 6 such that 0<6X<1, a n d  s h o w  that this lemma holds
with this E. W e assum e that there is a  a>0 (0<5<s) such that fo r  every p
there exists r ,  C p , i j ,  with A(v p , Cp , )2p )-=0 and

Imrp< — p(log( 1 +17p1+1Cp1+1)7p1)+1),

11111Cp1=61Ims-pl, ri p ERn.

F or fixed yi p , th e  equation A ( v , C , p )= 0  has 1  roots which a r e  bounded and
separated from other roots when r-- , co. Therefore we construct the solution
o f th e  following problem by Fourier-Laplace transformation.

A(D t , Ds , vp )vp (t, x )= 0

D's v p (t , 0 )=  a(t)'p e'rPt i=0, 1, • • • 1-1

v p (t, x)==-0 if

where a (t) is a  C"-function o n  R  with a (t)= 0  if t 1 a n d  a ( t ) ,--_--- 1 i f  1-F2- 'd t.
Now set

u p (t , x , y )= -(e  P" C PX —v p (t , x))eil2PY

then it follows that

A(D t , Ds , Dy )u p (t , x , y )= 0

D.',u p (t , 0, y)=-- (1— a(t))C'pe f r Pte PY i=0, 1, • • • 1-1

Dit u p (0 , x , y)= z-ipe'cPxet 0 j=0, 1, ••• , m— l-1

u(1, 7E1, 0)=e" -Pel 1cp

Since th e  s u p p o r t  o f  (1— a ( t ) )  is contained i n  t_1+2 -1 6, a n d  —Imrp>
p(log (1±1rp1+1 Cp1 +1 7 P1)± 1 ), lirn CPI = 5 111n T th e  so lu tio n s  up  violate the
inequality (2.1) when p—.00.

T h e  next lemma follows from Seidenberg-Tarski's lemma ([5] c. f. Appendix
in  [3]).
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Lemma 2.2. Assume that there are constants 3>0, P> 0 such that

A(r,C,72)#0 w hen  Imr<—P(log(1+171+1C1+1721)+1)

limC1=51Im71, VER T'

then there ex ists M >0 with

(2.3) r, C , v)*0 f o r  Im r<— M , Ilm C1 =51Im 71 •

This lemma shows the necessity of the condition (G).

3 .  Investigations of the condition (G).

F irst w e  im prove  the condition (G ) more useful form.

Lemma 3 . 1 .  Assume the condition (G), then there ex ists s i >0 such that fo r
every  3 (0< a_a 1 ) , there is a costant Pa> 0 with

(3.1) A(1- , C, )7)#0 f o r  Im 7<—Pa(lim 721+1) , -.11m Claim  71) - 1 5-Ei.

Pro o f . F ir s t  w e  t a k e  r>0 , s o  t h a t  11,,,(1, e, )7)#0 for ô I l r ,  1 7 2 1 r ,
o e R n . From  the assumption, fo r e v e ry  s  (0 < s -e ), th e re  e x is ts  rs >0

such that

A (2+ ir+ ic, e± is(r+ o -), v+ i0o.)#0

w hen 1-<—r„ cr - 0, 101.<r, 2, eER, 0, R 4  (c .f. T heorem  5.5.4 in [3]).
For any fixed 77 cCn, w e choose cy- 0 so  th a t  Imr)=-03- w ith  101 r. Then

it fo llow s that

(3.2) A(r, C, v)#0 f o r  Imr<—z-,—r - i limv1, slim  71=limCl.

T hus it w ill su ffice  to  show th a t  r ,  are bounded from  above in with
some fixed constant i >0.

W e set
T p -= {(z-, C, v , v)ECn+ 2 x R ; A(r, C, 72)=0, ,02 11mC1 2

7 12, I'm  72 12- 1)2, v > 01

B y Seidenberg-Tarski's lem m a, it follow s that

sup(—Im -r—r - 1 1))=- +co , o r  =Cpa(l+o(1)) when pi
Tp

But (3.2) shows the impossibility of the former case, thus w e obta in  (3.1).

From  now  on, w e assume (3.1). The following lemma is easily verified.

Lemma 3.2. W ith the same constants in lemma 3.1, it follows that

C1 (C, 72)#0 if  I m i  ô P ( i I m I + 1 )
(3.3)

k(r, , 72)*0 i f  Im z- <—Ps(11m v1+1)

Especially, Ci (C, 72) is hyperbolic w ith respect to (1, 0).
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Lemma 3.3. The equation A n ,(r, C, 72)=0 has only  real roots r f o r  any  real
(C, 72)G R n + 1  w ith QC, 22)*0.

Pro o f . We assume that there ex ist , i )  such that

C2(e, )*0,- 7))= 0 ,  IM f  *0 , (e,.i2)ER n + 1 .

Choose "i> 0 sufficiently small so that the equation e +ri, 7'7)=0 hsa a solu-
tion r with I r —I <2 -1 I Im f I and -7))*0, "i/ I Im  I <2 -1 e. Here we con-
sider the solution of the following equation in r.

A(r, 27")=277' 7'))+2'A m -i(o , C±iê, ••• +2 -  n' Ad- =0

(where we used the notation r= 2 a ). For sufficiently large 2, this equation has
a solution r(2) such that k  2 'è  (I'm Ei with some constant > 0. W hen
2—)+00 or 2 these solutions violate the condition (3.1).

Lemma 3.4. There are con stan ts 3>0, P>0 such that

(3.4) A (2+ir+io-, e±i6r, 72)#0

f o r  Re r< +1 ), Re a 0 , 2, e R , ,7 C.

Pro o f . From lemma 3.3, we can take 5>0 (0 < a z i ) so  th a t th e  equation
117„(1-Fu, -±5, 0)=0 has only negative zeros u. And, in virtue of lemma 3.2 and
(3.1), there is a P >0 such that

(3.5) C i(e± ar, 77)# 0 ,  A (24-ir, $-±i6r, 77)# 0

f o r  Re r< —P(l Im77I +1), 2, eE R , 27ECn

We shall prove this lemma with above constants 6, P .  The inequality (3.4)
follows from (3.5) when Re a = 0 . W e shall study th e  zeros o f  A(2+ir-Fia, e
±-ar, 72)=0 considered as a polynom ial in a, when r varies in the half plane
Re r< —P( I Im )7 I +1 ). If we note that the coefficient of un' - '  never vanish when
Re r< — P( Im 771 +1), it w ill su ffice  to  p rove that there  a re  n o  zeros with
Re a<0 when r is a sufficient large negative number. With the notation a=zer,
the equation A (2+ir+io, e± iar, )7)=0 converges to the equation ./1.(1+ u, ±5, 0)=0
when r—> —00. This equation has only negative zeros from the assumption, and
which completes the proof.

Lemma 3.5. There are con stan ts 61 , P 1 > 0 such that i f  Im r< —M(Jim 721+1),
M >P„ the equation A (r, C, 72)=0 in has exactly  1 roots with I Im I  < 31M( I 1m 77 I
+1).

Pro o f . We set 51 =6 (6 is  the constant in lemma 3.4), and take P 1 so  that
the equation Ci (C, )7)=0 has 1 roots with I Im <31•P1( 1 1 r1 72 I + 1 ), Dm-k(r, 72) never
vanish when Im r< I m  7 7  I +1) and P i >P (P is  the same constant in lemma
3.4).

We consider the zeros of A(r, C, 72) regarded as a  po lynom ial in  C, when
Im r < —M(l Im 271+1). In virtue of lemma 3.4, it follows that
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(3.6) A(r,C, 77)*0 if I Im CI =5M(I Im 77 I +1) Im z- < Im .7) I +1) .

F o r  a  fixed 77 GCn, th e  zeros o f A(r, C, 72)=0 are expressed in Puiseux series
in  th e  form

C(r)= A7(7" P )'
1 =N

when I r I >K(77) where K (v) is a some constant which depends on 77. We assume
that I Im CEO <am lim  7) 1+1) holds at some r  with Tm r< — M( Im I +1) —  K(72),
then  i n  virtue o f  t h e  continuity o f  C(r) and  (3.6), it follows that I 1m C(r)I <
5 111(11m 721 +1) is also valid in the half plane Tm z< —M( Tm )7 I +1) — K(72) In  this
case  the  coeffic ien ts  A , m ust vanish when 1 j N. I n  f a c t ,  i f  A , is th e  first
non-vanishing coefficient and 1 _ j N ,  c(v) will behave asymptotically a s  111(z-1 P)/
when r - - c o .  But, Tm  A J (rlIP )i is bounded only o n  several lines, which con-
tradicts to th e  boundedness o f  Im C(r) i n  1m r< —MI 1m 72 I +1) —  K W . Hence
((v)= O(1) which means that, if 1m  r<  M(I Tm +1 ) — K ( ) ,  the  zeros of A(r, , C 72)
w ith  I Im CI < m (I im 72 + 1 )  m ust be bounded by some constan t B(12).

Now we shall give th e  proof o f  this lem m a. N ote th a t the  coeffic ient of
Ck is D ,, (r ,  )2 ) which sh o w s  that th e  zeros vary continuously with z  when
Tm <  M aim  )21 + 1 ). Thus it is sufficient to show that the equation A(r, C, 77)=-0
has exactly 1 roots with I Im CI <M I Im , I +1) when Tm r  is a sufficiently large
negative number.

From (1.1) th e  equation A(r, C, 72)=0  has 1 roots which converge  to those
o f Ci (C, 77)= 0 when 1m O n the  other hand , the  zeros of A(r, C, 72) with

Tm CI < M (J Im  I +1) a re  bounded when 1m r-- , -0 9  which sh o w s that there
a re  n o  other roots with I Tm <  I m 7 .7 I + 1 ) . T h is  completes th e  proof.

Corollary 3 .1 . T here are constants 6, P and integers p, v such that for every
M >P, i f  Imr<—M(IIm 771 +1), the equation A(z-,C, 72)=0 h as  p  roots CI

;  with
Tm ( ) m (I Tm + 1 ) ,  1 roots Cci w ith  Im C3 I <3P( I Im 77 1+1) and v roots I w ith
ImC .7<-6M(1Im 77 I +1).

Finally we shall give th e  proof o f theorem 1.2. To prove this theorem, we
u se  th e  following lemma.

Lemma 3 .6 . Let

P ( a  C)= a ;MG

be a polynomial in (a, C). W e assume that the degree o f a,(C) is  at m ost j ,  and
a1(C) is a monic Polynomial o f degree 1. Then, in order that there is no root C(a)
o f P(a, 0 = 0  which is bounded when 10. 1 and is not constant, it is necessary
and sufficient that every  a (C ) is divisible by  a1(C).

P ro o f . If  every ai (C) is  divisible by al (C), then P(a, C) is written as follows

P (a , C)= a 1(C){1+ d ,(C)ai - 1} .
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Therefore, sufficiency is t r iv ia l. To prove the necessity we note that P(o, C)=0
has at least one root au) which is expressed in the form

C (6 )=  E  1 1 ;(0 .1 'P ) i
i =0

in  0< IgI < c  with some constant c .  By the assumption, it follows that C(ti)=A 0,
then we get a,(A 0)=0, j=l+1, •-• , m . Hence P(a, C) is written in the form

P (a , C)=(C—  A0) a g ) ( 5 1 - '

Hence, if  we note that al(C) is  a  monic polynomial of order l -1 ,  the proof car-
ried out by the iterations of this argument.

Proof o f  theorem 1.2. Since the coefficient of CI in C2(C, 72) is equal to 1, it
is sufficient to show that every q(C, 72) is  divisible by CRC, 72) as a polynomial
in C for any fixed 72 Rn

Assume that there exist j (ld -l j m) and '7) 1?1i such that C.0,(c, '0 is not
divisible by C2(C, 7-2), and study the solutions of the equation

(3.7) ri-mAni(r, C, 72)= C3(C,

Hence it follows from lemma 3 .7  th a t th e  equation (3.7) h as  a solution C(7)
w h ich  is holomorphic, bounded and not constant for 1m r< —R, where R  is  a
some constant. Thus we can take 'i- such  that Im  <3 - '13 (<—R), ImC(f)=c
( 0), where B  is  a  bound of K (r)1  and 3  is  a constant with 0<5<s 1 (s i is  the
constant in lemma 3.1).

Now we consider the zeros of the equation

A(2, C, 274 {Am(f, s, f2)+2 1Ani-i(f, s, -)j)d-  ••• 4-2 - mA0 l =0

where we have used the notation r= 2 s . For sufficiently large 2, this equation
has a solution c(2) which satisfies 8 I m c(2) (1 Im  I )- 1 .(3 with some constant
8 > 0 . When A—H-oo, this solutions violate the condition (3.1).

4 .  Existence of the solution of (P).

From lemma 3.4, it follows immediately

Proposition 4 .1 .  L et a, P be the same constant in lemma 3 .4 . I f  A(r,C, 72)=0
and 11m Cl>513 (Ilm 7) 1+1), then it follows that —Imr<a - l iim C 1 •

First we solve the following ordinary differential equation.

{

{Dr -  id- , (cg, 0)-- 1c,(c, ory,-- , }w (t, c, 0=c1

a ft w(0, c, v )=h ) (c, .72) 1=0, 1, ••• , m -1 -1

where h.,(C, 72) i s  the Fourier-Laplace transform of hi (x, y)eC,7(R 1 ><R4 ). We
next define W*(t, x, y) by
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W±(t, x, y) .= eiYvc1 77 eicx w(t, C, 72)dC

where r=(r i , ••• , ro with f>25/3 (l rl +1).
Taking into account of the  support o f If ', b y  u se  o f  th e  suitable partition

o f  unity, we can solve th e  following problem.

A(D„ D x , D y ) W (t, x, y)=0 t >0 , xER  , yER n

D1W(0, x, y)-= l i (x , y) xe R , y e  R n , j=0, 1, ••• , m - 1 - 1 .

Lemma 4.1. There ex ists constants 6> 0, P 2 >0  such  that f o r  ev ery  M>P2,
there are constants C>0, p i >0  and rational number a with

A(z , C, 72)rOf o r  Im z<— M(11111 721+1) , lImI <6M(Im 221+1) ,

IReCI >CI 771a , 1721- - pi.

P ro o f . From lemma 3.2 and  lemma 3.5, we can take P2 >0, 5 >0 so that the
both equations Ci (C, 72)=0 an d  A(z, C, 77)=0 have exactly 1 roots with I'm CI <
6P2(IIm 77 +1), and I D .- k(r , )7)1 c  with some constant c> 0 for Im z< —P2(1 Im 771
+ 1). We shall prove this lemma with these constants P 2 7  6.

We set

T {(z, C, yj, v)ECn' X R ; C, 72)=0, I I2 p2 Im  CI <6M(v+1),

1m r< — M (+1), I 1m 7) r=vi,

Since lemma 3.5 assures that T p  *0, from Seidenberg-Tarski's lemma, it follows
that

M(p)=sup (Re C)==- + co  o r  M(p)=cpa(1+o(1)) f o r  p 4o,
Tp

where p „  c  a r e  some p o s it iv e  c o n ta n ts  a n d  a  i s  a  some rational number.
Therefore it will suffice to show  the  impossibility of the form er case.

We assume that M (p )E + co  for pi, then there exist r i ,, p , Cp  such that
A(rp, Cp, 71p) = 0 ,  1772,1 2 pT, Ilm Cp1 <M (l im) p i +1), 1m z- ,< —  M(l im.> 2 pl +1), and
Rep—+o0 when p— co . Here, choosing a  subsequence i f  necessary, we may
assume that 72p-- 4  when p— +00.

In  virtue o f  ID„_ k (rp , 7) 1,)I a n d  th e  boundedness o f  7 2 p ,  it follows that
ICpl -,C(1+Irpl) N w ith  som e co n stan t C  a n d  integer N .  T h is  sh o w s  that
rp I — . 0 0  when I f  Im zp < Im  7 7  pl +1) the equation A(z-p , C, 7),)=0 has

exactly  / roots with 11m CI < M ( Im 7)2,1+ 1 ) . O n  th e  other h a n d , if  I r p  I i s
sufficiently la r g e  a n d  727, a r e  i n  a  some neighborhood o f  1), t h e  equation
A(z- p, C, 77p)= 0  h a s  I  bounded roots with 11m CI <5M1Im 7; 2,1+ 1). This shows
that th e  zeros o f  A(1- p, C, p )  with I Im CI <6M ( Im 72p1 +1 ) a r e  bounded when
Im zp< — Im )7 p 1 +1) a n d  p—+00. B ut this is a  obvious contradiction.

From this lemma, we have

Proposition 4.2. For every ri ECn, there is a sim p le  c lo sed  curv e  C  in
plane which possesses the following properties:
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(1) Im __3/1/1( Im )21+1) i f  CEC,
(2) C„ encloses MI i f  Im r< — M( I Im 771 +1)
(3) A(r, C, .7))*0 i f  CGC, and  Im  <  M aim  I  +1)
(4) T he length o f  C , is bounded by C( 1 +1 77I) N .

Let us denote

2k(r, 77; c)=A OCi-1{,40(r, 77 ; C)}

where Rik(r, 7)) is  (k, j)-cofac to r of ((27ri) - 1
 c v Ci + j - 2 (Ao(r, C; 7))) - 1/410 and

A o (r,) = 1 'E  ( — ( r ,  7 7 ) ) .  T h e n  the solution of the problem

A(r, D x , 72)v(x, r, 72)=0

Dlx v(0, r, v)=g-
i (r, 72) i =- 0, 1, •-• , 1-1

is given by

v(x, r, 72) (27r0- 1 e i cx  k (7, ; C)dCg1i(r, 77) •

For Oi (t, y)EQ(Tax Rn) with DiOi (0, y)=0 (j=0, 1, •• • , m— l-1), we define .6i (r, v)
and V(t, x, y) by

Oi(r, 77)= 1 :e i"d + iv ' 20i (t, y)dy

V(t, x, y).= ei")(122.ç eirtv(x, r, v )dri.72 i =r;

where r=(r,, ••• , rn) and r>m(Irl + 1 ) .  Then, using the partition of unity we
can solve the following problem.

A(D t , D x , D y ) V (t, x , y )= 0  t> 0 , x E R  , y E R n

Di,V(t, 0, y)=0,(t, y) t> 0 , y E R n , i= 0 ,1 ,•••  ,l-1

x, y)-=0 x E R , y E R n  j= 0 ,1 ,• -•  ,m — l-1 .

For the brevity, w e denote by C C r - i(C t ) th e  se t o f  a l l  f  such that
D igx D f ( t ,  x ,  y) exists and continuous for any i, a and for j = 0 ,  1 , • ,  ni — l-1
and that D1DDgC 1(D x , D v ) f ( t ,  x ,  y )) exists and continuous for a ll i, a  and for
j= 0 , 1 , ,  m -1 .  Then it follows that V(t, x, y )  belongs to C C r i (C1).

If we set 0,=g 1 — DjV(t, 0, y), the compatibility condition (C ) shows that
MB (o, y)-=0 (j=0, 1, ••• , m—l-1), and thus the solution u  which belongs to
C C T - i(C t )  of (P ) is given by u-=-W-1- V.

Proposition 4 .3 .  Fo r any  giv en g i eC - (R.I_XR 1 ), h i EC - (R 'x R n ) with com-
patibility  condition (C ), there  is  a solution of  (P ) which belongs to C;,,Cri(C1).



188 Tatsuo N ishitani

5 .  Uniqueness of the solution of (P).

Let us denote

A+('r, 12)= 1-1(C — ) A-(r, C, 72)= H (C--;)
i= 2 3= 1

A+(r, C, 77)=C" - f - a r (r , 71)CP - 1 + ± a ( r ,  27)

A_(7, (, 72)=C 'F - aT(7, 77)C- 1 +  •••  ± a ;( r , v )

and consider the following problems

JA+ (7, D x , 72)u i (x, 7, 0= -0

1 D » u ; (0 , 7 , 0 = k i, 1=1, 2, ••• , p

{

A_(z-, D x , ii)u„ + ; (x, 7, 72)=0

D u 1,+ ; (0, r, ri)=-5 0 i ,  j = - 1 ,  2, •-• , i)

where a i ;  is  the K ronecker's delta.
We set

W(r, 72)=det(Yx
- lu .,(0, r,

then we have

Lemma 5 .1 .  There exists positive constants C, a, M  such that

(5.1) In ' ,  7))1 C( 1 - k ir i+ 1 771) - a f o r  Im r<— M aim  721+1) .

Pro o f . First we note that W(r, 7))*0, and there exists a  polynomial F  of
p d - v  variables such that

(5.2) ( a ( 7 ,  v ))PW (r, 7,-)= -F (a t, ••• , ep", aT , ••• , a).

Denote

T p ={(7, 72, e„ •-• , e k, E k  + n + 1  X  R ; k(r, 7)) iEi e i

=—Dx,-k-i(7, 72), ••• , 12)

= (-1 )k D n,(7, 72), 1m z- < — M (v+ 1 ), 7
? Tin )71 2

=1) 2 , O, Tm•  •  • •• • Tm e • •• > _ i m  ek}

then Seidenberg-Tarski's lemma gives that

Sup{_Tp
-- - C toa(1±o(1)) w h en  p p i .

(P)+

(P)-

Hence, from (5.2) and the definition of T ,  it fo llow s, w ith  positive constants
C , that
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(5.3) (fie + ,,,)
,

mr, 77) C(1+ 1721) - a if Im r<—M(1 Im 721+1).

When Im 7 ‹ IM  I + 1 ) , w e m ay  assum e that ID .- k(7, 72)1 (c > 0)
which shows that

5B(1+171+1771) K I f Im 271 +1)

with some constants B  and K .  Combining this estimate with (5.3), we get (5.1).

Here, we consider the  following adjoint problem.

A *(D„ Ds , Du )u±=0 x O ,  t e R  ,  y e R n

(1 3 * ) Di,u±(T, x, y)=0 x O ,  y ER T h, j=0,1, m — l - 1

D',- - 'u+(t, 0, y )± 14 - 1 u - (t, 0, y )=g ,(t, y) i=1, 2, ••• , p+2,

where A*(z., C, yi)=A(t, C, 177) (a denotes the  complex conjugate of a) and g,(t, y)
eC°(10><R 1`) with g,(t, fo r  t . T.

If  we note

—F7)A+(—T, T7)A- (— T, —)7)
and

det ((27ri) - 1 5 14 + i + j - 2 {A-(—T, -7")} fiC=i( — T,

then, from lemma 5 .1  a n d  corollary 3.1 , w e can  co n stru c t the solutions
u t eC"(R ix -R—I x R n )  o f  (P*) such that u±=0 fo r  t_ T , x Z . 0 and for any fixed
T 1 ,  i t =  is identically zero for large x. - 0 when t_ . 7'1 (c. f. [4]).

Now we shall prove the  uniqueness of the solution u EC O3
4 - 1 (Ci )  o f  (P).

L et u  be a solution of (P) with zero data and u± be solutions of (P*) with sup-
port conditions metioned above, and rewite A (D,, Ds , D y )  in  the  following from

A (D,, Ds , D y )=DT - I CI(Dx , D )+  4 Em -,(D,, D y )D:',

where the  order of E n,_ , in  D , is at most m -1 -1 .
Then, the integrations by parts gives

0= Pi ' cly Y . B .,(Dt , Ds , Dy )u(t, 0, y )g,(t, y )dt
J -1 0

where B ,(D,, Ds , D y )  is  a  some differential polynomial whose order in  D , is at
most m - 1 - 1 .  Hence, from the arbitrariness of g„ it follows that B ,(D,, Ds , D y )
u(t, 0, y )=0 for j=1, 2, •-• ,

Next we make t h e  analogous considerations using the  so lu tions o f the
following problem

{ A *(D,, Ds , D y )v±=0 t <0 , x e R  , y e R n

DIv±(0, x , y)=h1(x, y) x e R  , ye R n  ,  i=0, 1 , • • •  ,  in-1-1
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whereh, EC°0*(R' x R  ) and v± vanishes for large positive (resp. negative) x when
t varies in every compact set. Then, we can conclude that Ci (D x , D y )u (T, x, y)
= 0  for any fixed T >  0 ,  Since a s u(T, 0 , y )= 0  for i=0, 1, ••• , 1- 1  from the as-
sumption, the hyperbolicity of C1 show s that u(T, x,

P ro p rs it io n  5 .1 . T he solution of  (P )  w hich belongs to C C r - 1 (C1)  is  unique.

6 .  Smoothness of the solution of (P).

In  th is  section w e  rem ark  th a t th e  so lu tio n  o f ( P )  which belongs to
C C r - i (C i) becomes th e  infinitely differentiable solution in virtue of the uni-
queness of the solution.

First we solve the following in itial value problem.

Ci(Dx, D y )p(x, y)-1- C,(Dx, D y )h (x, Y)=0
7=11-1

Dtx p (0 , y )=D r'g ,(0 , y) i=0, 1, •••, l - 1 .

By the hyperbolicity of C1, this problem has a unique solution pEC - (R ix Rn).
Here, setting p=h„,,, I , we consider the following problem.

D,A(D t , D x , D ) û =0

Dtit(t, 0, y )= g ,(t, y) i=0, 1, l -1

x, y )=h ,(x , y) j=0 ,1 , m -1

Note that rA(T, C, ri) has the same form as  (1.1) and satisfies the condition (G).
Moreover the choice o f  th e  in it ia l d a ta  o f  p  show s th a t  th e  compatibility
condition (C) which corresponds to viLl(1-, C, 77) is satisfied. Hence, by proposition
4.3, there is a solution 'it' E C C r + 1 - '(C 1)  of (P).

The equation defining p  means that A(D t , D x , D 5 ) = = 0  and  then we get
A(D t , D x , D y )fi - - 0. Thus it follows from  th e  uniquness of the so lu tion  that
u = i i  an d  then u  belongs to  C C r 1 (C1). The iterations of this arguments
show that u x  R' x Rn).
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