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1. Introduction.

Recently, Y. Hasegawa [1] investigated the Goursat problem for the general
equations in the case when the initial hyperplane is simple characteristic.

In this paper, we consider the case when the initial hyperplane is simple
characteristic or the case that the differential operator is hyperbolic with
respect to some direction. And, from somewhat different point of view, we
shall give a necessary and sufficient condition for the &-well posedness of the
Goursat problem with constant coefficients.

We state problems, assumptions, and results. We consider the following
problem

A(D,, D;, D,)u=0 t>0, xR, yeR"
Diu=gy(t, y)  t>0, yeR", x=0, i=0, 1, --- [—
(P) ID{u:hj(x ) t=0, xR}, yER” j=0,1, -+, m—I—1

10 1 0
(D=F5p De=7 ax (z e Tay))
where we impose on the data (g;, h;) the following compatibility condition.

© Dih 0, y)=Di{g:©, y)
for i=0, 1, -, -1, j=0,1, -, m—I—1, yeR".

We assume that A is a differential operator of order m with constant
coefficients, and written as follows

(L) A, & =B o 77)?"‘"=j‘;0 Doz, )C

where C;({, ») is a polynomial of order=<j, and C{(1, 0)=1 (C? means the homo-
geneous part of degree [ of C)).

Remark. If the hyperplane t=0 is simple characteristic for A4, then A is
written in the form (1.1) always. In other case, if we assume that A is hyper-
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bolic with respect to some direction, and =0 is a characteristic hyperplane,
then A has the form (1.1).

We shall say that the problem (P) is &-well posed, if for every g,€C=(RIx R™),
h;€C~(R'X R™) with compatibility condition (C), there exists a unique solution
ueC*(RIXR'XR"™. Then we have

Theorem 1.1. [n order that (P) is &-well posed, it is necessary and sufficient
that the following condition (G) is fulfilled.
© { There exists a positive constant €>0, such that for every é with
0< 16| <e, A(z, €, 3) is hyperbolic with respect to (1, 8, 0).

From the condition (G), we have more concrete necessary conditions. When
I=1, the next theorem is obtained in [1] by constructing the exact analytic
solutions.

Theorem 1.2. [f (P) is &-well posed, then the principal part An of A is
decomposed as follows:

An(z, §, 9)=CUAE, 7Qn-u(z, §, 7)

where Q- is a homogeneous polynomial of degree m—I which is hyperbolic with
respect to (1, 0, 0).

From the hyperbolicity of A with respect to (1, , 0) and the theorem 1.2,
we have

Corollary 1.1. If (P) is &-well posed, then A is written as follows:
(1.2) Az, &, 9)=Cul, 9)@n-i(z, &, )+ Runo(z, £, )

where 6,, Qm_, is the polynomial with principal part C9, Q. -, respectively, and
R, is a polynomial of degree at most m—2.

Theorem 1.3. (Hasegawa [1]) Let [=1, and assume that Qn-, is strictly
hyperbolic with respect to (1,0,0). Then for the Goursat problem (P) is &-well
posed, it is necessary and sufficient that the decomposition condition (1.2) holds.

Proof. 1t will suffice to prove the sufficiency. Since Q,-, is strictly hy-
perbolic with respect to (1, 0, 0), we have

R -o(A+1z, 4107, ) Qm-1(A+17, §+id7, 1)) '=0(7| )
(reR, |t| —> )

for sufficiently small . If we note (1.2), this shows that A satisfies the condi-
tion (G).
2. Necessity of the condition (G).

If (P) is well posed, then by the closed graph theorem, there are positive
constants T, X, Y, C and integer N, such that
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m-l-
@.1) lul, T1,0)|<C"%  sup |DEDihyx, y)|
Jj=0 |xIsSX,ly|sY
k+Iad|SN
-1

+C3  sup |DiDjgi(t, y)l

1=00s¢tsT,|y|sSY
ht+ia|sN

holds for every solutions of (P).

Lemma 2.1. If (P) is well posed, then there exists ¢>0 such that for every
0 (0<d<e), there is a P;>0 with

(2.2) Az, &, #0  for Imz<—Ps(log(1+I|z|+ICI+IpD)+1)
IIm{|=d|Im<z|, pER™.

Proof. We take ¢ such that 0<eX<1, and show that this lemma holds
with this e. We assume that there is a 6>0 (0<d<e¢) such that for every p
there exists 7,, {p, 7, With A(zp, {p, 7,)=0 and

Im Tp<_p(]0g(1+|fp|+le] +|7]p|)+1)y
IIm{,l=0|Ilmz,|, p,ER™.

For fixed 7, the equation A(z, {, 7,)=0 has [ roots which are bounded and
separated from other roots when r—oo, Therefore we construct the solution
of the following problem by Fourier-Laplace transformation.

A(Dtv D:c; vp)vp(t, x):()
Div,(t, 0)y=a(t) et » i=0,1, - [—1
vp(t, x)=0 if t=1

where a(t) is a C*-function on R with a(#)=0 if t<1 and a()=1 if 1+2°5=¢.
Now set

u(t, x, y)=(e¥rtei®r®—yp (¢, x))e'1r¥
then it follows that
A(D,, D, Duy(t, x, y)=0
Diuy(t, 0, »)=1—a()pe*rle’py =0, 1, - -1
Diuy0, x, y)=the*rZel12v  j=0, 1, -+, m—I—1
uy(l, =1, 0)=e're*its

Since the support of (1—a(¢)) is contained in t=<1+2"'¢, and —Im<z,>
plog (1417, +1&p +1np)+1), [Im&,l=6|Imz,|, the solutions u, violate the
inequality (2.1) when p—oco.

The next lemma follows from Seidenberg-Tarski’s lemma ([5] c. f. Appendix

in [3]).
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Lemma 2.2. Assume that there are constants 6>0, P>0 such that
Al m)#0  when Imz<—P(log(1+|z|+I{I+[7])+1D)
lIm¢|=d|Imz|, y& R |
then there exists M>0 with
2.3 A, L, 9)#0  for Imz<—M, |Im{|=6|Im].

This lemma shows the necessity of the condition (G).

3. Investigations of the condition (G).

First we improve the condition (G) more useful form.

Lemma 3.1. Assume the condition (G), then there exists ¢,>0 such that for
every 0 (0<6=e,), there is a costant P;>0 with

@B A L p#0  for Imc<—P[Imy|+1), 6=|Im{|(|Imz|)'=Ze,.

Proof. First we take >0, so that A,(l, & 5)#0 for 0=<[€|=Ze, ipl|=r,
£€R, neR". From the assumption, for every s (0<s=<e), there exists 7,>0
such that

AQQ+ic+io, Exis(z+a), n+ifo)#0

when t<—17;, ¢=0, |01 =7, 2, §€R, 0, R (c.f. Theorem 5.5.4 in [3]).
For any fixed p€C", we choose ¢=0 so that Im »=6f¢ with |f|<r. Then
it follows that

(3.2) Az, &, 9)#0 for Imz<—z,—r*|Imy|, s|Imz|=|Im{]|.

Thus it will suffice to show that z; are bounded from above in 0=s=<e¢, with
some fixed constant e,;>0.
We set
T,={(z,{, n,v)EC"*XR; Alz, {, 7)=0, p*|Im {|?

=|Im z|?, |Im n|*=y? v=0}
By Seidenberg-Tarski’s lemma, it follows that
sgg)(—lm t—r y)=4o00, or =Cp*l+o(l)) when p=p,
But (3.2) shows the impossibility of the former case, thus we obtain (3.1).

From now on, we assume (3.1). The following lemma is easily verified.

Lemma 3.2. With the same constants in lemma 3.1, it follows that
33 Ci(& n)=0 if ImI=ZdPs(|Im 5|+1)
’ Dum-u(z, 9)#0  if Imz<—Py(|Im p|+1)

Especially, C,(L, 7) is hyperbolic with respect to (1, 0).
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Lemma 3.3. The equation An(z,&, 9)=0 has only real roots t for any real
&, p)eR™* with CYE, 5)=+0.

Proof. We assume that there exist #, £, 7 such that
€ M#0, An(, & H=0, Ime=0, ¢ HeR™.

Choose >0 sufficiently small so that the equation An(z, f+i€, 7)=0 hsa a solu-
tion ¢ with |t—#|<2-!|Im#| and C{C+i?, 7)#0, &/|Im #| <2-'e. Here we con-
sider the solution of the following equation in 7.

Az, 28+i22, 29)=2"{An(a, E+i2, D)+ A An-i(0, E+iE, H)+ - +2 ™A} =0

(where we used the notation r=A10). For sufficiently large 2, this equation has
a solution (1) such that 6=[22|(]Imz(2)|)-*<e, with some constant 6>0. When
A—-+o0 or A——oo these solutions violate the condition (3.1).

Lemma 3.4. There are constants 6>0, P>0 such that

(34) AQA+ir+io, ExidT, 7)#0
for Rer<—P(|lmy|+1), Reo=0, 2, é€R, y<C.

Proof. From lemma 3.3, we can take 6>0 (0<d=<e¢,) so that the equation
A,(14u, =48, 0)=0 has only negative zeros u. And, in virtue of lemma 3.2 and
(3.1), there is a P>0 such that

(3.5) Cé+idr, 9)#0, AQA+ic, §+idzr, )+ 0
for Ret<—P(|lmy|+1), 2, é€R, neC™

We shall prove this lemma with above constants J, P. The inequality (3.4)
follows from (3.5) when Re 6=0. We shall study the zeros of A(A+ir+ig, &
+idz, 7)=0 considered as a polynomial in ¢, when ¢ varies in the half plane
Rez<—P(|Im n|+41). If we note that the coefficient of ¢™* never vanish when
Rez<—P(|Im 5|+1), it will suffice to prove that there are no zeros with
Re 0<0 when 7 is a sufficient large negative number. With the notation o=uz,
the equation A(A4-ir+ig, §+1idr, 7)=0 converges to the equation A,(1+u, =4, 0)=0
when t——co. This equation has only negative zeros from the assumption, and
which completes the proof.

Lemma 3.5. There are constants 8,, Py>0 such that if Imz<—M(|Im »|+1),
M> Py, the equation A(z, £, 7)=0in { has exactly | roots with |Im{|<d,M(|Im 7|
+1).

Proof. We set 6,=¢6 (0 is the constant in lemma 3.4), and take P, so that
the equation C,(£, 7)=0 has [ roots with |Im {| <J,P,(|Im 5| 41), Dy_4(z, ) never
vanish when Im t<—P,(|Im | +41) and P,>P (P is the same constant in lemma
3.4).

We consider the zeros of A(r, {, ») regarded as a polynomial in {, when
Im7z<—M(|Im »|+41). In virtue of lemma 3.4, it follows that
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(3.6) Az, €, 9)#0 if |Im{|=0M(|Imy|+1), Imz<—M(|Im p|+1).

For a fixed nC", the zeros of A(zr, {, 7)=0 are expressed in Puiseux series
in the form

C(f): jg Aj(z"”’)j

when |z|>K(n) where K(7) is a some constant which depends on 7. We assume
that |Im {(z)| <6M(|Im 5| +1) holds at some 7 with Im c<—M(|Im | +1)—K(p),
then in virtue of the continuity of {(z) and (3.6), it follows that |Im{(z)| <
OM(|Im | +1) is also valid in the half plane Im z<—M(|Im »|+1)—K(») In this
case the coefficients A; must vanish when 1<j<N. In fact, if A; is the first
non-vanishing coefficient and 1= <N, {(r) will behave asymptotically as A;(z¥/?)
when r—oo, But, Im A;(z"?)’ is bounded only on several lines, which con-
tradicts to the boundedness of Im{(z) in Imz<—M(]Imy|4+1)—K(y). Hence
{(z)=0(1) which means that, if Im < —M(|Im 5| +1)—K(y), the zeros of A(z,{, 1)
with |Im{|<dM(|Im »|+1) must be bounded by some constant B(z).

Now we shall give the proof of this lemma. Note that the coefficient of
Lk is Dp-4(z, ») which shows that the zeros vary continuously with ¢ when
Imz<—M(|Im 5|+1). Thus it is sufficient to show that the equation A(z, {, 7)=0
has exactly [ roots with |Im{| <dM(|Im »|-+1) when Im 7z is a sufficiently large
negative number.

From (1.1) the equation A(z, {, 7)=0 has [ roots which converge to those
of C,({, »)=0 when Imz——co. On the other hand, the zeros of A(z, {, ») with
[ Im{| <dM(|Im n|+1) are bounded when Imz——co which shows that there
are no other roots with |Im{| <M(|Im 5|+1). This completes the proof.

Corollary 3.1. There are constants 0, P and integers pu, v such that for every
M>P, if Int<—M(|Im n|+1), the equation A(z, {, p)=0 has p roots {F with
Im C}’>5M(|Ifn p|41), I roots £ with |Im Y| <oP(|lm y|+1) and v roots {5 with
Im{G<—0M(|Im n|+41).

Finally we shall give the proof of theorem 1.2. To prove this theorem, we
use the following lemma.

Lemma 3.6. Let
P(o, 0= 3 a0’

be a polynomial in (o, {). We assume that the degree of a;(£) is at most j, and
a,(§) is a monic polynomial of degree I. Then, in order that there is no root {(o)
of P(o, {)=0 which is bounded when |o|—0, and is not constant, it is necessary
and sufficient that every a;() is divisible by a,(§).

Proof. 1f every a,;(£) is divisible by a,({), then P(o, {) is written as follows

3 a0

J=i+1

P(o, O=a(O{1+
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Therefore, sufficiency is trivial. To prove the necessity we note that P(e, {)=0
has at least one root {(¢) which is expressed in the form

z;(g):é}) Af(aVry

in 0<|g|<c with some constant ¢. By the assumption, it follows that {(¢)=A,,
then we get aj(A4,)=0, j=I+1, .-, m. Hence P(o, {) is written in the form

P(o, == A0 3} )0’

Hence, if we note that a}({) is a monic polynomial of order [—1, the proof car-
ried out by the iterations of this argument.

Proof of theorem 1.2. Since the coefficient of {* in C)(, ») is equal to 1, it
is sufficient to show that every CY({, %) is divisible by C}({, ») as a polynomial
in { for any fixed e R™.

Assume that there exist j ((4+1=<j<m) and 7€ R" such that CY{, %) is not
divisible by C{(, %), and study the solutions of the equation

3.7 e Az, € )= 3 CIC e I=0.

Hence it follows from lemma 3.7 that the equation (3.7) has a solution {(z)
which is holomorphic, bounded and not constant for Imz<—R, where R is a
some constant. Thus we can take # such that Im#<dé'B (<—R), Im{(8)=c
(#0), where B is a bound of |{(z)| and 0 is a constant with 0<d<e; (e, is the
constant in lemma 3.1).

Now we consider the zeros of the equation

A(Zf) C: 2ﬁ)zzm{flm(‘?, S, ﬁ)—i_l—lAm—l(fy S, ﬁ)_]' o +2_on} =0

where we have used the notation z=As. For sufficiently large A, this equation
has a solution {(2) which satisfies §<|Im &()|(]Im A#])'<§ with some constant
§>0. When A1—+oo, this solutions violate the condition (3.1).

4. Existence of the solution of (P).

From lemma 3.4, it follows immediately

Proposition 4.1. Let d, P be the same constant in lemma 3.4. If Az, )=0
and |ImZ|>0P(|Im »|+1), then it follows that —Im z<d*|Im {].

First we solve the following ordinary differential equation.

[pri+ 35 €@ e mDr-thudt, € m=0
Diw(0, &, )=h ¢, n)  j=0,1, -, m—I—1

where h;({, ») is the Fourier-Laplace transform of h;(x, y)€C3(R'XR™). We
next define W*(¢, x, y) by



186 Tatsuo Nishitani

Wt x, =| e et € gt

where r=(ry, -+, 72) With I'>26P(|7]+1).
Taking into account of the support of W=, by use of the suitable partition
of unity, we can solve the following problem.

{ A(D,, D, D,)W(t, x, y)=0 t>0, xR, yeR™
DiW(, x, y)=hyx, y) x€R, yeR", j=0,1, -, m—[—1.

my;=7j Im{=xT

Lemma 4.1. There exists constants 6>0, P,>0 such that for every M>DP,,
there are constants C>0, p,>0 and rational number a with

Az, ¢, 9)#0 for Imt<—M(Imn|+1), [Im{| <éM(Im 5|+1),
IReLI>Clnl*, Ipl=p:.

Proof. From lemma 3.2 and lemma 3.5, we can take P,>0, >0 so that the
both equations C,({, »)=0 and A(z, {, )=0 have exactly [ roots with |[Im{|<
0P(IIm 5| +1), and | Dy- (7, 7)| Z¢ with some constant ¢ >0 for Im < —P,(|Im 7|
+1). We shall prove this lemma with these constants P,, d.

We set

T,={x & 5, v)€C*"*XR; Az, §, =0, |9|*=p* |Im{| <oM(v+1),
Imz<—M@+1), |Im 5|2=y?, v=0}

Since lemma 3.5 assures that T,#¢, from Seidenberg-Tarski’s lemma, it follows
that

M(p)=sgp(ReC)E+oo or M(p)=cp*(1+0o(l)) for pz=p,

where p,, ¢ are some positive contants and @ is a some rational number.
Therefore it will suffice to show the impossibility of the former case.

We assume that M(p)=-oc for p=p,, then there exist z,, 9,, {p such that
Ay, oy 70)=0, [9,12=p3, |Im{,| <oM(|Imy,|41), Imz,<—M(|Im 5,|+1), and
Re {,—-+co when p—oco. Here, choosing a subsequence if necessary, we may
assume that 7,—7% when p—--oo.

In virtue of |Dn-x(zp, )| =c and the boundedness of 7, it follows that
[€p| =C(1+|7,1)Y with some constant C and integer N. This shows that
|zp]—co when p—oo. If Imz,<—M(|Im7,|+1) the equation A(z,, £, 7,)=0 has
exactly [ roots with |Im{|<dM(|Im#5,|+1). On the other hand, if |z,| is
sufficiently large and 7, are in a some neighborhood of 7, the equation
Altp, €, 7p)=0 has [ bounded roots with |Im{|<déM(|Im »,|+1). This shows
that the zeros of A(zp, , p) with |Im{| <dM(|Im »,/+41) are bounded when
Imz,<—M(|Im%,|l+4+1) and p—4oco. But this is a obvious contradiction.

From this lemma, we have

Proposition 4.2. For every nE€C®, there is a simple closed curve C, in {
plane which possesses the following properties:
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(1) Im{|=oM(|Im »|+1) if {€C,

(2) C, encloses {C}1sjs if Imz<—M(|Im »|+1)

() Alr, g, n)#0 if LeC, and Im < —M(|Im p|+1)
(4) The length of C, is bounded by C(14|n|)".

Let us denote

@u(z. 73 0= 3 Rue, MU {Adz, 730}

where R;.(z, 7) is (k, j)-cofactor of ((2ni)“§cﬂci+f‘2(Ao(z-, ¢, n))“dC) and

1si,js1

l
Az, 77;C)=jl='[1 (—C%z, p)). Then the solution of the problem

{ Az, Dy, n)v(x, T, 9)=0
Djtv(oy T, v):gi(r’ 77) i:Oy 1; Tty l—]-

is given by

ox, T, v)sié (@ri)-! § o, CEuE 73 0dLe, 7).

For 6i(t, y)eC3(RIX R™) with D{8,(0, ¥)=0 (j=0, 1, -, m—I—1), we define d,(z, 3)
and V(¢, x, y) by :

di(r, 7])=S:e"”d tSe“’”@i(t, y)dy

V(t, x, y):S e”’”dr;S e“tu(x, 7, p)dr

Im7nj=rj Ime=-I"

where r=(,, =*-, ») and I'>M(|7]+1). Then, using the partition of unity we
can solve the following problem.

A(D,, Dy, D)V(t, x, 9)=0 t>0, xER, yeR"
DixV(ty Oy y)zﬁl(tr y) t>O’ yeRn) i:O) 1? ”'rl_l
DiV(0, x, ¥)=0 xeR, yeR"*, j=0,1, -, m—I—1.

For the brevity, we denote by C;,Cr YC,) the set of all f such that
DIDiD5f(t, x, ¥) exists and continuous for any i, « and for j=0, 1, ---, m—I[—1
and that DiD.D3(C,(D,, D,)f(t, x, ¥)) exists and continuous for all 7, « and for
7=0,1, -, m—I[. Then it follows that V(¢, x, y) belongs to C3,C7-YC)).

If we set §;=g,—D.W(t, 0, y), the compatibility condition (C) shows that
Di6,(0, »)=0 (j=0, 1, ---, m—I—1), and thus the solution u which belongs to
Cz,Cr-YC)) of (P) is given by u=W+V.

Proposition 4.3. For any given g;€C*(RLIXR™), h;€C*(R*X R™) with com-
patibility condition (C), there is a solution of (P) which belongs to Cg ,Cy-YC)).
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5. Uniqueness of the solution of (P).
Let us denote
u v
Az, §, )= EI(C—CD. Az, g, n)= j[ll(i—i;)
A-*-(t) C’ 7])=C#+GT(‘F, 7])@‘_1"‘ tee +a;(f, 77)
A—(T’ Cr 7])=Cv+aI(T! v)Cv—l_i_ A +a:(7) 77)
and consider the following problems
{ Az, Dy, Duyix, 7, )=0
D.ii_luj(oy 7, 77):51] i} j—_—ly 2: Tty ﬂ
Az, Dy, Duyefx, z, 7)=0
P). { . N)Up+ -
D‘Ii‘+l_luﬂ+j(01 T, 7]):5ij 1 ]:1: 2y tt, Y

P+

where d;; is the Kronecker’s delta.
We set

W(z, p)=det (D5 'u 0, 7, 9))izi, jsp+v
then we have

Lemma 5.1. There exists positive constants C, a, M such that
(6.1) [W(e, )| =2CA+[zl+I9)"*  for Imz<—M(|Imy|+1).

Proof. First we note that W(z, )#0, and there exists a polynomial F of
p+v variables such that

(5.2) (ay(z, pH*W(z, p)=F(at, -, a}, a7, -+, ay).

Denote

k
TP:{(Z" 7]» El; Tty Ekr lJ)EC’HJH’IXIe;l)m'—k(?:’ 71);; Ei

k
=—Dn-r-i(z, ), -+, Dn-i(z, 7])1'1;[1 i
=(—1)*Du(z, 7), Imt<—M@+1), [7]*Sp?, [Im p|*

=%, v=20, Im§,= - =Im 5,42 ~-zIm 5/1+l+1> ~-=Im Sk}

then Seidenberg-Tarski’s lemma gives that

Szl,lpp {_\F<_i§ﬂ;5i, T (—l)llilifi, —i§€p+l+1; Tt (—l)vilisc;nlﬂ')

}
=Cp*(1+40(1)) when p=p;.

Hence, from (5.2) and the definition of T,, it follows, with positive constants
C, that
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63 (I euw) W p|ZCA+I7D it Ime<—M(Imp|+1).

When Imz<—M(|Im»|+1), we may assume that |D,_x(z, p)l=c (c>0)
which shows that

&1 <B(+1zl+1pD* I Ime<—M(|Imy|+1)
with some constants B and K. Combining this estimate with (5.3), we get (5.1).
Here, we consider the following adjoint problem.
A*D,, D;, D)u*=0  x=0, iR, yeR"
P*) Diu*(T, x, y)=0  x=0, yeR", j=0,1, -, m—I—1
Dr'u*(t, 0, )+ Dz 'u (1,0, y)=gi(t, y)  i=L,2, -, ptv

where A*(z, {, 7)=A(%, {, 7) (@ denotes the complex conjugate of a) and g,(¢, ¥)
eCF(R*X R™) with g¢, y)=0 for {=T.
If we note

A*(‘T’ _C’ _77) )
:Dm—k(—fy _C) AO(_z-'r —C-r _7_7) A+(_1-r _EV 7—/) A-(_f’ _C’ _7—])

and

|det(@riy §Eerit A (—7, T, — ) dDsises

=|11¢5(—z, —|"
j=1

then, from lemma 5.1 and corollary 3.1, we can construct the solutions
u*eC(R'XRIXR™ of (P*) such that u*=0 for t=T, x=0 and for any fixed
T,, u* is identically zero for large x=0 when t=T, (c.f. [4]).

Now we shall prove the uniqueness of the solution ueCg ,CP Y (C,) of (P).
Let u be a solution of (P) with zero data and u* be solutions of (P*) with sup-
port conditions metioned above, and rewite A(D,, D, D,) in the following from

k
A(Dtr D, Dy):D?_lcl(Dzr Dy)+j=20 Em—j(Dt» Dy)Dé

where the order of E,-; in D, is at most m—[—1.
Then, the integrations by parts gives

pty T —_—
0="3[a5] BAD., D2, Duct, 0, )T Pat

where ByD,, D,, D,) is a some differential polynomial whose order in D, is at
most m—[—1. Hence, from the arbitrariness of gj, it follows that B,(D,, D,, D,)
u(t, 0, »)=0 for j=1, 2, -, p+v.

Next we make the analogous considerations using the solutions of the
following problem

{ AX(D,, D, Dy)v*:O t<0, xER, yER™
D{vt(or X, J’)=hf(x, y) XER, yERn; .]:0: 1; AR m_l_]-
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whereh3eC5(R'X R™) and v* vanishes for large positive (resp. negative) x when
t varies in every compact set. Then, we can conclude that C,(D,., D )u(T, x, y)
=0 for any fixed T>0, Since Diu(T, 0, y)=0 for =0, 1, ---, [—1 from the as-
sumption, the hyperbolicity of C; shows that u(T, x, y)=0.

Proprsition 5.1. The solution of (P) which belongs to Cz ,CP~HC,) is unique.

6. Smoothness of the solution of (P).

In this section we remark that the solution of (P) which belongs to
Cz,CrYC,) becomes the infinitely differentiable solution in virtue of the uni-
queness of the solution.

First we solve the following initial value problem.

! CiDs, D)px, )+ 3 CADy, Dk (x, 3)=0

Jj=l+1

| D0, y)=Dp-1gi0, y)  i=0, 1, -, I—1.

By the hyperbolicity of C,, this problem has a unique solution p&C=(R*XR™).
Here, setting p=h,-,;, we consider the following problem.

D,A(D,, D, D,)ii=0
) DLt 0, N=gdt, y)  i=0,1, - I—1
D0, x, y)=hx, y) j=0,1, - m—I

Note that tA(z, {, ») has the same form as (1.1) and satisfies the condition (G).
Moreover the choice of the initial data of g shows that the compatibility
condition (C) which corresponds to zA(z, £, %) is satisfied. Hence, by proposition
4.3, there is a solution #€Cs, ,Cr*'~Y(C,) of (ﬁ),

The equation defining p means that A(D,, D;, D,)il,-,=0 and then we get
A(D,, D,, D))#i=0. Thus it follows from the uniquness of the solution that
u=1# and then u belongs to C3,Cr*'-YC,). The iterations of this arguments
show that ueC*(RIXR!'XR™).
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