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§1. Introduction.

Renewal Theory is concerned with, among other things, the point process
generated by a random walk and the behaviour of solutions of the so-called

renewal equation. To be precise, let {X;}%, be i. i. d. nonnegative random
variables with a common distribution F(-). Let X, be a nonnegative random

variable independent of {X;}?. Set SnziXi for n=0. Let &(-) be a mea-

surable function from R* to R* and be bounded a.e. on finite intervals. The
equation

o) m(t)=&(t)+ S(o it—u)dF ) for t20

is called the renewal equation.

The objects of interest are: a) the asymptotic behaviour of the point process
{S.}¢ and b) the asymptotic behaviour of the solution m(:) to (1). The follow-
ing results are well-known. Let

) Ut)y=E{gn: S,.=t}
=S P(S.=t)

be the socalled renewal function. Assume from now on that F(-) is non-lattice,

0<2'={"u dFw)<eo.
Theorem 1. (Blackwell) For all 0<h<co
3) U(it+h)—Ul)—> Ah as t—>

Theorem 2. (Feller) If &(-) is directly Riemann integrable then the solution
m(-) of (1) satisfies

) m(t) —> ZS:S(u)du .

* This work was done in part while K.B.A. was a Visiting Fellow at the Department
of Statistics, Institute for Advanced Studies, Australian National University, Canberra
during July 1978.
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Feller [4] has shown that these two theorems are equivalent.

The object of this note is to present a Markov process formulation that is
equivalent to the above. This is done in terms of the Markov Process of the
socalled backward recurrence time or what we shall call as the age process.
We shall show that Blackwell’s and Feller’s theorems are equivalent to the
weak convergence of this age process. If one assumes a mild smoothness on
F(-), then one can strengthen this weak convergence to that in variation norm.
This in turn leads to the following strengthening of (3) and (4):

3y U(t+B) —> am(B)

for all bounded Borel sets, where we mean, by abuse of notation, U(B)=

$P(SneB), m(-) is Lebesgue measure and
4y m(t) —> XS:&(u)du

for all bounded measurable &(-) that are dominated by a multiple of the tail of
F(-). It turns out that the smoothness of F(:) is necessary as well for these
stronger conclusions. Thus, in the renewal equation (1), to get the convergence
of m(t) as ¢t — oo, one needs either a smoothness condition on &(-) like d.r.i.
or on F(-) like non-strongly singularity. The Markov process approach besides }
bringing out this balance between &(-) and F(-) into sharper focus, also suggests
that when studying the limit behaviour of Markov Chains on general state
spaces that do have a topological structure on them it is perhaps worthwhile
to prove the weak convergence first as this may hold under fairly mild recur-
rence conditions rather than try to use the Doeblin-Harris theory as this needs
stronger recurrence conditions (although, these yield stronger convergence,
such as in variation norm).

The Markov Process approach has been mentioned in Doob [3]. We have
learnt after this work was completed that Arjas et al [1] have also obtained
results similar to ours.

§2. Statement of results.
Let F(-) be a probability distribution on (0, ). Assume throughout that
F(-) is non-lattice and 0<2“:S:u dF(u)<oo. For each xe[0, T), let X§” be a

random variable with

_ F(x+1t)—F(x)

©) P <1)= "0

for t=0, and x<T

where T=sup{x: F(x)<l1}.
Let {X;}{ be i.i.d.r.v. with distribution F(-) and independent of X§{. Set
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(6) A(t)y=x+t  for 0=t=X{
t=XP XPst=XP+X
=Sy SP=t<SH,
n=0,1, 2, ---

where SP=X®»+X,+ - +X, for n=0, 1, 2, ---. From the very definition, we
get the following:

Proposition 1. The stochastic process {A(t); t=0} is a Markov Process on
[0, co0) with stationary transition probabilities.

The transition function P(x, t, E)=P(A(t)e E| A(0)=x) satisfies the equation

@) Pz, t, E)=xﬁ<x+f>(”lf‘g%i
dF(x+u)
{0 PO = B p S

One solves (7) for x=0 and uses (7) to obtain it for all x. Clearly,

®) PO, t, E)=P{\J(SP<t<SP,, t—SPEE)
:S(o.”XE(t—u)(l—F(t—u))U(du)

where U(t)=§P(S‘°)St) is the renewal function. From now on we assume
0

F(-) is non lattice. F(0)=0 and 0<2"=S:t dF(t)<oo. Let 7r(E)=ZSE(1—F(u))
du for all Broel sets E in R*. We now state an equivalent form of Theorems
1 and 2.

Theorem 3. For all initial condition x, the Markov Process A(t) converges
weakly to =(-).

The proof of the equivalence is done by showing Theorem 2 2 Theorem 3
> Theorem 1. In fact, let f(-) be a bounded continuous function on [0, oo).
Then a(t)=E(f(A(1))) satisfies

aD=f(OA=FO)+ | adt—u)d Fw).

(0,
The function &(1)=f(¢)(1—F(t)) is directly Riemann integrable and so by
Theorem 2 a&t)—»S:f(t)(l—F(t))dt. Since a.(t)=E,f(A(t)) satisfies .
. 1—F(x+1t) ¢ _ dF(x+u)
axD=C+ (- pey et =0 (TG

We get by bounded convergence theorem lim a,(¢)=1im a,(¢). Thus, Theorem
t t
2> Theorem 3.
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For h small and positive, the function f(#)=1—F(t)) o, »(t) is bounded
and continuous a.e. So by Theorem 3, E,f(A(#))— Ah. But E.f(A()=U(t)
—U(t—h). Thus, Theorem 3= Theorem 1. We shall give in §3 an independent
proof of Theorem 3, using a coupling argument.

To strengthen the above convergence of A(t) to = from weak to variation
norm, we need a mild smoothness condition on F(-). With this in mind we
introduce a

Definition. A distribution function F(-) on R is strongly singular if for
all n, the n fold convolution F™(-) is singular with respect to Lebesgue
measure.

Clearly, F(-) is strongly singular iff U(-) is singular with respect to Lebes-
gue measure.

Theorem 4. Let F(-) be not strongly singular. Then, for all x,
lim | P.(A(t)& ) ()] =0

where || is variation norm.
It turns out that the converse is true as well.

Theorem 5. Let F(:) be strongly singular. Then
lim [|P.(A(n)€ -)—=(-)|=2.

The proofs of these two theorems are in §4.

§3. A coupling proof of the weak convergence of A(¢) to =(-)

Here is the plan of the proof. First we show that =(:) is stationary for
A(-). Next, we construct two processes A,(+), A,(+) such that both are age
processes with A,;(0) distributed according to m(-) and A,(0)=0 w.p.l. This
construction is done in such a way that for every ¢ > 0, there exists a non-
anticipating random time T such that 0=(A(T)—Ax(T))<e. This forces the
limit behaviour of the distribution of A,(-) and A,(:) to be the same. But
since A,(+) is stationary with distribution z(-), it follows that A,(-) converges
weakly to n(-). Now the details. We begin by establishing the stationarity of
z(-).

Theorem 6. The measure n(:) is stationary for A(:).

Proof. Let f(-) be bounded measurable on [0, o). Let
m(x, )= E(f(A())
9 m(t)=S:m(x, Drldx).

We need to show that m(t)=m(0). Now m(x, t) satisfies
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1—-F(x+1)

(10) mix, D=FCe+ (=T pcy ) +Hm, t—uy(2EHD.

1—F(x)
and we have
a1 z-lm(t)zS:f(x+t)(l—F(x+t))dx+§:(§:m(0), t—u)dF(x+u))dx

But, since m(0, t) satisfies the renewal equation

m(0, t):f(t)(l—F(t))-{—SZm(O, t—w)dF (),

m(, t)=S:E(t—u)U(du) where &(1)=/(t)1—F(1)).
Thus

S:(S:m(O, t—u)dF(x-I—u))dx:S:m(O, t—u)(1—F(u)du

=S:€(u)du ,

since S:(I—F(t—u))U(du)El.
Now (11) shows that 2 'm(n)={"7 ()1~ F@)du. a.e.d.

Now we construct the two processes A,(-), A.(+). Recall the set up in the
beginning of the section 2. Since A,(0) is distributed according to =(:) so is
X,. Let {X}p and {X37 be two independent sequences of i.i.d.r.v. with
distribution F(-). The sequence Y;=X!—X? for i=1, 2, ---, being i.i.d. mean

zero non-lattice random variables, given any >0, there exists a random variable
N(e) such that

N (o) N
0< Z}) Xi— :20 Xi=A<e.

Let {X3¥7 be a sequence of random variables defined by

{ X! 0=i<N(e)

Xi=

X! 1> N(e)

Let {A;(t); t=0} be the age process associated with {X3}§. As stochastic pro-

cesses A (+) and A,(-) are clearly equivalent. Also the processes {A.(-)} and
{A(+)} are coupled in the sense that

N(o)

A(t)y=Ay(t—4) for t=T= Zo) X? and if
A(t)>A, then A,(1)=A4(t)—A.

Proof of Theorem 3. Now let f(-) be bounded and uniformly continuous
on (0, c0). Then,
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Ef(A()=E{f(A)); T=1}
+E{f(A:2)); T>t, A(t)<e}
+E{f(Af1)); T>t, Aft)=e}
and doing a similiar decomposition of Ef(A,(t)), we see that
| Ef(As(1)— Ef (A S20 fI(P(T > 1)+ P(As() <€) +7(e)
where 7(e)= sup [/(x)—f(3)]

Since A,(#) has distribution n(-) and since f(-) is uniformly continuous, given
a 0>0, we can choose ¢ > 0 such that

P(Ay(t)<e)<é for all ¢
and
7(e)<d.

Now P(T>t)—0 as t | oo. Thus,
_ﬁTn—|Ef(A2(t))"Ef(A3(t))l§(2||f”+1)5-

Since 0 is arbitrary we are done.

§4. Proofs of Theorems 4 and 5.

Our proofs are based on the following ergodic theorem for Markov chains
on general state spaces formulated and proved in a manner suitable to us by
Athreya and Ney [2].

Theorem 7. Let {X,}§ be a Markov Chain on a measurable space (S, S) with
transition function P(x, E). Assume

(1) IA=S such that
P(X,€ A for some n=l|x,=x)=1
(2) 3dn,, 2 and a probability n;easure o(+) on A
P(X,,€E| Xy=x)2Ap(E)  forall x in A, ECA
(3) g.c.d. of such n, as A varies is one.

Then, there exists a o finite measure n(+) that is invariant for P(-, -) and is
unique upto a multiplicate constant. Further, when that =n(-) is finite and nor-
malized to be a probability measure, Tim | Po(X,€ )—n(:)|=0 for all x.

n

Their proof is based on a simple regeneration lemma and the discrete
renewal equation. We refer to [2] for details.
The following result is a key step in the proof of Theorem 4.
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Theorem 8. Let F(+) be not strongly singular. Then, for all sufficiently small
and positive & the sequence {X,=A(nd)}¢ satisfies the hypotheses of Theorem 7.

Assuming the validity of Theorem 7 and 8, we now present the proof of
Theorem 4.

Proof of Theorem 4. Since n(-) is invariant for the process A(:), we have
for nost<(n+1)d,

P.(A(t)€ E)—n(E)= S:P( y, t—nd, E)P2(A(nd)e dy)

—S:P@, t—né, E)x(dy),

and hence,
[P(A(t)E - )—n(-)| S P(A(nd)E - )— = (-)]

which goes to zero as n — oo by Theorem 6 and 7.

Proof of Theorem 5. 1f F(-) is strongly singular then the renewal measure
U(-) is singular and hence there exists a set B such that U(B)=0 and m(B¢)=0.
Let By=(\(n—B). Then, m(B)=0 and U(n—B)=U(n—(n—B)=0 for each
n. Now, since

P(A(DE B)= {11~ Fa)U(t—du),

and since U(n— B,)=0,
P(A(n)e By)=0.

On the other hand, z(-) being absolutely continuous with respect to m(-), z#(Bf)
=0. Hence, [|[P(A(n)=-)—nr(-)=2, for all n thus proving Theorem 4.

All that remains now is to prove Theorem 8 We need the following
lemma and its corollaries in the proof of Theorem 8.

Lemma. Let f(-) be a non-negative measurable function on R that is not zero
a.e. Then Ja<b, 0>0 such that

h(x)ESf(x—y)f(y)dy>5 for all a<x<b.

Proof. Since h(x)zh,,(x)ESIylskf,,(x—y)fk(y)dy for all >0, where f,(u)

=min (f(u), k), it is enough to prove the assertion for h,(-) for some k. It is
easily verified that the convolution (f,*f,)(:) is continuous if f,€ L, and f,E L.
Thus, h,(:) is continuous. Finally, since f#0 a.e. 3x, and £ such that A ,(x,)>0.

Corollary 1. Let F(-) be a probability distribution on R that is not singular
with vespect to Lebesgue measure. Then (F+F)(+) has an absolutely continuous
component whose density is bounded away from zero in a non-degenerate interval.
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Corollary 2. Since F(-) is not strongly singular there exists n, such that
F&Y(.) is not singular with respect to Lebesgue measure. By corollary 1, F@m(.)
has a density that is bounded below in a non-degenerate interval. But for any
a<b, Ub)—U(a)=F "0 (h)—F“"0(a)=const. (b—a) if a, b lie in such an interval.

Proof of Theorem 8. Let I,=[(n—1)h, nh], n=1, 2, ---, where h>0 will be
chosen later. Let E be a Borel set in I,=[0, k) and n, a fixed integer. Then

P(x;, noh, EY=P(A(n,h)e E] A(0)=x)
—Prob C;)o {(no—1)h =S <1olt, Xnsr>noh—S,

and n,h—S,€E}
where S,=X,+X;+ --- +X,, for n=0, 1, 2, ---, with X; being independent and

F(x+t)—F(x)
1—F(x)

P(X;=t)=F(t) for i=1.

P(X, =)=

P(A(noh)& E| AQ)=x)= 3 P(Sy €1y, Xnss>nsh—S, noh—S,€E)

I

2 [, A=Froh—s)telneh—)P(S,€ dy)
o
={,_ . A—F@)U:(dw
where U%,(B)=3P(Sy€noh—B) for any Borel set B in I,=[0, h). Now,

Us(B)= " Unoh—2— B)Fu(d2)

where U(-) is the usual renewal measure (i.e., with x=0). Since

F(x+2z)—F(x)

Fu(d)=—7— Foo) ,

Ui B2 [ U o+ x—v—B)F(av)

SRR LD

where k(-) is the density of the absolutely continuous component of U(-) with
respect to Lebesgue measure. Making a change of variables yields

U (B ([ fnoht x—v—s)ds) F(av).

By corollary 2 3, 0<a<b<oo and 0>0, such that k(x)>d for a<x<b. Now
choose A small so that (b—a)>10h. Since F(0)=0, 3, I,=[(r—1)h, rh) such that
F(,)>0. As x and s vary in [0, k), and v varies in [7h, (r+1)h), neh+x—v—s
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has to lie between (n,—r—2)h and (n,+1—7r)h. Since (b—a)>10h we can find
integers n,; and n, such that (n,—n,)>10 and a<n,h<n,h<b. Thus for n,+7r
+2=n,=n,+r—1:

Uz (B)=8F(I,ym(B)

where m(:) is Lebesgue measure. Hence, there is an a>0 such that for all
0=x<h, Borel sets E in [0, h):

P{A(n,h)< E| AQ0)=1x} gaSEa—F(u))du

for all n,+r+2=<n,<n,+r—1. Also by the definition of the age process we do
get the recurrence condition

P(A(nh)e[0, h)  for some n=1|A(0)=x)=1

for all x in R* and all A>0. Thus, for the Markov Chain {Z,=A(nh)} we have
produced a set A=[0, k), an integer N such that

P(ZnEEIZO:x)gaSE(l—F(u))du

for all x in A, ECA, n=N, N+1, N+2. This is precisely what makes {Z,}¢
satisfy the hypothesis of Theorem 7.
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