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§ 1 .  Introduction.

R enew al Theory is concerned w ith, am ong other things, the point process
g e n e ra te d  b y  a  ra n d o m  w a lk  and the behaviour of solutions of the so-called
re n e w a l e q u a tio n . T o  b e  p re c ise , l e t  {X i } r=1 b e  i. i. d . nonnegative random
variables w ith  a  com m on distribution F ( . ) .  Let X0 b e  a  nonnegative random

variable independent o f I.Xz j r .  Set S , = 2 X  f o r  n 0. L et e(•) b e  a m e a -

su rab le  fu n c tio n  fro m  R+ to  R+ and be bounded a. e. on f in ite  in te rv a ls . The
equation

(1) m (t)= e(t)+ m(t— u)dF(u) f o r  tco. t,

is ca lled  the renewal equation.
The objects of interest are : a) the asymptotic behaviour of the point process

IS,J7 and b) the asym ptotic behaviour of the solution m(.) to  (1 ). The follow-
ing  resu lts  are w ell-k n o w n . Let

(2) U (t)=  E{n : _ t}

=  P ( S t )

be  the socalled renew al function. Assume from  now  on th a t  F (.)  is non-lattice,

dF (u)< co0

Theorem 1. (B lackw ell) For all 0<h<00

(3) U (t+ h)— U (t)--->  2h a s  t no

Theorem 2. (Fe ller) I f  e (• )  is directly  Riemann integrable then the solution
m (-) of (1) satisfies

(4) 2 e(u )du

* This work was done in  part while K. B. A. was a  V isiting Fellow  at the Department
of Statistics, Institute for Advanced Studies, Australian National University, Canberra
during July 1978.
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Feller [4] has shown that these two theorems are equivalent.
The object of this note is to present a  Markov process formulation that is

equivalent to the above. This is done in  terms of the Markov Process of the
socalled backward recurrence tim e o r  what we shall call as the age Process.
We shall show that Blackwell's and Feller's theorems a re  equivalent to the
weak convergence of this age process. If one assumes a mild smoothness on
F(.), then one can strengthen this weak convergence to that in variation norm.
This in turn leads to the following strengthening of (3) and (4):

(3)' U(t B ) --> 2m (B )

for all bounded Borel sets, where we mean, by abuse of notation, U(B)=-

P(S ,, B ), m (.) is Lebesgue measure and0

(4)' ni(t) --->  S:e(u)du

for all bounded measurable e(•) that are dominated by a multiple of the tail of
F ( . ) .  It turns out that the smoothness of F(.)  is necessary a s  well fo r these
stronger conclusions. Thus, in the renewal equation (1), to get the convergence
o f m (t) a s  t 0 ,  one needs either a  smoothness condition on e(•) like d. r.
or on F(.)  like non-strongly singularity. The Markov process approach besides]
bringing out this balance between e(•) and F(.) into sharper focus, also suggests
that when studying th e  limit behaviour o f Markov Chains on general state
spaces that do have a topological structure on them it is perhaps worthwhile
to prove the weak convergence first as this may hold under fairly mild recur-
rence conditions rather than try to use the Doeblin-Harris theory as this needs
stronger recurrence conditions (although, these yield stronger convergence,
such as in variation norm).

The Markov Process approach has been mentioned in  Doob [3]. We have
learnt after this work was completed that Arjas e t a l [1 ] have also obtained
results similar to ours.

§ 2. Statement of results.

Let F(.)  be a  probability distribution on (0, 00). Assume throughout that

F(•) is non-lattice and 0 u dF(u)< co. For each x [ 0 ,  T ), let XV ) be a0
random variable with

(5 )
F(x+t)— F(x) P(X o ( x) t) =- 1—F(x) for t > _ 0 ,  a n d  x  <T

where T=-sup : F(x)<11
L et {X i } b e  i.  i. d. r. v. with distribution F(•) and independent of XV ) .  Set
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(6) A (t)= x+ t fo r  0_<t_<XSY )

t — 039X V )  t  X  S x ) ± X

t — t < ,V+1

n-=0, 1, 2, •••

where SV) =- X r ± X ,±  •-• d-X„ for n =0 , 1 , 2 , • . From the very definition, we
get the following:

Proposition 1. T he stochastic process {A (t); t_0 } i s  a  Markov Process on
[0, 00) w ith stationary  transition probabilities.

The transition function P(x , t , E ) P (A M E  A (0 )= . x ) satisfies the equation

(7) P(x, t, E)=-XE(x+t)( 1— F(x+ t) 
1—F(x)

dF(x+u)+ t—u, E)
t ] (1— F(x)) •

One solves (7) for x-=0 and uses (7) to obtain it for a ll x .  Clearly,

(8) P(0, t, E)-=P{ (S °) _t <s;p2„, t - S E)}
n=0

XE(t —u)(1—F(t —u))U(du)
(0, t3

CO

where U (t)= E P (S r_  t) is  the renewal function. From  now on  w e  assume

F (.) is  non la tt ic e . F(0)=0 and 0<,1 - - ' =-D  dF(t)<00. L e t 7r(E)=4 E (1—F(u))

du for a ll Broel sets E  in R .  W e now  state an equivalent form of Theorems
1 and 2.

Theorem 3. For all initial condition x, th e  Markov Process A (t) converges
weakly  to 7r(•).

The proof of the equivalence is done by showing Theorem 2 Theorem 3
Theorem 1. In fact, let f ( • )  b e a  bounded continuous function on  [0, 00).

Then ao (t)-== Eo(f (A(t))) satisfies

a0(t)=f(t)(1— F(t))± ao(t—u)d F(u).
(0, t3

T h e function e(t) -=-f(t)(1— F(t)) is  d ire c t ly  Riemann integrable an d  so by

Theorem 2  a0 (t) f (t)(1 —  F(t))d t . Since a s (t)=  E  (A (t )) satisfies
0

1— F(x+ 0  \4 a 0 , td F ( x + u ) \
ax(t).= f(x+t)

\  1 — F ( x ) 0 1—F(x)

We get by bounded convergence theorem lim a s (t)=1im ao (t). Thus, Theorem
2 Theorem 3.
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F or h  small and positive, the function f ( t ) = - ( 1 — F ( 0 ) - 1 X [ 0 . 1 , ) ( t )  is  bounded
and continuous a. e. So by Theorem  3 , E of (A ( t) ) -*  A h . B u t E 0f (A (0)=-- U(t)
— U(t— h). Thus, Theorem 3 Theorem 1 .  W e shall give in § 3 an  independent
proof of Theorem 3, using a  coupling argument.

To strengthen the  above convergence of A (t) to  7r from  weak to variation
norm, we need a  mild smoothness condition on F ( - ) .  W ith  th is  i n  m ind we
introduce a

Definition. A  d istribu tion  function F ( . )  o n  R  is  strongly  singular if  for
a ll n, t h e  n  fo ld  convolution F(n )(.)  is  s in g u la r  w ith  respec t t o  Lebesgue
measure.

Clearly, F ( .)  is  strongly  singular i f  U (.) is  singular w ith  respect to  Lebes-
gue measure.

Theorem 4 .  L et F ( .)  be not strongly  singular. T hen, f or all x,

lim IIPx (A ( t)  • ) - 7(•)11=- 0

w here II•11 is variation norm.
It tu rns out th a t the converse is  true  as well.

Theorem 5. L et F(•)  be strongly  s in g u lar. Then

lirn (A (n)e •) — r(•)II =2.

The proofs of these two theorems a re  in  §4.

§ 3 .  A  coupling proof of the weak convergence of A (t) to  7r(.)

Here is the plan of the p roof. F irst w e  show th a t  z ( • )  is  s ta tio n a ry  for
A (.). N ext, w e construct tw o processes A 1(.), A .,(•) such that both are  age
processes with A1(0) distributed according to ir( • )  a n d  A2(0 )= 0  w .p . 1 . This
construction is  d o n e  i n  such a  w ay that for every e > 0, there exists a  non-
anticipating random time T  su c h  th a t 0 (il 1(T)— A 2( T ) ) <E .  T his forces the
lim it behaviour o f  th e  d is tr ib u tio n  o f  A 1( • )  a n d  .4 2( • )  to  be  the sam e. B ut
since A i ( .)  is stationary w ith distribution 7r(.), it fo llow s tha t A .,(•) converges
weakly to 7r(.). Now the  details. W e begin by establishing the stationarity of
x(*).

Theorem 6. T he measure rc(•) is stationary  f o r A O.

Pro o f . Let f ( . )  be bounded measurable on [0, c o ) . Let

m (x , t)_-= E x ( f (A (t)))

(9) m (t)=-Ç:m (x , t)7(dx ).

W e need to show that m(t) m (0). Now m (x , t) satisfies
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1— F(x+ t) dF(x+u) 
(10) m(x , t)-=f (x t) ( ) + Y  m(0, t u ) (1 — F (x) o 1— F (x )  )

and w e have

(11) 2-1m(t)-= .ro f (x+ 0(1— F(x t))d x +ro O t
o m(0), t — u)dF(x +u))d x

But, since m(0, t) satisfies the renewal equation

m(0, t)--= f (t)(1— F(t))+Ço m(0 , t — u)dF(u) ,

m(0, t)=•:(t — u)U(du) w h e re  e(t)= f (t)(1— F(t)))

Thus

'0 Ç o
m(0' t — u)dF(x u))d x=Ç( om(0 , t — u)(1— F(u))du

e(u)du0

since  5:(1— F (t — u))U(du)=- 1.

Now (11) shows th a t 2- 1 m(t)== D(u)(1—  F(u))du. q. e. d.

Now we construct the two processes A1(•), A2(.). Recall the set up in the
beginning of the section 2. Since A 1(0) is d istribu ted  accord ing  to  ir(•) so is
X e . L e t  {XI} r  an d  {X } ' be tw o independent sequences of i. i. d. r. v. with
distribution F ( . ) .  The sequence Y,=Xii — X? f o r  i=1, 2, • , be ing  i. i. d . mean
zero non-lattice random variables, given any s > 0, there exists a random variable
N(e) such that

A r () N(E)
0< E E

i=o i=o

Let {XI} ;  b e  a  sequence of random variables defined by

{ X', 0 N(r)
X1-=

Xi i> N(s)

Let { A O ) ;  t ( ) }  b e  the age process associated with {X } '. As stochastic pro-
cesses A 3 ( . )  and  A 1 (• )  are clearly equivalent. A lso the processes IA2(. )} and
{A 3 ( . ) }  are coupled in the sense that

N(s)
A 2(t)=  AO — A) for and if

A s (t )>  , t h e n  A 2 (t)=A (t)— A

Proof of Theorem 3. Now let f ( • )  be bounded and  uniformly continuous
on (0, 00). Then,
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E f(A ,(t))=  E  If(A ,(t)); T  t}

±E {f(A2 (t)); T > t, A 3 ( 0<s}

- E {f(A2(t)); T>  t, A,(t)_>_

and doing a  similiar decomposition of Ef(A ,(t)), we see that

Ef (A2(t))— Ef (A3(t))I ---211f II (P(T > P(A3(t)< E))+ 7)(6)

where 77(6 )=-I  sup I f (x ) — f(Y)I

Since A 3 (t ) has distribution 7(.) and since f ( •)  is uniformly continuous, given
a  6>0, we can choose s > 0 such that

P(A 3 (t)<E)<3 for all
and

77(E)<a.

Now P (T >  t )  0 a s  t c o .  Thus,

urn E f (A 2 (t))— E f (A3(t))1 :(211 f II + 1) 6 .

Since ô is arbitrary we are done.

§ 4 .  Proofs o f  Theorems 4  and 5.

Our proofs are based on the following ergodic theorem for Markov chains
on general state spaces formulated and proved in  a  manner suitable to u s  by
Athreya and Ney [2].

Theorem 7 .  L e t IX17 be a illarkov Chain on a measurable space (S, S) with
transition function P (x , E ). Assume

(1) ]A E S  such that

P(X n  A fo r  som e n 11 x0 = x) - --1

(2) 3n0 , A  and a probability measure ço(•) on A

P(X„ 0 E E IX 0 = x ) (E) fo r  all x  i n  A , E A

(3 ) g. c. d. of such n, as A varies is one.

Then, there ex ists a a f inite m easure 7(•) that is invariant for P(., -) and is
unique upto a multiplicate constant. Further, w hen  that n-(-) is f inite and nor-
malized to be a probability measure, lim IlP x (X .• ) - 7r(•)11=0 f o r all x.

I t

Their proof is based on  a sim ple regeneration lemma an d  th e  discrete
renewal equation. We refer to [2] for details.

The following result is a  key step in the proof of Theorem 4.
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Theorem 8. Let F (.) be not strongly singular. Then, for all sufficiently small
and Positive (3 the sequence {X n ==-A(rib)}' satisfies the hypotheses o f Theorem 7.

Assuming the validity of Theorem 7 and 8, we now present th e  proof of
Theorem 4.

Proof o f Theorem 4. Since 7(•) is  invariant for the process A(•), we have
for n5__t<(n+1)6,

Px(A (t)E  E )-7 (E )= -
0 1) (y, t—n5, E)Pr (A(n3)E d

—5:13 (y, t—n5, E)7(dy),

and hence,

IIP.(AME •) — n(•)II -511Px(A(n5)E•)-7(•)11

which goes to zero as n 0 0  by Theorem 6 and 7.

Proof o f Theorem 5. If F (.) is strongly singular then the renewal measure
U(-) is singular and hence there exists a set B such that U(B)=0 and m(Bc)=0.

Let B 0 = ( (n  —  B ). T hen , m(Bg)=0 an d  U(n — B U(n —  (n — B))=0 fo r  each
n=1

n .  Now, since

P0(11(t) E)= . XE(u)(1—F(u))U(t— du) ,

and since U(n—B 0 )=0,
Po(A(n)E B 0)=0 .

On the other hand, rc(•) being absolutely continuous with respect to m(-), 71- (B )
= 0 .  Hence, IIP(A(n)E•) - 7(•)11=2, for a ll n thus proving Theorem 4.

All that remains now is to prove Theorem 8. W e need th e  following
lemma and its corollaries in  the proof of Theorem 8.

Lemma. Let f ( . )  be a non-negative measurable function on R that is not zero
a. e. Then 3a<b, 5>0 such that

h(x)_=_ f (x — y)f (y)d y > fo r  a l l  a<x<b .

P ro o f. Since h(x)_>_h k (x ) f k(x —  Y)f k(Y)dy for a l l  k>0 , where f k (u)

=min (f(u ), k), it is enough to prove the assertion for hk (•) fo r  some k .  It is
easily verified that the convolution (f i*f 2)(-) is continuous if f  L i  and f 2 e L..
Thus, h k (•) is continuous. Finally, since f *0 a. e. ]x o and k such that hk (x 0)>0.

Corollary 1. Let F (. )  be a probability distribution on R that is not singular
w ith respect to  Lebesgue measure. Then (F *F )(• ) has an absolutely continuous
component whose density is bounded away from zero in a non-degenerate interval.
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Corollary 2 .  Since F ( . )  is not strongly  singular there ex ists n o su ch  th at
F ' " ) (• ) is not singular w ith respect to Lebesgue m easure. B y  corollary  1, Fc 2 1 1 0) (•)
h as  a  density  that is bounded below  in  a non-degenerate in terv al. B u t f or any
a<b, U (b)— U(a)_F( 2 n0)(b)—F ( 2 n0) (a)_const.(b— a) if  a, b lie in such an interval.

Proof  of  Theorem 8. Let I n = [(n -1 )h , n h ], n = 1 , 2, ••• , where h> 0 will be
chosen la te r . L e t E  be a Borel set in / ,= [0 , h) and no a  fixed integer. Then

P(x i , n o h, E )=- P(A(n o h)E El A(0)=x)
CO

=Prob U {(n0 -1)h_<S n<n0h, X 1>  noh — S
n=0

a n d  no h— S „OE El

where S=X0+X1-f- ••• ±X,„ for n-=0, 1, 2, ••• , with Xi  being independent and

F(x+t)— F(x)
1—F(x)

P (X i _ t)= F (t ) for 1.

P(A(n o h)E El A(0) ,  x ).=  i0 P(S„E I Xn+1> noh—Sn, n o h—S n e E)

E (1— F(noh— y))X E(noh— Y )P(SnedY )
n = 0  / n o

(1—F(u))U 0(du)
E-101

where U .;;0(B )=EP(SnEn o h—B) for any Borel set B  in I = [ 0 ,  h ) .  Now,
0

lg o (B )-=  U (n o h—z—B)Fx (dz)

where U (. )  is  the usual renewal measure (i. e., with x-= 0). Since

F x (z )=  
F(x+z)—F(x)

1—F(x)

LI .;;°(B)_.. :U(n o h+ x —v— B)F(dv)

> f 7 f k(w)dw)F(dv)jhAJno li+x-v-B

where k (.) is  the density of the absolutely continuous component of U (•) with
respect to Lebesgue measure. Making a change of variables yields

0(B)_>.
: ( L k

(it o h+ x —v— s)d s)F(dv) .

By corollary 2 3 , 0< a< b< 00 and 6> 0 , such that k (x )> ô  fo r  a < x < b .  Now
choose h small so that (b— a)>10h. Since F(0)=0, 3, rh ) such that
F ( I )> O .  As x  and s vary in  [0 , h), and y varies in Erh, (r+ l)h ), n o h+ x—v—s
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has to lie  between (n 0 — r-2)h and (n 0 +1— r)h. Since (b—a)>10h we can find
integers n, and n2 such that (n 2 —n 1)>10 and  a<n 1 h<n 2 h < b . Thus for
d-2_ n 0 n 2 + r - 1 :

Ig0(B)5F(I,-)m(B)

where m(•) is Lebesgue measure. Hence, there is a n  a > 0  such that fo r all
O x<h, Borel sets E  in  [0, h):

P {A(n o h)E El A(0) ,  xl_>_cc E (1— F(u))d u

for all ni -Er+2_n 0 n2 d-r —1. Also by the definition of the age process we do
get the recurrence condition

P(A(nh)E[0, h) f o r some n 11A(0)=x)---=_1

for all x  in  R+ and all h > 0 .  Thus, for the Markov Chain {Z,i - A(nh)} we have
produced a set .24 -[0 , h), an integer N  such that

P(Z i , El Zo =  x ) .  ,f . 0 (1— F(u))du

for all x  in  A , EcA , n=N , N +1, N-1-2. This is precisely what makes {Z. } ô
satisfy the hypothesis of Theorem 7.
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