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Introduction.

Michel Fried and G. Sacerdate established in [5] a prim itive recursive deci-
sion procedure for the elementary theory of finite fie lds. T he crucial theorem
used in  th e  proof was th e  "Non-regular an a lo gu e  o f th e  .6ebotarev density
theorem" (see [5 ,  Proposition 4.1] and also  F ried  [3 , Proposition 2]). This
analogue is  a certain  combination of G'ebotarev density theorem and Riemann
Hypothesis for curves over finite fields. Fried-Sacerdate procedure gives auto-
matically a p rim itive  recursive procedure for th e  theory o f  all elementary
statements that a r e  tru e  in  OW ,  for almost all cr G(Q), since this theory is
equal to the theory of all elem entary statem ents true in  F ,„ fo r  almost all
primes p (see [7 , Thm . 3.17]). Moreover, as was already hinted in [5, p. 207],
it is very probable that Fried-Sacerdate procedure might be generalized to give
a prim itive recursive procedure for th e  theory o f  all elementary statements
th a t a r e  t ru e  in  -0(0'1, •-• , or e ) f o r  almost all (a)=(0 - 1, ••• cie) G(Q) e . In this
work we take the first step toward this goal and prove an appropriate analogue
of the Cebotarev density theorem for the fields .(2- (a):

A lm ost all (u)EG(Q)e have the f ollow ig p ro p e rty : L et E  be a finitely gene-
rated  regu lar ex tension of  M =0 (a) , le t F  be a f inite Galois extension of E , let

••• , e e  be elements of  ( F I E ) ,  le t u 1 , ••• , um  be elem ents o f  E  an d  le t  N o b e
the algebraic closure o f  M  in F. S uppose that 611N o = c i lN 0 f or i=1 , ••• , e . Then
there ex ists an M -place go: F —  such that a) go(E)=M , b) go is f inite at u 1 , ••• ,
Urn , c )  H = <si, ••• , e e >  is  the decomposition group o f  go, d) N =go(F) is a Galois
extension of M  and the m ap o f  H onto '( N / M )  induced by go is an  isomorphism
that m aps e i  onto cril N , f o r i=1, ••• , e.

The G' ebotarev Property of the (a)'s implies that their fixed fields OW are
e-free and PAC. Here a fie ld  M  is  s a id  to  b e  e-free, i f  its absolute Galois
group G (M ) is isomorphic to the free profinite group P 0 o n  e  generators. A
field M  is  sa id  to  b e  P A C  i f  every non-void absolutely irreducible variety
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defined over M  has an  M -rationa l point.
It is probable that the converse implication is also true, namely that e-free

and PAC implies the  C ebotarev  Property, but I do not have as y e t a  proof to
this statement.

A s an  app lica tion  it is proved that every co-free zero characteristic PAC
field is  H ilb e r t ia n . Here an  co-free field is  one over which every finite embed-
ding problem is solvable.

In  [1 0 ]  we have discussed th e  elementary theory o f  perfect co-free PAC
fie lds. In  particular we proved that in any specific characteristic the  theory is
decidable. This investigation was carried o u t in  analogy to the investigation
of the elementary theory of perfect e-free  PAC fie lds. However, although we
have been able to supply an  abundance of algebraic models of the  last theory,
no algebraic model was suggested fo r  th e  first o n e . A t th e  e n d  o f  this work
we fill up this gap and construct an  algebraic extension N  o f  Q  w hich  is co-
free and PAC, hence also Hilbertian.

Acknowledgement : The author is indebted to Michael Fried for inspiring
the  writing of this paper.

1 . The . . ebotarev Property.

L et M IK  be a G alois extension of fields, let N  be an extension of M  and
le t s i , ••• , se be autom orphism s of N  over K .  We denote by M(6) and N(6) the
fixed field in M  and N  respectively of E l ,  • • •  , z , .  Obviously M(e)=MnN(6).

Definitions : L et K  be a  f ie ld , le t  a l , ••• , a, be e lem ents o f  G (K ) .  Let
M = K ,()  a n d  le t N,, E, F be fields such that :

I. E  is  a  finitely generated regular extension of M
II. F  is  a  finite Galois extension of E.

III. N, is  the  algebraic closure of M  in  F.
The system (a , E, F) is said to have the à- e b o ta re v  Property if  f o r  every

m  elements u „  •••  , u „ , o f  E  a n d  e elements e i , ••• , e, of g(F IE ) that satisfy
No=o'i I No f o r  i=1 , ••• , e, there exists an  M -place so :  F  M ,  such that

a) w(E)=M,
b) so is finite at u„ ••• ,
c) H =<6,, •-• , ze> is  the  decomposition group of so.
d) N=yo(F) is  a Galois extension of M  a n d  th e  m ap o f  H  onto g(NIM )

induced by so is an  isomorphism that maps 6, onto a,IN  for i=1, ••• , e.

In  this definition M , is  the  separable closure of M . I f  5EH  a n d  5 '  is  its
image in  '(N / M ),  then  a'(so(x))--=so(6(x)) fo r every  xOEF such that so(x) 00.
Also, ço(E) is  the  residue field of E  under so.

W e say that (a ) has the  àebotarev Property if  (a, E, F) has the à- ebotarev
Property for every E, F that satisfy I, II, III.

A field M  is said to be of coranke if  its absolute G alois group G (M ) is
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generated by e elements.
A n algebro-geometric consequence of the Gebotarev Property is

Lemma 1.1. Let K  be a field and let (a 1 , ••• , a e )  be an e-tuPle o f  elements
of G (K ) that has the Cebotarev Property. Let M = If s (a ), let V  be an absolutely
irreducible variety defined over M and let 71„ ••• , 72, be birational transformations
o f  V  in to itself, defined  over M . If the group H=-021, •-• , v e > is finite, then
there exists a point Q EV (M s )  such that 0Q=o1Q f o r  every integer k and i=
1, ••• , e.

P ro o f . Without loss of generality we can assum e th at V  is  affine and let
(x ) be a  generic poin t of V  over M .  Every element 72E H  defines an  automor-
phism e of F = M (x ) over M  such that e (f (x ))= f (v (x )) for every f e  M (x ).  The
map y2 e  is  an  anti-isomorphism of H on  a  finite subgroup G  o f  Aut (FIM ).
Thus F  is  a  finite Galois extension of the fixed field o f G and it  is  a  regular
extension of M .  It follows that there exists a n  M -place ço : M , which is
defined at 72(x) f o r  every 7/EH and such that e =a t IN , where N =ga (F ). Let
Ca)=çp(x). Then (a )E  V (N ) and e(a)-=-o - ''(a ) for a ll k and i.

Another consequence of the  Gebotarev Property is :

Lemma 1 .2 .  I f  (a ) is as in Lemma 1.1 th e n  K ,() and hence also k(g) are
e-free PAC fields. Here ff.' (a) is the maximal purely inseparable extension of K 5 (6).

P ro o f . In  order to prove that M  is  e-free it suffices to prove that every
finite group H of rank < e  can be realized over M=Ks(g.) (see [8, Thm.

Indeed, embed H in  a  symmetric group S .  Choose n  algebraically inde-
pendent elements t 1 , •-• t n  o v e r  M , le t F = M (t), le t S n  operate on t 1 , ••• , t n  in
the obvious way and  le t E  be th e  fixed field of H  in  F .  Then H  appears as
a  decomposition group of some M -rational place ço: F—> M s  w ith triv ia l intertia
g ro u p . It follows that H can be realized over M

In  order to prove that M  is PAC take 72i, ••• , yi e i n  Lemma 1.1 as the iden-
t ity  maps.

2. The main theorem

Consider the  following situation :  K  i s  a  f ie ld , t i , ••• , t r  a r e  algebraically
independent elements over K , F  is  a  finite Galois extension of K (t )  and L  is
the  algebraic closure of K in F . Suppose that s i , ••• , se  are elements of g(F/K(t))
and a l , ••• , Ce a r e  elements o f G (K ) such that for i=1, ••• , e .  Then

• • • , ee  can be extended to automorphisms of K,F which will be again denoted
by S i, •  •  •  , S e  and such that E , , l i f s = a ,  for i=1, ••• , e. Then s i , ••• , E fix every
element o f  M (t ),  where M = K s (o- ). Denote therefore by Hui )  the  subgroup of
fl(MF/M(t)) generated by

 i
 MF, • • • , Ee l M F. Then H ( 0 )  is canonically isomorphic

to H=<e i l F, • • • , sel F>. Also M L  is  the  algebraic closure o f M  in M F . In this
situation we have the following.
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Lemma 2.1. I f  K  is  Hilbertian and if u t , , um  are elements o f K (t), then
fo r  alm ost all (6 )EG (K )e that satisfy  ail L=Eil L  for j=1, ••• , e, and denoting
M=-K,(0), there ex ists an M -place ça: M F K , such that

a) w (M (0 )=M  and w is f inite at ut , •••,
b) H 1 01 i s  the decomposition group of ça
c )  N =w (M F) is a Galois extension of M, the map 6—,  6' of H ( , ) onto .g(NIA1)

induced by w is an isomorphism, and =o-,IN  for j=1 , , e.

Pro o f . L e t x  be a n  element o f  P  w hich is integral over K [ t ]  a n d  such
that F = K (t ,  x ) .  L et f c K [T ,  X ] be a n  irreducible polynomial which is monic
and  separable with respect to X  such that f ( t ,  x )= 0 .  L e t g  be a n  irreducible
fac to r of f  over L  such that g (t ,  x )= 0 . Then g (T , X )  is absolutely irreducible.
We can therefore construct by induc tion  a  sequence o f  p o in t s  (ai , bi ), i= 1 , 2,
3, ••• such that

1) ai t , ••• , a i r E K .
2) u i , ••• , um  belong to th e  lo ca l r in g  o f K [ t ]  in  the  poin t
3) g(a t , b1 )=0 , hence also f(a i , 60=0.

af 4) (at, b )#0 .
ax

5) [K (k ) :  K ]= [F :  K ( t ) ]  and  [L (/ ) , ) :  L ]= [F :  L (t ) ] ,  hence

K (b )= L (b )= L .

6) T h e  sequence of fie lds L I ,  L 2 , L 3 , ••• a re  linearly disjo in t over L.
(Compare similar construction  in  [7 , Lemma 2 .2 ]  o r  i n  [ 6 ,  Lemma 1]). The
specialization (t, b t) can be extended to a n  L-place L , such
that ça (F )=L , ço (K (t)=K  an d  go is finite at u1 , ••• , um . F u rth er th e  map 3'
of '(F /K (1 )) onto g (L s /K) induced by ça is  a n  isomorphism (c. f .  L a n g  [1 3 , p.
2 4 8 ]) . In  particu lar, s'i l L = s 1 1 L for j.--=1, ••• , e an d  w(F(s)).= Lz(6').

Using (6) an d  Lemma 4.1 o f [8 ]  we get that almost all (u)EG(K)e for which
j=1 , ••, e , belong to one of the  se ts

(7) {("1") G(K) € L i = E ij f o r  j=1, • • • , el

L e t therefore (u ) be in  th e  s e t  (7). L e t M = K s (u), extend ei , ••• , se  to auto-
morphisms o f  K ,F , a s  in  th e  d is c u s s io n  above, an d  extend ça to  a n  M-place,
also called go, o f  M F into K s . Then condition (a) is satisfied. A lso N=ço(MF)
= M I ,  is  a G alois extension of M  (c . f. D euring [2 ], p . 17 8 ). Denote by E  the
decomposition fie ld  of ça. I t  i s  the  m axim al subfield o f  M F that contains M (t)
and ça(E) M .  Obviously th e  map 5 ' of g(M FI E ) onto g (N IM ) induced by
go is an  isom orph ism . In  particular

(8) [M F : E ]= E N : M J

Claim : M. F (0 =- (M F ) ( ) .

Indeed th e  s, fix th e  elements o f M .  Hence t h e  left hand side is included
in  th e  right hand s id e .  I n  order to prove the  inverse  inc lusion  note  that F  is
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linearly d isjo in t from M  over L ()— L M. L e t  {ma } be a  linear base  for M
over L (6 ) . Then {m a } is a  b a se  o f  MF over F, since M IL (6) i s  a n  algebraic
e x te n s io n . Any element z  o f  (M F )()  can therefore be written as

(9)
 z = E ma x , ,

where x„E F  and  almost all o f  them a re  z e ro . Applying 6 ,  o n  (9 ) we obtain
z = E m a (s,x a ) a n d  e,x„Œ F. Hence s,x a =x a  f o r  j=1, •-• , e, i. e. x „E F(E ), as
desired.

T h e  claim implies that O M F )(6 ) )=M . Hence (M F ) ( 6 ) g E . It follows by
(8) that

[F : F(e)]=[L i : L i (e )]=[N : M ]=[M F: E ]5 [M F: (M F)(e )]=[F:  FL )].

Hence (M F)(6)=E  is  th e  decomposition f ie ld  o f  ço a n d  <si ! M F, ••• , 6  M F > is
t h e  decomposition group of o  i n  M F .  C onditions (b) a n d  (c) a re  thus also

Theorem 2.2. I f  K  is a contable Hilbertian f ield, then alm ost all (o- )EG(K )e
have the - 'ebotarev Property.

P ro o f . It is easy to see that in  th e  n o ta t io n  o f  s e c t io n  1, it suffices to
consider only fie lds E  th a t a re  purely transcendental over M .  O ur Theorem
follows therefore from Lemma 2.2, using argum ents as in the proofs of Theorem
2.5 o f  [7 ] o r  Theorem 6.2 o f  [6].

3 . An application to  w-free PAC fields.

Theorem 3.1*. Every co-free field L  of characteristic zero is Hilbertian.
Pro o f . First note  tha L  contains some countable Hilbertian f ie ld  K .  In

order to  prove that L  i s  Hilbertian i t  surffices to prove that th e  following
statements a r e  tru e  i n  L :  ( ± )  F o r  all absolutely irreducible polynomials
f(Ti, ••• T r, X ) of degree d  which a r e  separable n o r m a l in  X  and have a
Galois group G o f rank _5e 0 a n d  fo r  a ll non-zero polynomials g(T i , •-•, T ,.) of
degree t h e r e  e x i s t  a l , • ,  a ,  such that f ( a i , • ,  or , X )  is separable and
norm al with Galois group isomorphic to G and  g(a i , •-• , a r )#0.

I f  e _ e ,  an d  (o- ) E G (K )' has th e  Ôebotarev Property, then (+ )  is true in the
field k (a) , since T 1 ,  • • •  ,  T r  can be specialized such that G is th e  decomposition
g r o u p .  It follows by Theorem  2.2 th a t ( + )  is true fo r  IZ (a), fo r  almost all
(6)E.g(K )e. Also it is not difficult to see that (+ )  is equivalent to a sentence
in  th e  language o f  th e  theory o f  f ie ld s . Theorem 7.1 o f  [10] implies therefore
that (+ )  is true in  L.

N ote that th e  above proof show s that statement (± ) remains true for every
w-free perfect PAC field, without any restric tion  on  the  characteristic.

*  The author has learned about the valid ity of this Theorem from Peter Roquette.
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We recall that i f  M  is  a  countable field, then M  i s  w-f ree i f  a n d  on ly if
G(M ) is isomorphic to the free profinite group, P„, o n  g o generators that con-
verge to 1.

Lemma 3 .2 * . Let G  be a prof inite separable f ro u p .  I f  P „ is a homomorPhic
image of G, then P a, is isomorphic to a closed subgroup of G.

P ro o f. By assumption there exists a n  epimorphism 6+:  G P „ , .  L e t 21, z2,
22, ••• be a  sequence o f fre e  generators o f P,„ that converges to 1. We have  to
find a  sequence Y i, y„  y„  • -•  i n  G  that converges to 1 such that 6(y 1 )=z 1 fo r
i=1, 2, ••• . Having found such a  sequence we can extend th e  map z i  y i  to
a  homomorphism O' o f P„, into G such that e '0 0 = I d .  Thus O' is  a  monomor-
phism.

In  order to construct th e  desired sequence consider a  countable basis of
open norm al subgroups o f  G

•••.

Further choose a  sequence (x) -=(x 2 ,  x 2 , x 3 , •••) in  G  such that 0(x1)=-21 for
If  H  is  an open subgroup o f  G  that contains N=Ker 6+, then almost all th e  x i

belong to H .  Further, N — N ,' - Gi  is closed in  G and •-• is a basis
of open  norm al subgroups o f N .  L e t (x:" ) )= (x ) .  A ssum e inductively that we
have already found a  sequence (x ( n) )=(.4" ) , xe'), )  such that

a) .xn ) =-x" - ' )  mod Nn,_2,  fo r  every
b) Every open subgroup H  o f  G  that contains N n  contains almost all the

elements o f (x ( n) ).
Construct a  sequence (x ')  in  th e  following w a y .  The subgroup N„G.+2

i s  o p e n  in  G .  Hence there exists a  positive  integer k  such that xre AT.G.+1
fo r  every T h e  map aN n + ,- -  aN n  i s  a n  isomorphism o f  Gn + 2/N.+2 onto
N nG n+ilN n. Hence fo r  every there exists a n  .x" ± n e Gn + i  such that xin + 1 )

=- xin ) mod N ,, .  F o r  i < k  define x in " = x r .  T h e  sequence (x ( n+' ) )  thus defined
satisfies condition (a). O ne can check that it also satisfies condition (b).

Condition (a) implies that fo r every there ex ists a y 1 G such  that
y i =  l im  x r .  Certainly y i ,=_x i  mod N .  I f  H  i s  a n  o p e n  subgroup o f  G, then

73

there exists a n  m such that G,a c H .  By (b) there exists a  k  such that .x'n ) G„,
fo r  every By (a), x " ) EG,,, fo r  every n _ n 7 .  Hence y ,e H  for every
T h e  sequence y „ y ,, y „•• •  is  th e  desired one.

Thorem  3.3. Let K  be a  countable H ilbertian fie ld  o f  characteristic zero.
Then there exists an algebraic extension M  o f K  which is co-free and PAC, hence
also H ilb ertian . In  particular Q  has such an extension.

P ro o f. By Theorem 4.4 o f  [4 ], K  has a n  algebraic extension  K ' which is
PAC and  H ilbertian . By Theorem 4 of Kuyk [12], K ' has algebraic extensions
L E L ' such that L 'I L  is  Galois and L '(L 'IL ) - ' P „ .  T h e  re s tr ic tio n  map gives
therefore a n  epimorphism o f  G (L ) onto P „ . By Lemma 3.2, G(L ) contains a

*  T h e  author is indebted to Jurgen N eukirch fo r  calling his a tten tion  to this Lemma.
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closed subgroup H w hich is isom orphic to Let M  b e  th e  f ix ed  field of H.
T hen  M  is co-free. B eing a  separable algebraic extension of a PAC field, M  is
also PAC (see A x [1 , p. 261] or [6 , Lemma 4 .1 ]) . B y T heorem  3.1, M  is a lso
Hilbertian.

The field Q  is  a lso  H ilbertian . Hence Q has also an algebraic extension M
w ith  the above properties.
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