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1. Introduction.

Let D  be a  neighborhood of the origin in R 2 a n d  a(x, t) b e  a n  infinitely
differentiable real-valued function defined in D  of the form

(1.1) a(x, t)=at kao(x, t) f o r  (x, t)e.Q .

where a  is  a non-zero real number, k is  a positive integer an d  ao(x, t) i s  an
infinitely differentiable real-valued function defined in D  w ith  a 0 (0, 0)=1.

We are concerned with the operator P  of the form

(1.2) p (x , t  '
a a

 )  (at
aia ( x ,  t ) a

a
x )  - - t)(aat)2(aa ,a x  at 

where b, (x , t ) are infinitely differentiable functions defined in  D.
It is well-known that for m-- -1, P  is locally solvable if and only if k is even

[ 9 ] ) .  For t h e r e  a re  some works [2], [4 ], [ 7 ]  w hich  treat more
general operators. In particular, from the result of [2] it follows that for m=2,
if  k is odd, then P  is not locally solvable a t the origin. And for m 3 , f ro m
the result of [4 ] it follows that when k is odd, P  is not locally solvable at the
origin if bo,,,_,(0, 0 ) k 0 .  On the other hand in the case when k is even, in  [10]
there is given a  necessary and sufficient condition for local solvability of P  for
m =2 when its coefficients depend only on variable t  and bi ,o (x , t)=0.

In this paper we will give a  necessary and a sufficient condition for local
solvability o f P  when m  is two or th ree . In the proof of necessary part we
shall use ideas of Ivrii [7] and Cardoso-Treves [2] and the proof o f sufficient
part relies on the result of Grusin [5].

2. Statement o f results.

Let D , be a  neighborhood o f th e  origin IV  such that D i x {0} E Q . For
b 5 GC - (Q ) and x 0 E S7, le t d,,,(x o )  be a  non-negative integer for which the fol-
lowing representation holds : In some neighborhood SYCS2 of (xo, 0)
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(2.1) t)= tai, ; (x0)0, i (x ,  t) f o r  (x , t)EQ ' , bi ,J GC*°(Q/)

where bri'lx , 0 ) is not identically zero in every small neighborhood o f  (x o , 0).
If  such an  integer does not exist, we define d , / x , )  to be +00.

Now we state our theorems.

Theorem 2 .1 -0 . Let P be the operator o f  (1.2), and m  be less than or equal to
three. Then P is locally  solvable at the origin i f  k  is even and d i ,; (0) - i+j(1-Fk)
— m  for every  i, j such that i-Fj m -1.

Remark 2.3. The condition of the theorem 2.1-0 is  invariant if we replace
P by T.

In  this paper we will give the  proof in  only the  case  when m=3 because
t h e  proof of the case m=2 is essentially the  same as a n d  is easier than
m =3. Henceforth we assume m=3.

Concerning the  necessity of the condition in th 2.1-0, we have the follow-
ing theorem.

Theorem 2 .1 - 1 .  '13  is not locally  solvable a t  the  o rig in  i f  there ex ists (i, j)
such that d 1 ,,(0 )<i+j(1+k )-3 , and the condition A), B) or C) holds, where A),
B), C) is given in  § 4.

Theorem 2 .1 -2 . P is not locally  solvable at the origin i f  k  is  o d d  and  f or
every  (i, j) such that di,,(0)_i-Fj(1+k )-3 holds.

Remark 2 .4 .  In  theorem 2.1-1 and 2.1-2, i f  k  is odd, then we can weaken
th e  hypothesis o n  a o (x , t). Namely, in  p lace  o f  a (0 , 0 )=1, it is enough to
assume that a o (x , 0) is not identically zero in every small neighborhood of the
origin.

In section 3, 4, 5, we will prove the non local-solvable result, i. e. theorem
2.1-1, 2.1-2. In  the  last section we will prove theorem 2.1-0.

3 .  Basic inequality.

We will prove the  non-solvability of P by contradiction. The method relies
on the following lemma.

Lemma 3.1 . (See [6 ]. ) Svppose that '1' is locally  solvable at the origin. Then
there are a neighborhood V  o f  th e  o rig in , an d  constants C, M  such  that the
inequality

(3.1) f (x , t)v (x , t)dx dt If( x , t)I mIPv(x, m

is valid f o r all  f ,  v E C (V ) . In  (3.1), we denote sup  E  ( : J ( : X ) )  u(x , 01 by
I u(x , t) I m.
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Now as in  [2 ], we are going to perform an analytic approximation of coeffi-
cients of P .  Let J be a positive integer. W e replace each coefficient of P  by
its finite Taylor expansion of order P - M  about (0 , 0 ). For simplicity of nota-
tion we will continue to denote the approximated operator by P .  Then the
inequality (3.1) becomes

(3.2) gf v d x d t  - C1f1M{IPvIm+C'suip(Lx14-Itl )
J

103f+3} .

Here we make use of asymptotic change of variables. (c. f . see [7 ] .)  Let us
introduce new variables (y, s) as follows :

(3.3) s = p 't , y =pPx ,

where 2 and it  are the positive real number which are suitably chosen later in
various ways, and p is a large parameter. Then in  new variables (y, s) we have

Lemma 3 .2 .  Suppose that 'P is locally  solvable at the origin. Then for every
open set in R2 whose closure is compact, there ex ist constant C, M , M ' and p o such
that the inequality

(3.4) . f v d y d s  .Cp3i'lflm{IPplilm+C siijp(Ip - 2 s1+1 p- PYIYIvIm+31

is valid f o r f , v E C (U ) an d  p -p o (U), where Pp  is obtained f rom  the analytic ap-
prox im ated operator P af ter change of  variables (3.3) :

a
(3.5) p-3213p(y, s) , ( T s - -  p - noiask ao (p - P y, p -2 3)-a a

y--) 3

+  E 13-2s)(d  
)i (d   )i

1-1-JS2 as Oy

n 0 — (1+k)2— p,n 1 =(d i , ; (0)+3-02— jp .

We note that in  (3.5) ao (y , s) and b?(y , s) are polynomials in  y , s.

4 .  Proof o f  theorem 2.1-1.

In this section, for simplicity of notation, we denote (4 ) (0) by d i d .
Now we will construct f  and y for which (3.4) does not hold. But its con-

struction depends on what lower order terms have the strongest influence.

Lemma 4 . 1 .  I f  there ex ists (i, j) such that d i ,, <i+ j( l+k )+3 , then  at least
one of  the follow ing conditions i)- iii) holds.

i) d i , i <k —1, cl0,0 +k -d0,2 and 2d 1,1 d 0 ,1 +k

ii) d0 ,2 <2k —1, d 0 ,2 <d 1 , 1 +k and 2d 0 ,2 d0 , 1--1-3k

iii) d o , i <k —2, d o , i +k <al l , and d 0 , 1 +3k  <24,2

Pro o f . For simplicity of notation, we write d2=d0,2, and d2 ,-=d0.1.
Lemma is easily shown because we can define a  totally order relation <  as
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follows
i=1, 2, 3 .

(11-<d 2i f  d1 d--le d2 .

1>-]

d2 -<d 3i f  2c/ 2 .3k +d o .

[> -]

dr<d, if 2d1 d3 -Fk

[> .1

From this lemma, it is sufficient to prove that for each case of i)-iii) '13  is
not locally solvable a t the origin, if some additinal condition holds.

aFirst, we consider the case i). In  th is  case  th e  te rm  ah a s  theas ay

important influence. So in view of (3.5) we take 2, p of (3.3) in such a way that
n 0 =1/2, n 1, 1 = 0 :

2=-1/2(k —1—d1 ,
(4.1)

te=- (di, 1 +2)/2(k —1— di ,1 ).

Then we note that the number 2, p are positive by hypothesis. Let P = p - " P p .
We are going to construct the approximate null solution 7,12,,v of 13 1.1= 0  of the
form.

(4.2) u (y , s )=e iw r(") w h ere  wAy, s).

In the above, zo which is a  nonzero real number and h(y, s)GC - (U ) which are
bounded as p - .+ 0 0  are determined later, and U is also determined later.

For simplicity of notation, we define cj  ( j= 1 , 2 , 3 )  as follows :

c1=b?,1(0, 0)

bg, 2(0, 0) if d0 ,2 =d 1 ,1 +k
C2

=

0 if d0 ,2 >d 1 ,1 +k

b°, (0, 0) if d0 ,1 =2d 1 , i —k
Cs= 

1 0 if d0 ,1 >2d 1 ,1 —k .

By calculation, we have

N+1(4 .3) e_iwirp,04, E  p (3,2)_JA .gh ,7 1, N i+J) + p ( N _ ,2 B 0 (h -» .,h i f )

where A4 and B p  a re  nonlinear differential operators acting on 4 1, ••• h,T1 +i and
••• , 4, respectively, and A(h,V, ••• , h,V+i) and B ,(4 1 , •-• , 11 )  are bounded

as p—, + 0 0 . More precisely,
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r a\(4.4) A (V )— tia sh ,V )--F z oa sk a o (p -P Y , p - 1 s)} 3

a
s ) ) -a—s- 4 i

1+kz81-ie3 s2 d1, 1-  kzo+ p - r2 G (y , s )

(4.5) •••, tcp-1 +.1) = [ 3 i f i ( -a—as h - 1 )± z o a s k a o (p - P y ,  p ' s ) }
2

a 
± ( — C ie l L i Z o+ P-rillp (Y  s ) ) ] aS  h (7 1 4 ..1

s, h ,  ••• ,

where r ,  and r 2 a re  some positive numbersm and Hp ( y ,  s )  and  G i,(y, s, •••
h ï, 2+ i) a re  smooth in  U  in  which 12w1, ••• , hw 2+-1 a re  smooth and are uniformly
bounded in  U  as p-0+ 00 .

We want to determine h ,  • - •  ,  hi; in such a way that e - i4 .1 3 (9u= 0 (p
- ( N - 1 ) 1 2 ) .

Hence we are going to determine 114 such that

(4.6) ii(h,V ),= -0(p“"-11 2)

(4.7) Alo(hwl, , 12; 1+J)--.=0

First we consider the equation (4.6). Let us define X p ( y ,  s )  as follows.

(4.8) X p (y , s )= i( T -
a

s  0 ± a s k a o (p - Py, (0 - 2 .3)zo •

Then for some r> 0, (4.4) becomes

(4.9) ./Y -1 -{ p (s)d -p -r fip (y , s)}  X p ± q(s)-F p - 7 Z p ( y ,  s )

where p ( s )= ic i s d l , 1z0 ,  and  q(s)= — (ic i a-F c 2)s a i , i+k zgH-ic 3 s 2d 1 •1 - k z o ,  and l i p ( y ,  s ) .
'p ( y ,  s )  are smooth and bounded as p - .± 0 0 .  Then we are going to determine

x p  such that (4.6) holds having the form

No
(4.10) X p(y, s)= X °(s)-F  E to-  X ( y ,  s ) ,

i=1

where N o is  a positive integer such that rN0 > 1 / 2 (N -1 ). Substitute (4.10) into
(4.9). Then we get

No
(4.11) (X °)3± p(s)X °-Fq(s)±  E to- ri 13(X°) 2 Xid-Eta°, • •• , XV')

.7=1

p - (No+l)rEp+ 1 (X ° ,

where Elp(Xo ,  ••• , Xi-1) are bounded as p . - - F o o .  Therefore if X° and X-,1, are the
roots of the equations

(4.12) (X°)3-1-p(s)X°+q(s)=-0

(4.13) 3(X°)2X4-F aX °, ••• , X 4-')= 0 ,
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then (4.6) holds.
Now le t us analyze the  equation (4.12) fo r s>0 . We assume (C.1);

(C.1) There exists a non-zero real number z o  which satisfies the following
three conditions.

i) Either c3 # 0  or c 3 =0  and ic 1 z 0 E.1?+ .

ii) (az 0 )>0.

iii) the discrim inant D of  the equation (4.12) is not z ero f or every s>0.

where by calculation we have

—27{q2 +4(p/3) 3}

—27 IC,(z o s " 1,0+U  4 5 4 d 1 , 1 -  2 k- d 1 . 1 ) 2 ± C 2(Z oS 2 k - d

where C1 =(— ic 1 a—c 2 )2 ,  C2 =- 2ic 3 (—ic 1 a—c 2 )+4(ic 1 13)3,  and C3 =(ic 2)2 . We remark
that if c 1 1 + I cs1 + I c3  *0, then C,, C2 a n d  Co a r e  not simultaneously zero.

Lemma 4.3. There exists a simple root X ° of  the equation (4.12) such that

(4.14) Re X°(s) ,-- cs d (1-Fo(s)) f o r sufficiently small s>0

(4.15)I  X ° (s) I C'Sci f o r  sufficiently large s > 0 ,

where c and c' are positive constants and 0 . d , d '<k .

P roo f. First we consider X (s) for small s>0 . In  th e  c a s e  c8=0, w e  set
X(s)=s ( ' 2 1 , 1 Y,(s). Then Y i (s) satisfies the  equation

0 7 1(s)Y-Fic1z0Y1(s)+( — ic1a—c2)zs k - ( 1 1 2 )

From this, we can choose Y i (s) such that Re Y1(0) i s  positive because ic i z o i s
not in  R + . In the case co *O, we se t X(S)=- s (113)(8( 1 -  k )  y  2( s ,) Then

(17
2 (s)) 3 -1-icizos k - d i. 1 11 .2(s)d-ic3zo±(—ic i a—c2)s 2

In  this case too, we can choose Y 2 (s) such that Re Y2(0) is  positive.
O n the other hand, for large s>0, we se t X (s)* s ( 1 / 3 ) ( d 1.1+k ) Z (s ) .  Then

(Z(s)) 3 +ic 1z0s - k Z (s)+(ic i a—c2)z o -Fic o s d l. 1 - 2 k z 0=0.

Since c/1 . 1 - 2 k  is negative, all the  roots of this equation are bounded as s—.4-00.
These considerations and (C.1) give the  proof of lemma.

Let X °(s) be the simple root of (4.12) which satisfies (4.14) (4.15). L et us
consider the  following continuous function:

a  (4.16) I 1(s) = Re z o sk+1 —R e l X °(t)dt} .k+1 o
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Then from (4.14), (4.15), it follows that /i (s) has a  negative minimum value mo
a t so>0 in  s> 0 . Let U , be a  neighbourhood of so contained in  Is>01 in which
/i (s) is negative and I 1(s)—m 0 >0  except for s=s 0 . We note that the existence
of such a  neighborhood is insured by the analyticity o f I 1( s )  fo r  s > 0 .  Then
X °(s) does not vanish in  U1 . Therefore by (4.13) we can determine Xip(y, s)•

which is smooth in R 1 ><U1 (j=1, ••• No).
Now we determine 1W . which satisfies the equation

a(4.17) _h-J-=iask ao(p-PY , p - 's)zo— iX p(y, s).as

Since ao (y , s) is  a polynomial in y , s, there exists a positive number r' for which
(4.17) can be written as follows :

(4.18) —
a

12-'=iaskzo—iX0(s)d Kp(y, s),as

where K p  is uniformly bounded in  U'x If, as p— .--F(x). (6' is any compact set
in R ') .  So that hi; are determined as follows :

(4.19) liwl(y, s)= k
l
+
.6 1

1 s k r".zo —i o
s X ° (t)dtd-p - " : 0 K p(y , t)dt+iy 2 .

Let U, be a  sufficiently small neighborhood of y=0, and we set U-=U2X
Then 4 1(y , s) is smooth in  U.

Now we are going to determine (j=0, 1, •-• , N ). Since X° i s  a simple
root, there exists p,>0 such that for p> p o ,  the coefficient of 127, 1+i in equation
(4.5) does not vanish in  U .  So we can determine hV +J inductively by the equa-
tion (4.5). Then s) is smooth in  U.

Now as in  [2], let us consider the following function I(y , s).

(4.20) I(y, s)= p(Im z 0)y-1-- p"12 ) 1m hiV(y, s)

=  p " ) {1.
1(s)'± y 2 + Tm U.3 K p (y , Odd} .

so

Then I(y , s) has a minimum value m(p) at (Yo(p), so(p)) in  U .  Moreover

(4.21) (Yo(p), s o (p)) converges to (0, so) a s  p  - - - ->  +  co ,

and for sufficiently large p , we have

(4.22) I(y, s)— m(P)>Cpc' 1 2 )f o r  (y, s )  { ( y ,  s )  U ;  lyl - Fls — sol > el ,

where C, 6 are some positive constants.
We define y, f  as follows :

(4.23) v(y, s) , g(y , s)ugy , s)

(4.24) s)=F(py , p(s — so(P))),

where g(y , s) is  a  smooth function defined in R' with compact support contained
in  U and equals to one in a subneighborhood of (0, so), and F(y , s )  belongs to
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CW(R2 )  an d  sa tis f ie s  S' ei zoY F(y, s)dyds=1.

T h en  in  th e  usual w ay, b y  (4.3), (4.6), (4.7), (4.21), (4.22) w e  c a n  sh o w  that
fo r  y ,  f  o f (4.23), (4.24),

th e  righ t hand  side  o f  (3.4) 0(p—P 1 '" ) ) e - 7 4 1 P)

where f (N , J) tends to  + c o  a s  N, J— >+ C O ,  and

th e  le ft hand  side  o f  (3.4)_ Cp - 2 e- m( P) ,

w here the  constan t C  is  n o t  zero. (c. f . see  [21). Therefore  if  we choose J and
N such that r( J ,  N)>2, th e  inequality (3.4) never holds.

In  o ther cases of lemma 4.1, t h e  p ro o fs  a r e  e ssen tia lly  t h e  sa m e  a s  th e
case i). Therefore  w e w ill outline  them  a n d  th e  detail is om itted.

In  the  case  ii), w e tak e  2, p su c h  th a t n 0 =1/3, n 0 , 2 = 0:

22= 3(2k — 1- 4 2 )
d0 ,2 +3

3(2k —1— dO,

and  w e w ill construc t th e  approxim ate null solution uz„; o f _13 ,71=0  o f  th e  form

s)=c0 :14 1 Y,  ) w h e r e  w2AY, s)=pz oy + E  p - 1 i 3 ) h(y , s).
2

In  th e  case  iii), we take A , p su c h  th a t n 0 =2/3, n 0 , 1 =0 :

2 2= 3(k —2— d0 ,1)

2(do H - 3 )  
3(k —2--d 0 , 1 )

and  w e w ill construc t th e  approxim ate null solution 7,01 o f .N u=0 o f  th e  form

u g y , s )=0 111 .(y , s), w h e r e  wX(y, s)=-pz o yd s).

Sum m ing up th e  above arguements, w e have,
Theorem  2 .1 -1 . 0 13  is  n o t lo ca lly  so lvab le  a t  t h e  o r ig in  i f  t h e  following

condition A), B) o r  C) holds.
A) i) o f lem m a 4.1 an d  (C.1) hold.
B) ii) o f lemma 4.1 holds and  e ith e r  bg,2(0, o)#o a n d  ic 3 /b2, 2 (0, 0)€E aR +  o r

b3,2 (0, 0)=0 and  6 * 0 .
C )  iii)  o f lem m a 4.1 holds and  /28, 1(0, 0)#0.

w here  6 = 0  if  2d 0 ,2 <d 0 , 1+3 k  and 6=1)8, 1(0, 0) if  2d0 ,2 = 4 1±3k.

5 .  Proof o f  theorem 2.1-2.

In  th is  section w e  w ill p ro v e  tha t 1 P  is  no t loca lly  solvable a t  t h e  origin
if  P  satisfies th e  hypothesis o f theorem  2.1-2 . T h en  in  view of remark 2.3, this
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proves theorem 2.1-2.
Suppose '13  is locally solvable at th e  o rig in .. Then by lemma 3.2, there exist

C, M, M ' a n d  po such that th e  inequality (3.4) holds for f, vEC7;(U) and
In  this case we set

(5.1) p=(1+k)2 , w h ere  2 is  a  la rge  positive  number determined later.

Then by th e  hypothesis o f  theorem 2.1-2, P  can  be w ritten  a s  follows :

(5.2) F = ( -
a . a 3

(  
a
 ) i (  

a
 Y— — task +  E  c i +;(i+k)-3

as ay i+j$2 aS aY

a
+71-1 .")Q P (Y '

a
a-s- )

where ci ,1 a r e  constants,r(2) tends to +c>9 a s  2—>+00 a n d  Qp i s  a  differential
operator o f  order 3  w ith  analytic  coefficients which depend o n  p  b u t a re
uniformly bounded in  every com pact se t as p--.+00.

We take 2 such that

(5.3) r(2)-1>31(k +1) .

Here we remark that without loss of generality we may assume a is positive.
Now we are going to construct the approximate null solution 1,0 ' of the  equation
./3 u = 0 . We require that 4 ' has th e  form :

(5.4) ugy, s ) = e ' I n p J ç ( y ,  s ) ,;=.

i a  
w(y, s)= sk-vid_y+i(  i a   s k+i+ y ) 2

k +1 k + 1

Then it is easily seen that

aa  3a )  a
(5.5)p i [ ( i a s k  

a y
)  sok+s k - l Ai(y, s, a  ,  P

j=1 Y

s ,  _a
n )_+_s k_2243 ( ,„ ,  s ,

ay a y

+p - r " ) + 1C(Y, s, 404- 1 )10 Pw+P- 0 . ( 2 ) + N ) Giy + 1 ,
s, soneiPw

where A n (n=1, 2, 3) has th e  form
a

(5.6) An=elp(y, s)p±a(y, s)-a y— f o r  n=1, 3,

a
A 2=c1(y, s)p 2 +d (y , s )p -a—y s ) ( - 4 ) 2

a n d  Ggy, s, so4 - 1 )=e - iPu'Q[eiPws4 - 1 ]. In  (5.6), cii (y, s) a re  polynomials in  y , s.
We show  now how th e  analytic function çol, is  chosen . L e t  go(y, s ) be a

so lu tion  of the  following equation



134 Takashi Okaji

(5.7), (ads _ i a s k day ) w ip + s k_1Ai _aas ç o .,,, + (s 2k-1A2+ s k-2A3)ço

± p -,(2)+1Ggy ,  s ,  4-1) = 0

Moreover we require that 4 (0 , 0 )= 1 , 4 (0 , 0 )= 0  for j> 0 .
Here we consider (y , s) as complex variables, and we perform a holomorphic

change of variables from (y , s) into (z, s) as follows:

(5.8) z =  i a  
k+1 

s k+ 1+  y S = S  .

Then in new variables (z, s), (5.7) becomes

(5.9),( : s ) ço4+ s k-iB i  ads  ç).4 + (s 2k-IB 2 + s k-2B 3m + p -,(2)+1Gr(z ,  s ,

where fo r simplicity of notation we denote th e  transformed ço i ;  by 4  and
a.137, ( z ,  s ,  az , p )  has the similar form to A n :

(5.10) 13„=14,(z, s)pd-b(z, s) 
a f o r  n=1, 3,

aa 2
wB 2 =z , s ) ,0 2 +b (z , s ) ,0   a z  +14(z, s)(-c -z  .

In order to fulfill the requirement for 4 ,  we require

(5.11) 4(z, 0 )= 1 , a
a
s ça,o)(z, 0)

,
(  a

a
s )

2 0 ( z , 0 )= 0, ça(z , o)=o ,

(i =0, 1, 2).
Then we have

Proposition 5.1. L et yoi(z, s) be a solution of  equation (5.9), with initial data
(5.11). Then f o r a sufficiently small neighborhood o f  th e  o rig in  VCC 2,  and  f or
ev ery  s>0, there ex ists a constant C,, p ,, such that the following estimate holds:
f o r every i

(5.12) s) f o r  (z, s)e V .

02{0 B i-aavo?,-1±(t z '  B 2+ t k  -2  B3)çocn _i}dt

Here we note that v4(z, s) is  an a ly tic . Let 0---çdn' —o 1. Then 0.?, satisfies the
following equations.

1çbzz1
(5.14) Csl

çb?' = 0
a

( s - 0 2 { t 13k ,- 1+(t2 k -B 2 +tk -2 B 3 )0 _ i} d t

P ro o f . First we consider ço°(z, s). We define çc4 (n=0, 1, 2, •-) as follows:

{ 0= 1

(5.13) rh 1
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L e t V R be a  neighborhood Ix E C ; 'XI <RI, a n d  we denote VR1XVR 2 by
V  R 2 . L et R  be a positive number such that for some positive constant c, the
following inequality hold:

{ Ibin(z , s)I<c (n=1, 3 and i=1, 2)

I M(z, s)I <c 2( i = 1 ,  2, 3) f o r  (z , s)EV I R , 4R •
1

3C IS I k  +1 < 1 , —
2  

2
3cIsIk+'<1.

R R

Lemma 5.2. (Cauchy's inequality) Suppose that f (z , s) is analytic in  {(z, s)E
C2 ; I z — z' I <r s —  s ' I <r 2 } . Then the following inequality holds.

(5.16)
a i d , f ( z ' s ')    sup If (z , s)I(as)(azY r_ r_

Then from this lemma, fo r an  analytic function f (z , s) in  V 4R, 4R we get

( a
a
z ) f  (z, s) —1, sup If (z, s) f o r  (z , s) IVR,n

0 zEvR + 8

Tz-

y f(z , s)
—

2

— sup If (z, s)I f o r  (z, s) V R, R •—  6 2 zEV R_Ea

Then from (5.10), (5.14), (5.15) and this inequality, it is easily shown that
the  inequality

n! 1 (5.17) I 0 ( z ,  s)I 7E p 1 1 k+i).,
n 1 ! 7/ 2 ! n 3 ! n 4 ! n 5 1 n,! ! (3n — ni —  n2) !n i = n

i=1

n4
1 1 2 2 2  k + 1  nX s  k+1)  (Op Isl )) 3 (cp1s1 ' 1 1—i n4Islk+)

2c2 n6
X( R , n i si 2( 5 + 1 ) )  (cp1 s

 k  - 1 - i ) n 6 ( n 7 1  s i  k  + I ) "

R

holds for (z , s)EV R ,R . Since /7- .3.f.j!, fo r s>0, the  right hand side o f  (5.17) is
less than

n! (2n 1)! (2n 3) ! (2n4)! (2n6) ! !  W O " ' (cp s  k nn i

7 ni ! n 6 ! (3n ! n3! (2n 1)!

( E p  i s I 5 + 1)2 33 ( c p s 5 1 ) n 4  ( c p s  k+i ) . 6

(2n 3 )! (2n4)! (2n0 !

Therefore we obtain for (z , s)E V R,

n  n!(2j)! 1
(5.18) I g (z , s )  I E ( n  j+2)(n—  j+1).f ro j!(2n)! 2

(cp is lk + i)n i (" i s i k+1)2n3 (c to  s
 5

+
1
r4 ( c p i  s i k+1) .6

X E
n1-Fn31-n4+n4=3 (2n 1 )! (2n,)! (2n 0! (2n 5)!

(5.15)
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( 1 )n - J (.\/cn I s  k + 1 + e p  I s I k+1+,V c p I s  k + 1 + „V c p I s  I k+1)2.7
.1-1 2( 2 1 ) !

< C { E3 1( 1  y  j ezpisik+1+ N-,711 (3,v c p 1s 1k + 1 +  s  p l s I k + 1 )2 4
j= 0 2 i-ti23 (2 j) I

< c m x 1 )In./23-2
1

±
(2[n/2])( 3

.

v c p  I s  
k + 1 +  s  p l + 1 )2 [n I q e 4 6  p l s ik  + 1

In the above inequality, we use the fact that for sosme constant c' the inequality
x<sx 2 + c ' holds for x>0.

+co
From (5.18), se(z, s)-= E  0 (z ,  s) is  a solution of the equation (5.9)0 w ith  the

initial condition (5.11), and we derive from (5.18): fors>0,

(5.19) go°(z, s)I <Ce0Plsl
k + 1

f o r  (z, s)  V R R .

Then by lemma 5.2 and (5.19), it is seen that for a sufficiently small r 0 > 0 , the
estimate

(5.20) (  
a
 ) i (

aas az y 1  ye(z, s) ,ssuip<roezp,,,k+1

hold for (z, s)E V RI2, R12. Let E '  be a positive number such that e '> 6  and let
7.0=-».1 1+1. Then there exist constant C and p i  such that

(5.21) (1)L iaso°(z, s )  
< C p i )  (k+1) e zp1.91 k+1

holds for (z, E )E V  R 1 2 ,R 1 2  and t) ,0 1.
For çoi(z, s), in the same way we obtain

149j(z, _CesP18' +k 1 sup  p ' " ) +1 1 GsAz, 01.
zGv4R;

Therefore by induction on j  from (5.3) it follows that the estimate (5.12) holds
for (z, s)G VR i ,R j  an d p _ p ) +1.

Let N  be a large positive number such that

(5.22) N >M '±2M +4+32 .

Then if  we revert to variables (y , s), proposition 5.1 implies that the estimate

(5.23) KlY(aaj so)(Y
holds for (y , s)E V which is a  sufficiently small neighvorhood of the origin  in
R 2 and p po.

Not let us define y and f  as follows:

(5.24)
v(y, s)g(y, s)u),Y(y, s)

t f(z , s )=F (py, ps),
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where g(y, s) is  a  smooth function defined in R 2 w ith compact support contained
in V and equals to one in a subneighborhood of the origin, and F(y, s) belongs

to  C (R 2 )  and satisfies e F'(y, s)dyds-=1.

By (5.23) we get (shrinking V if  necessary); for some 1>0

P41=0(p - ( N ±1 ) )

( as ) aay , Yu(Y, s )  
.._•.. C p L e - p a s k + 1+ y 2)

holds for (y, s)E V and p po . Therefore by the standard method (c. f. see [6])
we know that the right hand side of (3.4) is less than 0(p - J '), w h ere  J '> 2  if
we take J large. O n the other hand the left hand side of (3.4) is greater than
c- 2 , where c  i s  a non-zero positive constant. This is  n o t  compatible with
lem m a 3 .2 . T herefo re 2P  is  n o t lo c a lly  solvable a t  the o r ig in  This prove
theorem 2.1-2.

6 .  Proof of thorem 2.1-0.

In th is section we w ill prove the theorem 2.1-0. Our proof relies on the
result of Grusin [5].

L et P  b e  a n  operator o f (1.2) which satisfies the hypothesis of theorem
2.1-3, and let P o b e  an operator induced from P:

d   A__(  d(6.1) Po(t, t , + a t k e)
3

 +  E  B i , i"-"B 0 ,(0, 0)ti+ ) - 3 (  d   ) i (ie)i,
d ) dt 2-1-jg2 dt

where we denote bi ,,(x, O lt i + l ( l + k ) - 3  b y  R i (x , t) which is a smooth function in
a certain neighborhood of the origin by hypothesis.

Now we restate theorem 5.1 of [5 ] for the operator P.

Lemma 6.1 . P  is hypoelliptic in some neighborhood o f the origin i f  f o r  all
e=±.1. the equation P 0 u=0 has no non-zero sulutiin in S (R ). Here we denote by

S(R) the space ffE C "(R ); 0 a, 0 n, (1+1x1)'( d
d

x ) a  f (X) — , 0  as

There is a  following relation between local solvability and hypoellipticity.

Lemma 6.2. (see [ 1 1 ] )  I f  t h e  operator * P  is  hyPoelliPtic in  V ,  then P  is
locally solvable at every point of V.

From the fact that if  P  satisfies the condition of theorem  2.1-0, then *P
also satisfies its condition and the above two lemmas, in order to prove theorem
2.1-0 it is sufficient to prove the following proposition.

Proposition 6.3. Let Q be an operator of the form;

d \ _ (  d 3(6.2) t,
t  ) dt dt_ a t )  d-b i tk- 1 d  b2t 2 k - 1 - 1- b3t h - 2

d 
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where a E R 1 — b./E C '.  Suppose that k  is even, then the equation Q u = 0  has no
non-zero solution in S (R ).

We start from a lemma.

Lemma 6 .4 .  Suppose that k  is even an d  a  is  a non-z ero rea l num ber. If

u , fE S(R ) satisfy  the equation  (d atk)u=f, then u can be written as follows
dt

ea(tk+i_sk+i),(k+i)f (s)ds if a< 0
(6.3) u(t)-=

eactk+i,k+i)/(k+i),,s,)ds if a> 0

Proof. u  can  be w ritten :

(6.4) u(t)=eatk+1/(k+ofe-atri/(k+iu(to)+1:0e_ask+ii(k+V(s)ds},

e - a t k + 1 /( k - 1 ) u (t)= e - a t r i
i"+ 1) u(t o) d . : o e' k + 1 1 ( k+V  (s)ds

In  this equation, let t—, —oo, then the left hand side converges to 0  because k
is even. Therefore we get

u(to)=—etitri/(k+i) r ' _ a sk + ie i c k + i ) f  ( s ) d s  .to

Proof of proposition 6 .3 .  We assume that a < 0 .  For a > 0 , we can prove it
in the same way. Let u E S(R ) satisfy Q u = 0 . Then by lemma 6.4, we get

(6.4) u(t)=-..Ç
t  

—
1

(t— s) 2 ea" k + 1 - 3 k " " k flY  (s)ds2

where f ( s ) = — b i s '  
d u

 b 2s2 u—b3sk - 2 u .  (6 .4 ) is integrated by parts to obtain
dt

1
(6.5) u ( t ) = — ( a b i + b 2 )

t
00 ( t — s ) 2

s2 k -lea (tk + 1 k+1)1(k+1)24(S)dS

I L ( t  
— S)S k - l e a ( t h + 1 - 8 k + 1 ) " k + 1 ) U(S)CIS

t 1
{(k —1)b1 —b3}( t  —  s ) 2 sk

- 2 ea(t k + i _s k + 1 (k+i)
u ( s ) d s .

Let t< 0 , then
1  ( t s y s 2k-l e a(tk+1_,k+1,1(k+i)d

s- -  2

1c= [ -
1

( t— S )2 S k -1 ( a 
)e a  t+ 1 _ ,k + 1 ) I c k + i )

k2 

w here to  is an  arb itrary  rea l num ber. W e assum e that a< 0 . F or a> 0, w e can
prove it in the same way. D ivide (6.3) by eatk+1/(k+1), then we have
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1{ - 1— — s )2 (k  —1)s k - 2 —(t — s )s  ' l e a "  
+1_,k+1,1,k+„

dsa 2

„

1— ( k  — 1 ) ( t — s ) 2 s - 2 — (t  —  s )s -
leactk+ i_sk+ i),(k+ 1

a '  2

± { s '  — (k  — 2 ) ( t  — s )s - 2 — ( k - 1 ) (
t s )2 s }  e " ,k + i_ s k + i ) , (k + „

dsa

=  1 2 . t 1s - 1 — (k  — 2 )(t  —  s )s - 2 — ( k - 1 ) ( t  —  s ) 2 s - e a " k ± i - sk " " k ± l '  d s
a --

Since s < t < 0 ,  w e have I sl > t I. Therefore we obtain

e 1
(6.6) .ft ea0+1_,k+1,1ek+i)

d s  .-- 2 — t --
In the same way, w e get

(6.7)0 <  — ( t — s)s
k

-
l e a ( t k + i - s k + 1 ) / ( k + 1 )

-

c2
I t I

,
k

ea(tk+i_sk+i
+ i )d s

(6.8) 0
t

--
1

— (t— s )2 s
k  - 2 e a ( t k + 1 - s k + 1 ) 1 ( k + 1 ) d

 s 
—
<2  t

--eaeek+i_sk+i),(k+i, ds .

Since k  is even and a < 0 , from  (6 .5 )-(6 .8 ) it fo llow s that there ex ists a
positive number T>0 such that the inequality

sup I U(t)I SUP I U(01tec-co, — 2 t -oo, -Ta

holds. From  this inequality, we get

sup I u(t)I =0 .
t e ( - - . ,  - T :

Therefore by the uniqueness of solution of ordinary differential equation, we
obtain u(t)=0 for a ll t /11.
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