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§0. Introduction.

We are concerned with the Cauchy problem for weakly hyperbolic equa-
tions with characteristics of variable multiplicity. It is an interesting but
difficult problem to obtain a condition for this Cauchy problem to be well-posed.
Many papers have been devoted to this problem.

Comparing with the case of constant multiplicity, it is remarkable that
in this case the solution may considerably lose its differentiability. The mul-
tiplicity of characteristics is not the only one which determines the extent of
loss of differentiability, e.g. [1]. This suggests the complicated situation.

In this paper we consider the Cauchy problem:

{034+20a,0,0.+ a,05—b,0,—b,0,—c} u=f,
(C.P)

Ul imrg=uo(X), 0| imry=1us(x).

We assume the equation to be weakly hyperbolic. It means in this paper that
the characteristic roots, namely the roots of

224+2a,2+ a,=0

are real-valued and smooth, which we denote by 2A,(x, t), i=1, 2.

Our approach to this problem is based on the method of successive approxi-
mation. The obtained results are stated in §1. The commutator [0,—A4,0;,
0,—2,0,] plays an important role there.

Our idea is very simple. Roughly to say, it is as follows. We use two
ways of inductive estimate, saying one be analytic type and another be hyper-
bolic type. We repeat first the analytic type estimate certain times, say N
times, and after that time repeat the hyperbolic type estimate. It is important
to choose N appropriately. This number N corresponds to the decrease of
differentiability of the solution.

We note that the analoguous idea is found in [2].



44 Katsuju Igari

§1. Statement of results.
1.1. The differential operators considered at first are of the form
(1.0) L=0;{—2%02—a0,—bo,—c

(x, )el={(x, t); —0<x<+00, 0=<t<T}, 0<T<+o0, 3,=- 9 9

ot 0a=—g - We

suppose that 4, a¢, b and ¢ belong to ®8(£2) and also suppose that A is real-valued,
namely the operator L is weakly hyperbolic. The Cauchy problem to be solved
is

Llul=f, t=t,
(1.1)

u|t=t0:uo(x>y acu|t=n):u1(x)
where 0=¢,<T.
As aforesaid our approach to this problem is based on the method of suc-
cessive approximation. We may assume with no loss of generality that u,=u,
=0. Let L, and L’ be as follows:

L,Lul=(0,—20:)(0,+40:)u ,
L'Cul=(0,—20:)(au)+(b+ ai+2,—22,)0,u
+(c—a,+Aa)u.
We define u;, i=1, 2, .-+, by
Lylud=rfici,  wilimiy=00ui]i=,=0,
where fo=f, fi=L[u;], i=1, 2, ---. It then comes into question whether the
formal solution i_o) u; converges or not.
Let = be a rlejétangular domain as follows:
a={(x, 1); a<x<B, 0=t=T}, —o=Za<f=+oo.
We assume the following conditions.
Condition (H)): There exist two functions k and he ®B(x) such that

b=FkA+hA, (x, Her.
Condition (HY):

(H}—1) Alx, 1)=0, (x, Hher,
(H}—2) there exists a constant C such that
2+Ci=0, (x, Hern.
We denote by ¢*(x, ¢, s) respectively the solution of
ot =0, ol,..=x,
and define the domain D by
D={(x, Her; a<e*(x, t, 0)<B}.

The following proposition holds.
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Proposition 1. Assume that the weakly hyperbolic operator L satisfies the
condition H, and HY. Then for any integer m=0, there exists a constant d(m)

such that for any t,; 0=t,<T, and any fe BLDN{t=t,}], 20{ > s1|8£3‘£uil}

p+gsm.q

converges uniformly in DN\{t,=t=<t,+o(m)}.

We remark that even if —24, instead of A, satisfies the condition (HY), the
consequence of the above proposition remains true. Moreover, reading the
proof of Proposition 1 carefully, one can see that it is able to replace the con-
dition (HY) with the following weaker one.

Condition (HY): There exist at most countable numbers of open intervals
Li=(as, B;), a<a;<[3:=<p, such that

(e, B)qui, Linl;=¢ if i#j,

and that in each w;=1; %[0, T], either 2 or —2 satisfies the condition (HY), pro-
vided that the constant C in (H}—2) is independent of 1.

It is useful to remark the followings: 1) If a;=f; for some i and j, and
A=0 in one of x; and x; then we may suppose that A=0 in the other, and in
particular that Aa;, $)=0, 0<¢<T. 2) If (x, t)eD, then (p*(x, ¢, s), s)€D for
any s; 0=s=t. 3) If a<a;<B;<p, then =;CD. Besides, if (x, t)Emr;, then
(p*(x, t, s), s)ex; for any s; 0<s=<t.

Well, the condition (H}) is equivalent to

Condition (H,): There exists a constant C such that
(. +C2*=0, (x, Her.

Proof. Evidently (H,) follows from (H}). Hence we show its inverse. We
assume (H,). At first we remark that if A(x,, ,)=0 at some point (x,, t,)Emr,
then A(x,, t)=0 for any t=<t,. Suppose that A(x,, T)+0 for some x,E(«a, B),
then we can find the maximal open interval /C(«, B), containing x,, such that
Alx, T)#0 for any xI. The number of such intervals is at most countable.
We denote them by [;=(a;, Bi). (a, B)—VI; is represented as a union of at
most countable numbers of disjoint open intervals J;, By the above remark,
we see that A(x, )=0 in J;X[0, T] for all j. Also we see that in each I;X
[0, T] either 2 or —2 satisfies the condition (HY), because, if A(x, T)>0(or<0)
for xe1I;, then A(x, t)=0 (or=0 respectively) in [;X[0, T]. (g.e.d)

We see after all that if the weakly hyperbolic operator L satisfies the
condition (H;) and (H,), then the same consequence as in Proposition 1 holds.
Since the differentiability with respect to ¢ of the obtained solution follows
from the equation, we have

Theorem 1. Assume that the weakly hyperbolic operator L satisfies the con-
ditions (H,) and (H,). Then for any integer m=2, there exists a constant 6(m) such
that for any t,; 0=t,<T, any f€eB[DN{t=t,}] and any u,, u,€ B[DN\{t=t,}],
there exists a solution u€ @"[DN{t,2t=ty+0(m)}] of the Cauchy problem (1.1).
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Moreover there exists an integer my=2 such that for any to; 0=Zt,<T, the solu-
tion ue 8™[DN{t=t}] of (1.1) is unique.

1.2. Some remarks

(A). If we assume the following condition besides (H,) and (H,), then we
may take d(m)=-+oco in Theorem 1.

Condition (H,): There exists a function o(t) such that
(He-1)  1022(x, )| =Cho(t), (x, 1)ED, for any p,

where C, is a constant which may depend on p,

(1)
a(1)

where Z’(t):S:a(s)ds and M is a constant.

(H,-2)

[z, DISEM|Ax, D], (x, )eD,

Consulting the proof of Proposition 1, one can prove this easily.

(B). (H,) and (H,) are conditions concerning A(x, t). We shall give some
examples.

ED: Ax, )y=p(t)qlx, 1); qlx, )=c,>0, p(H)=0, p'()+CHp()=0, ¢, and €
are constants,

Putting o(¢)=]|p’(¢)|+ p(¢), one can verify that this example satisfies the
conditions (H,) and (H,).

(E2): Ax, t)y=p()q(x); p(t)=0, p'(1)+Cp(1)=0, C=const..

This example also satisfles (H,) and (H;). In this case we put o(t)=|p’(1)].
(E3): Ax, )=p:()q:(0)+ pu)go(x); p:(1)20, pi()=0, 1=1, 2, g:(x)g(x)=0.
This example satisfies (H,). If we assume that

0PI

pit)Pt) —
then the condition (H,) is also satisfied. For example, A(x, {)=tx*+exp(—t ")x?
satisfies (H,) but does not satisfy (H,).

pi(t)=const. pi(1), const.,

(C). In case 2=t, a=c=0 and b=constant, the explicit solution is given in
[1]. The case of 2z=t¢™ is considered in [2]. A sufficient condition of well-
posedness is given in [3], which contains the example (E.1). O.A. Oleinik
considered the weakly hyperbolic equations in many independent variables and
not assuming the smoothness of characteristic roots, gave a sufficient condition
of well-posedness, [4]. In case of two independent variables, it is as follows:

atbl®< AZ+(2%,, «a and A are constants (>0).

These results are partly extended to higher order equations, [5], [6], [7].
Strongly hyperbolic equations are characterized in [8], [9].



Cauchy problem 47

1.3. Now we shall consider the Cauchy problem (1.1) for differential opera-
tors of more general form, namely for

(1.2) -E:a%'i'za]atax'*' azai—'boat_blaz_c .

We assume that the coefficients belong to 4. We denote by A4,, 4, the roots
of the characteristic equation

?4+2a,7+ a,=0.

Let us say the operator £ be weakly hyperbolic if 4; are real-valued and belong
to @, i=1, 2. Let X(x, ¢, s) and ¢(x, t, s) stand respectively for the solution of
Xt+alxz:0y x[t=s=x.-
(1.3)
99l_'2i90.2:()) §0lz=s=JC, l=1, 2.

We introduce the so-called subprincipal symbol Pj, which is defined by
1 1
Pi= §a;a:Pz+ ?axaépz—Pl ,

where P,=1%+2a,t6+ a,£% P,=—b,c—b,&. Let = be the domain defined by
r={(x, Hla<ix, t, 0)<B, 0=t<T}, —o=<a<f=+oo, T>0.
We assume the following two conditions.
Condition (9;): There exist two functions k and he B(x) such that
Piliccag=k{t—A8 128+ h(4,—2,)€,
(x, t)er, E€ R, where {,} denotes the Poisson’s bracket.
Condition (4,): There exists a constant C such that
{r+a., d&3+Cd&*=0, (x, t)ex, E€R,
where d=a}— a,.
Let 9 be the domain defined by
D={(x, Herla<ep(x, t, 0)<pb, i=1, 2}.
Then we have the following theorem.

Theorem 2. Assume that the weakly hyperbolic operator L satisfies the con-
ditions (4€,) and (H;). Then for any integer m=2, there exists a constant o(m)
such that for any to; 0=t,<T, any f(x, YeBLDN{t=t,}] and any uo(_x), uy(x)
€ B[ DN {t=t,}], there exists a solution u(x, )E B[ DN {t. <t =<t,+0(m)}] of the
Cauchy problem (1.1) for L. Moreover there exists an integer m,=2 such that
for any to; 0=t,<T, the solution uc @™[DIN{t=t,}] of (1.1) for L is unique.

Proof. By the transform of independent variables defined by
y=X(x, t, 0), s=t,

the operator £ is transformed into
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L=0—(A,)*0%—bods—b,0,—c,
where 21=2—2,, b,={b,+(a,).+a(a);—boa,+ 21, X'} X,. This is the operator
of the same form as L in (1.0), and satisfies the conditions (H,) and (H,). Here
we remark that
Lol 1, O)=exp{— | (@)K, 1, ), )ds}>0.
(g.e.d.)

§ 2. Preparatory considerations.

2.1. To simplify the descriptions, we use some notations as follows.
13 s . t .
A(f):SOdsgofegodu, A»(f):Sofugo-ds,

where feo=f(p (p*(x, t, s), s, u), u), fop*=f(p*(x, t, s), s). By the formula of
differential of a composite function,

P
fop)=3 X Crp @it f)eo,
r=1 ritedrp=r
ritet+prp=p

where ¢;=0l¢, p=¢ (¢*(x, t, s), s, u). We put
@1”: » Crr--r,,@fl e

ri+etrp=r
rit+etprp=p

It holds that
(2-1) @p,r—1§01+az@p.r:¢p+l,r’ r:1v 2: tty f)"‘l ’
where @,,,=9@,, ,+:=0. In particular, @, ,=¢?.

We put
Dt N D
024(0)= £ (as['0,.0:0) ¢ du= 2 4,.@1),

0: A5 ) =] 5] 0:0,.07 ¢ dut [ 5[ 0,021 0 d

:Ap,r_(,(f)_‘_Ap,r, NCHAR

From (2.1) we have
(2.2) Ap.r,o+Ap.r-1,1:Ap+1,r, r=1, 2, -, p+1.

Q:,, A5, Ai,.and A, are defined in parallel, and they satisfy the same
relations as (2.1) and (2.2).
By the way, under the condition (H;) the operator L’ is expressed in the

form
L'Tuy . ]=(0,—20:)au; ) +(kA+hA)0 u;  +cui_y

where k£ and h are different from those in (H,) and ¢ from that of (1.0). Hence
we have
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23 wi=Blu;- J=A*[au;-, ]+ AL(k A+ R0 u;- +cus- ],

0fu;= ,§1Ap.r[( :l)(klrl—hl)("“a;zﬂui_l]
+ 2 a3 (] Yoo+ 3,40, [( Yooz

Y4
where =3 3 , a™=0;a and so on.

77Ty =1 r1+7rp=T
At
2.2, We put w,]——F—J—'
t t
Sowi-jﬂ,i ° ¢idS:Ewi—j+l.i+l ° Qﬁtjé_goas(z ° Sot)wi—j,iﬂ ° SOtdS .

Since that 942 ¢*)=(2,+CA—CA+24;)> ¢* and that 2,+CA1=0 from the condi-
tion (HY),

S:wi-ju,i c*dsS Wi i1 111t {C—I-Slgpuzl} _1;1-{_—1—_1 tS:wi—jnJ cp*ds.
We take ¢ so small as {C+sup|d,|}6<1. Then we have
Lemma 1. For any i=1, 2, ---, and any j=1, 2, --», i+1, it holds that
S:wi_jﬂ,i°go*ds§lei_j+,,i+l, (x, t)e D;
where D;=DN {01 <6}, M1:{1—(C+sgp|2,l)5}".
Since |4,|=£2,+2CA from the condition (HY),

¢ t
SO{IM wi—j,i+1} ° QDtdS §Soas(2 ° §0t)wi—j'i+1 ° SDidS

t
+2C+5yp | 2e )i D wi-senvaie 9t ds

= {1+ @C+ogp 2D M o
The‘refore we have
Lemma 2. For any i=1, 2, ---, and any j=1, 2, ---, 1, 1t holds that
(20w it e @t ds=Mawegorinn
(x, t)e D;, where M, is a constant independent of 1 and j.
§3. Proof of Proposition 1.

3.1. We shall say that u; has the estimate scheme S, if 1) for any p, 02u;
is decomposable as a sum of n components u?;, j=1, 2, .-+, n:

n
aﬁui=f_21 u;,
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each of which has the estimate as follows:
luljlSconst. waojnerl flpin-j,  7=1,2, -, n %

and 2) for each j, 0,u%; is decomposable as a sum of two components u?¥l, and

+1 .
uPih:

O ufi=uli+ultly, provided that u?%,=0,
each of which has the estimate as follows:
]u{j.kl <const. Wnp-j- k.n+1|f|p+n—j—k ’ k=0,1,
and it holds the following relations:
uB o ultl =uli.

We can easily see that u, has the estimate scheme S,. In fact, if we put
0%u,=u? and 0,uf,=ulty(=uPf), then

[ufil=1ud ol Sconst. wo.qlflyp

3.2. Now assuming that u; has the estimate scheme S, and taking (2.3)
into account, we define the operators BZ[u,], B7t'[u;] and B2i'[u;] as follows:

B.];[uijzAp.p[(k/zr*'hi)ul’ﬂ]_l_ 2 A3 ,[( )a(rl)ur ]
2 A (1 Y aet ROz

+ Ap,,[( :l)ccmu}?j_l] ,

71

Y4 . .
where 2> =2 > , ¥’ denotes the summation excepting the term of (r, r,)

7,7y T=1 T1+Te=" 7,73

=(, 0)
BIECud= Ay p [k A+RD i+ 3 A5 (a0 uitha]
1

+Z A;.r.1[< :)a("l“’uffj_l]-l—ZA;,’mo[(r )a(fl’ Ui 1]

FS A, [(’r )(kzt+'hz)<n>u,az,+3,,o+(: )(kzt+hz)<n+l>u,r,z,.+_ll]
1 1

‘}‘E/AJM,0[<:l)(k2z+hl)m’ui ij]-I-EAP r,o[(:: )c‘”’ 72 1]

v v
. Do
+E/‘1p.r.1[(r )C(r’)uf".zf—lno'l’(rl)C(T1+ )u;','j—l] .
1

B2 [ud=Ap, p LA ARDUET +(R 2 A-h )P ub}']

+ Ay L2 R w1+ S| (1 )arouzts, ]
1

" 1fle= Ssuplolf (9], Di=DN{0SsSt, (S0,
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+3VAp 1 [( :: )(klt +hA)w 1‘5'2?}"1]
1

’
+E‘4p,r.l[< ’ )c(”’u’2+1 ] .
1

Then it is clear that

02BLul=3 BLu:l,

3.1
0:B3 u =B luJ+ B2 ud,  Bptl[ud=0.

Moreover, taking (2.2) into account, one can verify that
3.2) B2 w1+ B3 Lul=B"u,], j=1, 2, =, n+1.

3.3. Suppose that u; has the estimate scheme S,. If we define ufy;
ubil;o and ulf;, as follows:

wh ;=B uy],  uBi;e=B%ilu]

j=1, 2, ---n-+1, k=0, 1, then on account of (3.1) and (3.2),

n+1
a.:gui+1: 21 Ul s s 0. Uy, i ulf! i o ulf! AR
i=
+1 — +1 +1 — 4L
P 41, =0, ulifil ot u?+1.j—1.1-‘u%,+1,j .

Moreover each ufy,;, ulfl;q ubil;, has the estimate as follows:
| uf-)-l.jl =const. Wnt1-j, n+2|f[ pER+1-F
| ubft 7 ¢ Sconst. wn+1—j-k.n+2|f|p+1+n+1—j—l.v , k=0,1.

By means of Lemma 1 and Lemma 2, we can prove these inequalities. In fact,
for example,

lAp, p]:k/hup_“l:||<con5t If[p+1-l n- JA[M [ W, - ne1l
=const. |f|p+n+1—jA+|:lUn+1—j. n+1]
=const. | f] p+n+1_}wn+1-]~, bz -
Thus the following proposition has been obtained.

Proposition 3.1. [f u; has the estimate scheme S,, then ., has the estimate
scheme Spiq.

In consequnce of this proposition, we see that u; has the estimate scheme
S, because u, has the estimate scheme S,.

3.4. We suppose again that u; has the estimate scheme S,. More precisely,
let K., ; be such a constant as

|u‘gj| =Km, Wy, n+1|f|p+n—j:

l“g}:lkl éI{nu z‘u)u—j—k, n+1 |f| ptltn-—j-k*
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j=1,2, -+, n, k=0, 1, for any p; p<m—14j, and for any p; p+1<m—1+j+k,
respectively, where m is an integer given arbitrarily (=0). This time let us
define u?,;, u?f!;, and u?4;, as follows:

ulein=BiluJ+Biw],  uhi,;=Blud, j=2, -, n,
ull0=Br [u ]+ BT [u ]+ BE [ud,
ubiljo=Bllul,  j=2,-,n,
ult =B [u], j=1, -, n.
Then on account of (3.1) and (3.2),

3
P — P
axuin—j; Uit1.55 a ulyy, i_‘un‘-l i o ulft gl

Pl P+ P+t — DI
ulil, =0, ulfl ot ulfl o =nlil;.

We shall prove later that if n=2 there exists a constant p=p(m, n, §), which
depends on m, n and ¢ but not on ¢ and K, ;, such that

(33) I ulpﬂ,j‘ ép(”lv n, B)Km,iwn-j. n+1 |f| p+n~j

| u?f! i el <p(m, n, 5)Km.iwn—j— k,n+1|f|p+1+n-j—k ,

7=1,2, -+, n, k=0, 1, for any p; p<m—1+47, and for any p; p+1=m—1+4j+kF,
respectively, and what is more, that if we take »n large according to m and ¢
small according to m and =, then

(34) o(m, n, 0)<1.
3.5. The following proposition is the direct consequence of the results

obtained in 3.3 and 3.4.

Propositon 3.2. For any integer m=0, if we take n(=2) large according to
m, and 6 small according to m and n, then there exists a constant p<1 such that
for any p=m

[02u; | Zp""K 2 sgp|3§'nfl, (x, t)e Dy,
q t

sman-1
i=n, n+1, ---, where K is a constant independent of 1i.
Now we shall consider the estimate of 0,0%u;. Because
Ou;=—2A0u;+au;-,+A[(kA,+h)0u;-, J+A [cus-],
it is easily seen that for any p<m—1
Iataﬁﬁuilép"‘"K’qm%_ngtplaifI, (x, )eDs,

i=n, n+1, ---, where K’ is a constant independent of 1.
Thus the proposition 1 has been shown.
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3.6. Proof of (3.3) and (3.4).
(A). At first we consider the estimate of Bi[u;]=A4,, ,[(kA,+hD)ult"]. Tak-
ing account of the relation: u®i{'=u?'y=0,u?,—u?, we put

I=A, p[(RA,+hA)0 um,].

Because {(k2,4+h2)0,u? )} o=¢;'0s{(kA,A+hD)u?, o @} —{(RA,+hA) ub} e and @=
20p*(x, t, 5), )z (p*(x, t, s), s, u), if we put @p‘p{Zgo;(gp*(x, t,s), s, u} ‘1_—_@p,
then we have

I=Log") {0, Gk A+hDuR) o 0 duTyss
— e g LD (kA hDUD » el
—[las 00,0 o) 2t RDULY < 0 du

—S:ds SZ@,,, 2R, AR uB )o@ du

=[+1,+1;+1,.

By the lemmas 1 and 2,

SZq),, {(kA+hD)uR ) ¢ du
<CpKm, i1 fl penrATUE L 2] F 1Al oD Waornei] e o

§cp{|k|oM2+ | h|oM,0} Km.ilfl p+n-1Wn, n41° SD+ .
Therefore
1] écpn-l{l kloMy+ 1A oMi0} K, iWp o1, nas |f| ptn-1-
In the same way,

k1M, | k1M

71'—1 + n+2 }Km,iwn—l,n+l|flp+n-1,

I1.1=C]

7 |<{ ColkloMM6 | Cplh|M36* | Colk| M3 Cplv{zrlqM,Mza}
o= n(n+2) | (n+3)(n+2) n(n—1) " (n—1)n+2)

XKm.iwn—l. n+1 |f| p+n-1,

Mis
[14] écgmj(m.iwn—l.n-l [f]ptn-1-

On the other hand,
[ Ap, pL(kAARAUPTY]|

k| oM,M,0 hl| Mio?
*l"l;;__l_‘zz_l *I-7j|£‘l_31 }Km.iwn~!,n+1|f|p+n—l°

<cyf
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Thus it has been shown that there exists a constant p,(m, n, ) such that
for any p=m

| B[ u:1l épl(nl, n, 5)[{m,iwn—l.n+llf| pEn-17 (x, H)eD;,

where p,(m, n, ) does not depend on ¢ and K,,;. Moreover we have seen that
for any integer m=0, if we take n large according to m, then p,(m, n, d) be-
comes small as we wish.

(B) Next we consider the estimates of B3, [u], j=1, 2, ---, n. By the
lemmas 1 and 2, for any p<m—1+4+j

[ Ap. p[(RA A hAUTS ]I

Colk|oM;M0 | Cplh|,Mio?
={ ’ n|f|-22 —+ p|nl—|I—031 }K”""w"‘f'"“‘flmn—j’

[ o =S4

= n m.iWn-j n+ +n-j«
2 j |f| p J

- (71+2)(n+3) Km'iwﬂ‘i- 7L+1|f| pEn-j -

Therefore there exist constants p;,,(m, n, d) such that
[ B2 Lu ]| S pmm, 1, 0)Km, sWaojne1l flpen-s»

(x, )€D;, for any p<m—1+j, j=1,2, ---, n. In addition, taking ¢ small if
necessary, it is satisfied that

0:(m, n, 5)<%, pilm, n, )<L,  j=2,--, n.

Concerning B%.y,[u;] and B%,[u], the situations are same. Thus (3.3)
and (3.4) have been proved.
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